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Abstract

We present a game description of free symmetric monoidal closed categories, which can also
be viewed as a fully complete model for Intuitionistic multiplicative linear logic with the tensor
unit. We model the unit by a distinguished one-move game called Joker. Special rules apply
to the joker move. Proofs are modelled by what we call conditionally exhausting strategies,
which are deterministic and total only at positions where no joker move exists in the immediate
neighbourhood, and satisfy a kind of reachability condition called P-exhaustion. We use the
model to give an analysis of a counting problem in free autonomous categories which generalizes
the Triple Unit Problem. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We aim to construct a fully complete game model for IMLL with unit, the in-
tuitionistic multiplicative (⊗;(;")-fragment of Linear Logic (we write " for the tensor
unit). The notion of full completeness [2] is best formulated in terms of a categorical
model of the logic, in which formulas (or types) are denoted by objects and proofs
(or terms) by maps. We say that the model C is fully complete just in case the
unique functor from the relevant free category (typically the classifying category of
the logic or type theory) to C is full and faithful. In [2] Abramsky and Jagadeesan
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have constructed a ∗-autonomous category of games, which is a model for MLL, the
classical (−⊥;⊗;o)-fragment of Linear Logic. They prove that the model is fully
complete for MLL augmented by the Mix rule:

% ! % "
% !;" :

Soon after the result was announced, Hyland and Ong [10] constructed a fully com-
plete model for MLL proper, using what they call fair games (which invalidate the
Mix rule). In both models, the treatment of units is unsatisfactory. In the former,
the full completeness result really only applies to the unit-free fragment of the logic;
the situation is worse in the latter, as unit cannot even be modelled (the obvious can-
didate is the empty game but fair games by de"nition have at least two moves of
opposite polarity).
We stress that, for us, the categorical models of IMLL with unit are exactly the

symmetric monoidal closed or autonomous categories. In this paper, we represent proofs
of IMLL with unit by terms of a type theory called IMLL (which is introduced and
called Autonomous Type Theory in [14]). The choice can be justi"ed by the fact that
IMLL is an internal language for autonomous categories (see [14] for details), so that
the classifying category of IMLL is the autonomous category freely generated from
(the discrete graph whose vertices are) the atomic types.
The two-person games (between P and O) we play are similar to those introduced

in [1] though they are "nite (no in"nite plays). In Section 3, we present a new
fully complete model Ge for IMLL without unit. Proofs are characterized by what
we call exhausting strategies which are history-free (in the standard sense) and satisfy
a kind of reachability condition called P-exhaustion: every P-move will eventually be
played by # by engaging some O-strategy. The exhausting strategies model is not the
fair games model restricted to its intuitionistic part; we compare the two models in
Section 6.
The rest of the paper extends the Ge construction, in stages, to a model Ga fully

complete for IMLL with unit, as represented by IMLL. The tensor unit itself is mod-
elled by a game called Joker which has a single distinguished joker move ∗. Special
rules apply to ∗ which are biased towards P:
(1) P may play ∗ in response to any O-move.
(2) When O plays ∗, P is not obliged to respond, but if he does, he must do so with ∗.
Correspondingly the exhausting strategies (for P), thus extended, are neither deter-

ministic nor total, though these properties must still hold locally whenever the joker
move is not the last move and no joker move is available to P at that point. We
introduce such strategies, called conditionally exhausting, in Section 8. Conditionally
exhausting strategies compose and form a category Gce (though it is not autonomous)
which we show is fully complete for an intermediate type theory called IMLL[ in
Sections 7 and 8. In Section 9 we show that by quotienting the homsets of the cat-
egory Gce by an appropriate equivalence relation, we obtain an autonomous category
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Ga which is fully complete for IMLL. To our knowledge, this is the "rst such game
model.
We conclude the paper by considering an application in Section 10. We use the

model to give an analysis of what we call the Tower of Units Problem, which is
a counting problem in free autonomous categories that generalizes the Triple Unit
Problem.

1.1. On related work

Full completeness results for the multiplicative fragment of Linear Logic abound.
They fall into two groups. The "rst consists of fully complete models of MLL+MIX
e.g. [2, 16, 6], all of which are isoMIX categories (rather than MIX categories) in the
sense of [7] i.e. the tensor unit " is isomorphic to the “par unit” ⊥. This means that
there is a map from (a(")(" to a, but the corresponding sequent is not provable in
IMLL (with unit), so these models are not fully complete. The second group consists
of models of MLL proper (without MIX) e.g. [10, 17, 8, 3], but in each case, full
completeness has been proved for the unit-free fragment only. In the last three both
units are introduced, but no claim has been made with respect to the fragment with
units. In our view, the respective full completeness results for MLL with units, if valid,
are likely to require complicated proofs see e.g. [5, 14].

2. Autonomous categories of games

In this section, we set out the basics of game semantics for Intuitionistic Multiplica-
tive Linear Logic (IMLL) [9]. We introduce four categories of games and strategies,
which we will re"ne in subsequent sections to give a fully complete model for IMLL
with unit.
Recall that a symmetric monoidal category C is a category equipped with a bifunctor

⊗ :C × C→C, an object " called tensor unit 3 and four isomorphisms

$A;B;C : A⊗ (B⊗ C) → (A⊗ B)⊗ C associativity

#A;B : A⊗ B → B⊗ A symmetry

lA : "⊗ A → A left unit

rA : A⊗" → A right unit

de"ned for and natural in all objects A; B and C such that the following diagrams
commute:

3 We follow Barr [4] in writing the tensor unit as # instead of the more traditional I .



272 A.S. Murawski, C.-H.L. Ong / Theoretical Computer Science 294 (2003) 269–305

Moreover l" and r" :"⊗"→" are required to coincide. We say that C is sym-
metric monoidal closed or autonomous just in case for each A∈C, the functor (−)⊗A
has a speci"c right adjoint A( (−).
We shall consider two-player games between P (Proponent) and O (Opponent).

Every play is started by O, and thereafter it alternates between P and O. We construct
new games from old using the standard tensor and linear implication constructions.

De!nition 1. A game G is a triple 〈MG; %G; PG〉 where
(i) MG is a set of moves
(ii) %G :MG→ {O; P} partitions moves into those that O can make or O-moves, and

those that P can make or P-moves (we will write MO
G ; M

P
G for the set of O-

moves and P-moves of G, respectively, or simply MO and MP whenever G is
understood)

(iii) PG is a pre"x-closed set of "nite alternating sequences of moves from MG, each
beginning with an O-move; we call elements of PG positions or plays of G.

We say that a game G is !nite if both MG and PG are "nite sets. Henceforth we
shall assume that our games are "nite. For example 〈∅; ∅; {&}〉 (where & is the empty
sequence) is a game, which we shall call the empty game, written ∅. We interpret
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(non-unit) atomic types a as single-move games Ga, which we shall also call atomic,
de"ned as follows

Ga = 〈{a}; {(a; O)}; {&; a}〉:

For sets S and T , we "x a representation of disjoint union S + T as

S + T = {(0; s): s ∈ S} ∪ {(1; t): t ∈ T}

and for functions fi :Pi→Q where i=0; 1, we write [f0; f1] :P0 + P1→Q for the
canonical function. For a game G, we write M˜

G to mean the set of "nite alternating
sequences of moves from MG. Given games A and B, we de"ne the tensor game A⊗B
as follows:

MA⊗B =MA +MB;

%A⊗B = [%A; %B];

PA⊗B = {s ∈ M˜
A⊗B: s ! A ∈ PA; s ! B ∈ PB};

where we write s !A to mean the subsequence of s consisting only of moves from A.
Note that it is a consequence of the de"nition that every s∈PA⊗B satis"es
O-Switching Condition: for each pair of consecutive moves mm′ in s, if m and
m′ are from di#erent components (i.e. one is from A the other from B), then m′

is an O-move.
The linear implication game A(B is de"ned as follows:

MA(B =MA +MB;

%A(B = [%A; %B] (where $P = O and $O = P);

PA(B = {s ∈ M˜
A(B: s ! A ∈ PA; s ! B ∈ PB}:

It follows from the de"nition that every s∈PA(B satis"es the P-Switching Condition
(i.e. only P can switch component).
A P-strategy, or simply strategy, for a game G is a non-empty, pre"x-closed sub-

set # of PG such that for any even-length s, if s∈ # and sm∈PG then sm∈ #. If for
every odd-length s∈ #, there is some m such that sm∈ #, we say that # is total. We
say that # is deterministic if for any odd-length s, if sa∈ # and sb∈ # then a= b.
Note that strategies are not assumed to be deterministic or total, unless explicitly
stated.
For any games A1; A2 and A3 we de"ne L(A1; A2; A3) to be the set of "nite

sequences s of moves from MA1+MA2+MA3 such that for any pair of consecutive
moves mm′ in s, if m∈MAi and m′ ∈MAj then |i − j| 6 1. Take strategies # and
' for games A(B and B(C, respectively. We de"ne the composite # ; ' of # and
' as:

# ; ' = {s ! (A; C): s ∈ L(A; B; C) ∧ s ! (A; B) ∈ # ∧ s ! (B; C) ∈ '}:
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This is the by now standard (CSP parallel composition plus hiding) notion of compo-
sition of strategies [2]. We distinguish four classes of strategies:
(1) strategies,
(2) deterministic strategies,
(3) total strategies,
(4) deterministic and total strategies.
All four classes compose in the sense that if # and ' are strategies of the same class
S for A(B and B(C, respectively, then the composite # ; ' for A(C is a strategy
of the class S. For composition of total strategies, the assumption of "niteness is
essential.
We can de"ne an autonomous category whose objects are "nite games and whose

maps A→B are given by strategies for the game A(B. The categorical tensor and
linear implication constructions (on objects) are just the corresponding constructions on
games. Observe that the games C ⊗A(B and C( (A(B) are “identical”
modulo a renaming of moves across the bijection (MC +MA)+MB∼=MC +(MA+MB).
The tensor constructor can be lifted to a bifunctor. For strategies #1 :A1→B1 and
#2 :A2→B2; #1⊗ #2 :A1⊗A2→B1⊗B2 is the strategy that plays according to #1 or
#2 in a “non-communicating way”:

#1 ⊗ #2 = {s ∈ PA1⊗A2(B1⊗B2 | s ! (A1; B1) ∈ #1; s ! (A2; B2) ∈ #2}:

It is easy to see that (#1 ; '1)⊗ (#2 ; '2)= (#1⊗ #2); ('1⊗ '2) and idA⊗ B= idA⊗ idB.
For this category, the tensor unit is the empty game ∅; and the canonical isos lG; rG;
$A;B;C and #A;B are just the obvious “copycat” strategies.

Theorem 2. The category has three symmetric monoidal closed subcategories whose
maps are; respectively; given by deterministic; total; and deterministic and total strate-
gies. The symmetric monoidal closed structure is inherited from the larger category.

De!nition 3. Fix a set universe U= {a; b; c; : : :} of tokens (one for each atomic type).
We write G for the autonomous category whose objects are games that are freely
constructed from the atomic games Ga; Gb; Gc : : : (one for each token from U), using
tensor, linear implication and the nullary constructor ∅, and whose maps are given by
strategies as de"ned in the preceding. We shall refer to objects of G as free games.
We write Gd;Gt and Gd; t for the three subcategories whose objects are free games, and
whose maps are respectively given by deterministic, total, and deterministic and total
strategies. Note that every move m of a free game arises from some unique token from
U, which we shall refer to as m’s token.

Notation 4. In the following we shall abuse notation and write the atomic game Ga
simply as a, so that the letters a; b; c; etc. can mean either atomic types (to be introduced
in Section 3), or atomic games, or their respective singleton moves, depending on the
context. E.g. we shall write Ga⊗ (Gb(Gb)(Ga simply as a⊗ (b( b)( a.
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3. Exhausting strategies and IMLL−

The category Gd; t is too rich to be fully complete for the intuitionistic ((; ⊗ )-
fragment of Linear Logic [9]. Consider the game

a⊗ (b( b)( a:

The “copycat” strategy for the game is total but the corresponding sequent a⊗ (b( b) %
a is not provable in Linear Logic. We attribute this to the fact that there is some P-
move of the game which is never played by the strategy. This leads to a new notion
of strategies.

De!nition 5. First we say that a strategy # is O-oriented if there is a partial function
f :MP*MO such that for every P-move m, if the odd-length sm′ ∈ # then

f(m) = m′ ⇔ sm′m ∈ #;

such an f is called a predecessor function of #. We write #= #f, and say that f
generates #, if f is the least such function.

We can think of O-oriented strategies as a kind of non-deterministic generalization
of history-free strategies in that for each P-move m, whenever m is played, the O-move
which triggers it (i.e. m’s predecessor) is unique. If f(m) and m have the same token
for all m, we say that f is token-re!ecting.

De!nition 6. A strategy # for a game is said to be exhausting if # is O-oriented and
generated by some token-re%ecting bijection f :MP→MO (i.e. #= #f).

Although f is a function from MP to MO, its bijectivity here implies that #f is
deterministic and indeed history-free in the standard sense. Further it follows from the
de"nition that exhausting strategies are total and satisfy the P-exhaustion condition

∀m ∈ MP:∃k ¿ 0:∃m1; : : : ; mk ∈ MP:f(m1) m1 · · ·f(mk) mk f(m) m ∈ #

(for if for some m, there is no position ending with f(m) in #, then f, which is the
least predecessor function by assumption, cannot be total).
We begin with a de"nition of the enabling (or justi"cation) relation [11, 19] between

moves of a free game or, by analogy, between atoms of an IMLL− formula. The set
in(G) of initial moves of a free game G is de"ned by recursion as follows:

in(Ga) = {a};

in(G1 ⊗ G2) = in(G1) ∪ in(G2);

in(G1 ( G2) = in(G2):
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Given moves x and y of a free game G, we say that y enables x if G has the form
C[X (Y ] for some one-holed context C, some free games X and Y such that x∈ in(X )
and y∈ in(Y ).

De!nition 7. A position of a free game G is shortsighted if every O-move in it is
enabled by the P-move that precedes it.

We claim that for any position sp (of a free game) ending in a P-move p, if p
enables an O-move o, then spo is a position. This is because from the de"nition of
the linear implication game, we know that o can be played at sp provided it has not
been used previously in s, which is indeed the case, as the next lemma shows:

Lemma 8. Let G be a free game. Let p1; p2 be P-moves such that an O-move o is
enabled by both p1 and p2. G has no position of the following shape: · · ·p1o · · ·p2 · · ·
if O plays shortsightedly.

Proof. W.l.o.g. assume G=C−
1 [O(C

−
2 [P1⊗P2]], where o; p1; p2 are initial moves

of O; P1; P2, respectively. Note that between p1 and p2 an O-move from P1 must be
made. Take the "rst such. In a shortsighted position it has to be preceded by an enabling
P-move. This enabling P-move must be in P1 as well, which is a contradiction.

Thus for exhausting strategies, P-exhaustion is witnessed by shortsighted positions,
i.e. for any P-move m there is a shortsighted position that reaches m.

Lemma 9. Suppose # is an O-oriented strategy for a free game so that #= #f for
some f. Then f is a bijection if and only if # is deterministic; total and satis!es
P-exhaustion.

Proof. Observe that for any game f is injective if and only if #f is deterministic,
and f is a (total) function if and only if #f satis"es P-exhaustion. Further, if f is
surjective, #f is total. Finally, if #f is total and P-exhausting and the game is free,
then f is surjective. To prove the last assertion, consider an O-move mO. If it is
initial, then we must have f(m)=mO for some P-move m, because #f is total. If mO

is not initial, there is a P-move m enabling it. Because #f satis"es P-exhaustion, by
the preceding remark there exists a shortsighted position sm∈#f and smmO ∈ #f. By
totality of #f and the de"nition of O-oriented strategies, there must exist a P-move m
with f(m)=mO.

Note that there may be several ways for an exhausting strategy to reach a particular
P-move. For example, the token-re%ecting strategy for

(a( b⊗ c)⊗ a⊗ (b( d)( c ⊗ d

has two maximal positions that end in the P-move (whose token is) a.
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As we shall see, the subcategory Ge (of Gd; t) whose objects are non-empty free
games and whose maps are given by exhausting strategies is a fully complete model
of IMLL−. The composition of exhausting strategies is de"ned by “inheriting” the
standard notion of composition from Gd; t as given in Section 1. By "rst establishing
de"nability (i.e. every exhausting strategy is the denotation of a cut-free IMLL− proof-
term), we can prove that the composition of exhausting strategies as given is well
de"ned by a syntactic argument. At the moment, we do not have a direct “syntax-
free” proof.

Remark 10. The di&culty with proving compositionality directly is already apparent
in a special case of composition. Take exhausting strategies # and ' for B and B(C,
respectively. To prove that the “composite” # ; ' enjoys P-exhaustion, for any P-move
m in C, we have to "nd a “witnessing position” in PC that reaches it. Now ' gives us
one such p (say) but it is in PB(C . What we then need to show is that p is played
out in the interaction #; '. But the O-moves of B in the interaction are dictated by #
during the composition. Thus what one needs to show is that P-exhaustion holds even
when O behaves in a particular way on B, and this seems di&cult.

3.1. The type theory IMLL−

We give a brief introduction to the type theory IMLL−, which is a “unit-less”
fragment of the Autonomous Type Theory [14] (the minus sign “−” indicates the
absence of the tensor unit). There are three kinds of judgements:
• typing: ! % s :A;
• equality: ! % s= t :A;
• congruence: ! % s ∼ t :A;
where !;", etc. range over typing contexts, which are "nite sequences of variable-type
pairs (of the form x :A) in which no variable may occur more than once. The types
(ranged over by A; B; C, etc.) are built up from a set {a; b; c; : : :} of atomic types by the
tensor ⊗ and linear function space ( constructors. The valid typing judgements are
de"ned by the rules in Fig. 1. If ! % s :A is valid, we say that s is well-typed proof-
term or simply term. By a sequent we mean expressions of the form ! % A where
!=C1; : : : ; Cn here (by abuse of notation) is a "nite sequence of types. If ! % s :A is
provable, we say that s inhabits the sequent ! % A.
A central feature of our approach is the representation of the categorical composi-

tion, or equivalently the (cut) rule in the type theory, by explicit substitution; indeed
the standard substitution has no place in our approach at all. In our type theory it
is a property of well-typed terms that any variable which occurs in a term (whether
bound or free) does so exactly once. In s{t=x A}, which we call an explicit substitu-
tion (term), the free occurrence of x in s is bound. We introduce two let-constructs
as terms witnessing the left-introduction rules of the respective type constructors ⊗
and ( . In the tensor-let 〈z A⊗B=xA⊗yB〉s, the free occurrences of x and y in s (it
can be shown that there is exactly one each if s is well-typed) are bound by the let-



278 A.S. Murawski, C.-H.L. Ong / Theoretical Computer Science 294 (2003) 269–305

(id-atom) x : a % xa : a (a atomic)

(exch)
!; x : A; y : B;" % s : C
!; y : B; x : A;" % s : C

(cut)
!; x : A % s : B " % t : A

!;" % s{t =xA} : B

(⊗-l) x : A; y : B;! % s : C
z : A⊗B;! % 〈zA⊗ B =xA⊗yB 〉s : C

(⊗-r) ! % s : A " % t : B
!;" % s⊗ t : A⊗B

((-l)
! % s : A y : B;" % t : C

z : A(B;!;" % 〈zA( B ; s=yB 〉t : C

((-r)
!; x : A % s : B
! % !xA:s : A(B

Fig. 1. Rules de"ning the valid typing judgements of IMLL−.

construct. In the lambda-let construct 〈z A(B; s=yB〉t, the free occurrence of y in t is
bound.
The valid equality judgements are de"ned by three axioms (in addition to the stan-

dard equality rules in Fig. 4):

(id) ! % xas=xa = s : a (a is an atomic type)

(⊗) ! % (〈zA⊗B=x ⊗ y〉s){u⊗ v=z} = (s{u=xA}){v=yB} :C;

(() ! % (〈zA(B; s=yB〉t){[xA:u=z} = t{u{s=xA=yB}} :C:

Terms that are congruent are de"ned to be equal in the theory:

(cong)
! % s ∼ t : A
! % s = t : A:

There are two commutation congruence axioms (in addition to the standard congruence
rules in Fig. 5):

((-cong) ! % (C[t] ∼ C[(t] : A;

(#-cong) ! % C[t]# ∼ C[t#] : A;

where we let ( range over the let-constructs, namely 〈z A⊗B=x⊗y〉− and 〈zA(Bs=y〉−,
and # range over the explicit substitution constructs −{t=x A} (so that ( is viewed as
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a pre"x and # a post"x operator). We let C;D; E etc. range over one-holed contexts,
or simply contexts, de"ned by recursion as follows:

C ::= [-] | s{C=xA} | C{s=xA} | s⊗ C | C ⊗ s | [xA:C

| 〈z A⊗B=x ⊗ y〉C | 〈z A(B; C=yB〉s | 〈z A(B; s=yB〉C:

Standardly we write C[s] to mean “the capture-permitting substitution of s for the hole
in C”. Each congruence axiom above is required to satisfy the side condition, called
strong typability, that the expressions on both sides of ∼ must be well-typed terms
of the same declared type. The e#ect of the axioms is simply that the let-construct
(- or the explicit substitution construct -#, viewed as a variable binder, may “%oat
across the term” and is free to occupy any position in the term provided that typability
is maintained. For example, the binder −{s=xA} in ([yB:x⊗y){s=xA} is permitted to
park itself adjacent to x, as in [yB:(x{s=xA}⊗y) (as the two terms are both well-
typed, they are congruent to each other by (!-cong)), but not adjacent to y, as in
[yB:(x⊗ (y{s=xA}) which is not well-typed.

3.2. Interpretation of IMLL− in Gd; t and the subcategory Ge

It is shown in [14] that there is a canonical interpretation of the typing judgements
! % s :A of IMLL− in any autonomous category C such that
(i) if ! % s :A is provable then <! % s :A= is a C-map <!=→ <A=, with <!==((<C1=⊗ <C2=)

⊗ <C3=)⊗ · · ·⊗ <Cn= where != x1 :C1; : : : ; xn :Cn, and
(ii) if ! % s= t :A is provable then <! % s :A= and <! % t :A= are equal as C-maps.
Henceforth we shall write <! % s :A= to mean the denotation of the sequent in the
autonomous category Gd; t . In the following, by a cut-free term we mean a term that
does not have any explicit substitution subterms.

Proposition 11. If ! % s :A is IMLL−-provable and s is cut-free then its denotation
<! % s :A= in Gd; t is given by an exhausting strategy.

Proof. We refer to [14] for the de"nition of <! % s :A= in an autonomous category. The
Proposition is more or less obvious. It is trivial to see that currying and tensor preserve
P-exhaustion. But strictly speaking, composition is still needed to model ((-l). In the
following we show how the sequent z :A( B;!;"% 〈zA(B; s=yB〉t :C is interpreted (in
the diagram we do not distinguish notationally a "nite sequence ! of types from its
denotation <!=, but no confusion should arise):
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Fortunately the composition required is quite innocuous as the strategies <y :B;" % t :C=
and <! % s :A= do not really interact. The composite is in fact given simply by the
(disjoint) union of the generating functions of the respective component strategies: it
is a harmless interleaving of a kind similar to <y :B;" % t :C=⊗ <! % s :A=.

4. Essential nets and correctness criterion

This section is about essential nets [15], which are an intuitionistic variant of Girard’s
proof nets [9]. We say that an IMLL− (or IMLL[ or IMLL) sequent (or typing
judgement or formula) is linearly balanced if every non-unit atomic type that occurs
in it does so exactly twice and the occurrences are of opposite polarities. Linearly
balanced sequents are not necessarily provable (e.g. %(a ( b)⊗ (b ( a)), nor are
provable sequents necessarily linearly balanced (e.g. a; a% a⊗ a). However by a simple
induction over the proof rules, we can readily see that if ! % s :A is provable then s
determines a bijection between positive and negative occurrences of (non-unit) atomic
types in the sequent, which we shall henceforth refer to as a linkage for the sequent.
Any linearly balanced IMLL− formula A can be transformed to a variant MLL

formula pAq+ which is constructed from polarized atoms (a+; a−; b+; b−, etc.) and
polarized connectives (o+;o−;⊗+ and ⊗−) by the following rules:

paq+ = a+;

pA(Bq+ = pAq−o+pBq+;
pA⊗ Bq+ = pAq+ ⊗+ pBq+;

paq− = a−;

pA(Bq− = pAq+ ⊗− pBq−

pA⊗ Bq− = pAq−o−pBq−:

We construct a directed graph E(A) from the syntactic tree of pAq+, augmented by
axiom links, by orienting axiom links from a+ to a− (note that A is assumed to be
linearly balanced) and drawing in directed edges for the polarized connectives according
to the directional rules as follows:

− + − − + + + −
↗ ↘ ↙ ↖ ↗ ↖ ↙

o+ o− ⊗+ ⊗−

Note that there is no edge between a o+-node and its negative left “child”, which we
shall call its sink. We call E(A) the essential net of A. See Fig. 2 for an example of
an essential net.

Theorem 12 (Lamarche). A linearly balanced IMLL− formula A is provable if and
only if E(A) satis!es the following correctness criteria:
(i) acyclicity;
(ii) Condition L: for every o+-node p; every path from the root that reaches p’s

sink passes through p.

If E(A) satis"es the two conditions in Theorem 12, we call it a correct essential
net.
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Fig. 2. The essential net of (e⊗f)⊗ (f⊗ d ( c) ( (b ( b⊗ e)⊗ (d ( c).

Remark 13. (i) In this paper, essential nets are by de"nition directed graphs of a
certain kind constructed from linearly balanced IMLL formulas. For such nets (but not
in general—consider E(% a ( b)), it is straightforward to prove that the reachability
condition, i.e. every node is reachable from the root, is a consequence of acyclicity.
(ii) A version of the theorem (which includes the reachability condition) "rst ap-

peared in [15] which has not been published. Our proof (for the completeness part) is
based on a reduction of formulas to what we call regular formulas, and an analysis of
the essential nets of such formulas. Regular reduction is an intuitionistic variant of the
reduction to simple sequents introduced in [2] and modi"ed to semi-simple sequents in
[10]. Note however that the normal forms in our case (i.e. the regular formulas) are
more complicated than simple or semi-simple sequents.

Proof of Theorem 12. We devote the rest of this section to a proof of the theorem.
The soundness (⇒) part can be proved by a straightforward induction over the rules of
the IMLL Sequent Calculus (less the cut rule). For the completeness part, it su&ces to
prove: for any linearly balanced IMLL sequent of the form %), if E()) is correct then
%) is provable. We perform induction on the number of atoms for regular formulas
which are de"ned by recursion over the following rules:

T ::= T− ⊗ · · ·⊗ T−
︸ ︷︷ ︸

m

( *⊗ · · ·⊗ *
︸ ︷︷ ︸

n

| *⊗ · · ·⊗ *
︸ ︷︷ ︸

n

;

T− ::= T ⊗ · · ·⊗ T
︸ ︷︷ ︸

m

( * | *;

where * ranges over atoms and m; n¿1.
We can transform an irregular formula ) to a "nite set of regular ones by replacing

) by )1;)2 repeatedly, using the following reduction rules:

) )1 )2
C+[A⊗ (B(C)] C+[(A(B)(C] C+[B(A⊗ C]
C+[(B(C)⊗ A] C+[(A(B)(C] C+[B(A⊗ C]
C−[A(B⊗ C] C−[(A(B)⊗ C] C−[(A(C)⊗ B]
C[A((B(C)] C[A⊗ B(C]
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where C is a one-holed type context, C+ is a context whose hole occurs in a positive
position, and C− is a context whose hole occurs in a negative position. First we note
the following (see [2] for a proof):

Proposition 14. For types ); )1 and )2 as given in the !rst three reduction rules;
if % )1 and % )2 then % ).

The reduction process is strongly normalising. A measure on types can be de"ned
as follows:

+(*) = 2;

+(D ⊗+ E) = +(D (− E) = +(D)× +(E);

+(D ⊗− E) = +(D (+ E) = +(D) + +(E):

The measure is strictly decreasing for the "rst three reduction rules; it is invariant for
the last but note that the number of occurrences of ( strictly decreases in that case.
Plainly the normal forms of the reduction are regular by design.
Thus the reduction terminates with a "nite set of regular formulas. In fact, each of

these formulas is guaranteed to induce a correct essential net, which we know because
of the following lemma.

Lemma 15. For ); )1 and )2 as given in the !rst reduction rules; if E()) is correct;
then so is E()1) and E()2).

Proof. We show that the correctness criteria are preserved by a case-by-case analysis
of the reduction rules.
(i), (ii): The two cases are symmetric so we consider the "rst one only. In the

picture below we show the nodes of E()) that are a#ected by the reduction and their
new arrangement in E()1) and E()2), respectively.

If there were a cycle in E()1), it would have to involve the ⊗− node as otherwise it
would be in E()). However, this would mean that Condition L for E()) is violated.
Acyclicity of E()2) follows from acyclicity of E()).
Note that Condition L must be satis"ed for the o+ node in E()1) because E())

satis"es Condition L. If it is broken for some other o+ node, then the path that violates
it would have to pass through the ⊗− node and, by previous remark, through the o+
node in the picture. Then there would be a path in E()) passing through the ⊗+ node
that also violates Condition L. It is straightforward to see that for E()2) Condition L
holds too.
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(iii): Because of symmetry, it su&ces to consider just one of )1 and )2. We draw
the distinctive nodes of E()) and E()1), respectively.

Note that the reachability relation between A, B⊥ and C⊥ of the graph on the right is
included in that of the left graph which accounts for the preservation of acyclicity and
Condition L.
(iv): There are two cases here depending on the polarity of the context. The pictures

below show the edges of E()) (on the left) which will be modi"ed by the reduction
and their new arrangement in E()1) (on the right). The pictures speak for themselves.

Thus we can prove the completeness part of the theorem by induction for the special
case where ) is regular. We can then extend the result to the general case by appealing
to Proposition 14. Before presenting the inductive argument, we prove a useful technical
lemma.

Lemma 16. (i) (Splitting). Suppose for each i; Si=Ti( ai or Si= ai where ai is
an atom and E(S1⊗ · · ·⊗ Sn ( M1⊗M2) is correct. Then there exists a (unique)
partition of {1; : : : ; n} into X1 and X2 such that E(

⊗

x∈Xi Tx ( Mi) is correct.
(ii) Suppose the essential net of a regular formula of the form T−

1 ⊗ · · ·⊗T−
n ( a

is correct. Then for some T ′ and some i; we have T−
i =T

′ ( a and the essential net
for

T−
1 ⊗ · · ·⊗ T−

i−1 ⊗ T
−
i+1 ⊗ · · ·⊗ T−

n ( T ′

is again correct.

Proof. (i) Let us construct an undirected graph with vertices T1; : : : ; Tn;M1; M2. There
is an edge between Ti and some other vertex V if V contains the positive occurrence of
ai. Thus each Ti is the end of precisely one link. Now take Xi to be the set of indices
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of Tj’s in the same component as Mi. By previous remarks X1 and X2 are disjoint.
By Remark 13 each a⊥i can be reached from the root in E(S1⊗ · · · ⊗ Sn(M1⊗M2).
Since the only way of entering (the part corresponding to) Si in the essential net is
through the axiom link between a⊥i and ai, if ai can be reached via Mj, Ti is in the
same component as Mj. Moreover, each path in the essential net that visits Mj can only
pass through the nodes corresponding to the Ti’s lying in the component containing
Mj. Therefore the partition yields two correct essential nets.
(ii) Recall that each T−

i is of shape T i ( x and the only way of entering the part
corresponding to T−

i in the essential net is via the axiom link of x⊥. The "rst node
reachable from the root is a so the next one will be a⊥. As it must be part of some
T−
i , that T

−
i is of shape T ′( a. The transformed essential net must be correct as its

structure is inherited from the old one.

To conclude the proof, it remains to give the inductive argument for the case where
) is regular. If ) has only two atoms, we have )= a( a, so the correspond-
ing sequent is IMLL-provable. The preceding Lemma enables us to reduce the size
of regular formulas. Note that T ′ has the shape T ⊗ · · ·⊗T and we can use Lemma
16(i) to consider formulas of the shape T− ⊗ · · ·⊗T−(T . Then T has the shape
T− ⊗ · · ·⊗T−( *⊗ · · ·⊗ * and by using the last regular transform, we get a truly
regular formula.

5. De!nability and cull completeness

In this section we prove that every exhausting strategy for a free game is the deno-
tation of a term inhabiting the associated typing judgement, and any two such terms
are provably equal. Our de"nability proof uses essential nets. We show that there is a
correspondence between shortsighted positions of a free game G and paths (projected
onto leaf nodes) from the root of the corresponding essential net provided G, qua
formula, is provable. As a pleasing corollary of the de"nability result, we show that
exhausting strategies compose and that Ge is a well-de"ned subcategory of Gd; t .

De!nition 17. A shortsighted strategy # for G is a non-empty, pre"x-closed subset #
of PG such that for any even-length s∈ #, if sm∈PG then sm∈ # if and only if m is
enabled by the last move of s. O-oriented shortsighted strategies are de"ned in the same
way as O-oriented strategies. A weakly exhausting strategy # is a shortsighted strategy
which is O-oriented and generated by some token-re%ecting bijection f :MP→MO, and
we write #= #f (contrast this with #f in De"nition 5). (It is an unfortunate aspect
of our terminology that shortsighted and weakly exhausting strategies are not actually
strategies as de"ned in Section 1.)

It is straightforward to check that a weakly exhausting strategy satis"es P-exhaustion
and has a response only at shortsighted positions.
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In the following by a positive node in an essential net, we mean a node of positive
polarity; similarly for negative node. The next lemma is a key step towards estab-
lishing a connexion between shortsighted positions and paths in E(A) for provable
formulas A.

Lemma 18. (i) Take a positive node t+ of E(A) which is not a leaf. The subtree
(of the syntactic tree of A) with root t+ determines an IMLL− formula T such that
for any leaf y there exists a path in E(A) from t+ to y not crossing any axiom links
if and only if y is positive and y∈ in(T ).
(ii) Take a negative node t− of E(A) which is not a leaf. The subtree with root t−

determines a “co-IMLL− formula” T⊥ such that for any leaf x there exists a path
in E(A) from x to t− not crossing any axiom links if and only if x is negative and
x∈ in(T ).
(iii) For leaves x; y there exists a path (in E(A)) from x to y that does not cross

any axiom links if and only if x is negative, y is positive and x enables y.
Moreover the respective paths in the above are unique, if they exist.

Proof. We prove (i) and (ii) by a case-by-case induction on the depth of t. For (iii)
we "rst notice that the outgoing edge of any positive leaf is an axiom link and so is
the incoming edge of any negative leaf. Therefore x must be negative and y positive.
Furthermore, the polarity of nodes in any path from x to y has to change at some
point from negative to positive. The only node at which this can happen is ⊗− which
means that A=C−[Y (X ] and by (ii) and (i) of the Lemma, x and y are initial in X
and Y , respectively, so x enables y. Conversely, if x is negative, y is positive and x
enables y, we can "nd X and Y as above and use (i) and (ii) to construct the desired
path.

Proposition 19. Given a linearly balanced IMLL− formula A; we generate alternat-
ing sequences of moves from the associated game as follows. The !rst element of
any sequence is some initial move (hence it is an O-move). Any sequence so of odd
length is extended to sop; provided o and p are part of the same axiom link. Any
even-length sequence sp extends to spo provided p enables o. There is a 1–1 cor-
respondence between such sequences and paths in E(A) starting from the root and
ending in leaves. Besides; maximal such sequences of moves correspond to maximal
paths from the root in E(A).

Proof. The "rst correspondence follows by repeated application of the previous lemma.
Maximal sequences arise when the "nal P-move does not enable any O-moves. The
paths generated by the previous correspondence i.e. ending in leaves; can be extended
uniquely to maximal ones. Indeed, after visiting the last leaf they can only reach nodes
of types o− and stop at the sink of o+ (the node ⊗− would mean there is an enabled
move). Alternating sequences are obtained from paths by restricting the latter to leaves.
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For provable linearly balanced formulas the sequences are exactly the shortsighted
positions from the corresponding strategy. For the essential net in Fig. 2, the set of
maximal such positions is {ccdd,cc",ee,bb}. Note that the corresponding strategy also
has positions which are not shortsighted e.g. bbcc".

Lemma 20. Suppose A=C+[X (Y ]. Then all paths in E(A) from the root to ele-
ments of in(Y ) must go through the o+-node corresponding to the ( in question.

Proof. Let y+ be an initial atom of Y . By Lemma 18 there exists a unique path from
the o+ node to y+. Observe that it will consist of positive nodes only—the presence
of a ⊗− node would mean that y =∈ in(Y ). Because there is at most one way of entering
a positive node each path from the root to y+ will contain the above path as the "nal
subpath. In particular, it will pass through the designated o+ node.

Let A be an IMLL− formula (which is not assumed to be linearly balanced). If
there is a weakly exhausting strategy #f for the free game associated with A, then A
can be regarded as linearly balanced with respect to the bijection f, and hence we can
de"ne the associated essential net E(A) relative to f.

Theorem 21. Let #f be a weakly exhausting strategy for a free game associated with
an IMLL− formula A. Then #f determines a correct essential net relative to f; and
hence; A is provable by Lamarche’s Theorem.

Proof. We verify the two correctness criteria of essential nets.
Assume there is a cycle in E(A). It must involve leaves, as cycles cannot be formed

solely by connective-nodes. Because # satis"es P-exhaustion all leaves are reachable
from the root by Proposition 19. Hence there must be an in"nite path from the root
containing repeated occurrences of leaves. By Proposition 19, such a path restricted
to leaves gives an in"nite alternating sequence of moves—call it w. Since PA is a
"nite set of "nite sequences, let s be the longest initial subsequence of w which is in
PA. By Lemma 8 (or rather, the claim just before it), s must end in an O-move m.
But s is in #f which is by assumption weakly exhausting, and so, sf(m)∈ #f ⊆PA, a
contradiction.
Finally suppose, for a contradiction, it is possible to reach the sink of some o+-

node from the root without passing through the node itself. Let X; Y be such that
G=C+[X (Y ] where the designated occurrence of ( corresponds to the o+ in ques-
tion. The path from the root cannot visit any elements of in(Y ) by Lemma 20. How-
ever, since it reaches the sink, the last leaf preceding it must be an initial move of X .
The corresponding alternating sequence is a valid position, because weak exhaustion
guarantees totality for shortsighted positions. This cannot be true though, because the
de"nition of the linear function space game would be violated: a move from X is
played although no (initial) move from Y has appeared before.
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Corollary 22 (De"nability). (i) If f is a token-re#ecting bijection for a free game A
such that #f is a weakly exhausting strategy; then #f is a well-de!ned exhausting
strategy.
(ii) For any exhausting strategy #f for a free game

⊗

!(A; there is a provable
sequent ! % s :A (with s cut-free) whose denotation in Gd; t is #f.

Proof. (i) Suppose #f is weakly exhausting for a free game associated with a formula
A. By the Theorem the associated essential net relative to f is correct, and so, we can
“read back” a proof of A from it (see [15]) which is expressible as a cut-free IMLL−

term. The denotation of that term, we know from Proposition 11, is exhausting, and
induces the same linkage in A as f, and so, it must be equal to #f. (ii) We need only
observe that #f is a well-de"ned weakly exhausting strategy contained in #f, then the
same argument proves (ii).

5.1. The category Ge of exhausting strategies

We de"ne the category Ge whose objects are non-empty free games and whose maps
A→B are given by exhausting strategies for A(B. We can now show that exhausting
strategies compose. Take Gd; t-maps # :A→B and ' :B→C which are both given by
exhausting strategies. By Corollary 22, there are (cut-free) terms s and t such that
<x :A% s :B== # and <y :B% t :C== '. By the canonical interpretation, <x :A : % t{s=yB}=
is the composition # ; ' in Gd; t . Now by the Cut Elimination Theorem for IMLL− (see
[14]), there is a cut-free term r such that x :A% r= t{s=yB} :C is IMLL−-provable.
Since Gd; t is a model of the type theory IMLL−, we have # ; '= <x :A :% r :C= as
Gd; t-maps. Therefore, by Proposition 11, # ; ' is an exhausting strategy, and hence, Ge
is a subcategory of Gd; t . Note also that the same interpretation of IMLL− makes sense
in Ge. Thus we have proved the following proposition:

Proposition 23. (i) Ge is a well-de!ned subcategory of Gd; t ; and it inherits the tensor
and linear implication constructions from Gd; t .
(ii) Ge is a model of IMLL− using the standard interpretation (see [14]); even

though it is not itself an autonomous category (because it has no tensor unit).

We quote a theorem from [13] which says that linearly balanced sequents have at
most one proof.

Theorem 24 (Coherence). For any linearly balanced IMLL− sequent ! %A; if ! % s :
A and ! % t :A are provable; then so is ! % s= t : A.

It follows from the theorem that for any IMLL− sequent ! %A (which is not
necessarily linearly balanced), and for any provable ! % s :A and ! % t :A, we have
! % s= t :A is provable if and only if s and t induce the same linkage on the sequent.
Hence by Corollary 22, we have the following full completeness theorem:
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Theorem 25 (Full completeness). Ge is fully complete for IMLL− in the sense that
for any sequent ! %A; for every exhausting strategy #f for the free game

⊗

!(A;
there is some typing judgement ! % s :A s such that for any t; the denotation of
! % t :A is equal to #f if and only if ! % s= t :A is provable.

Remark 26. (i) The empty game ∅ is not an object of Ge and this is for a good reason:
there can be no exhausting strategy for the game ((A( ∅)⊗A)( ∅.
(ii) In a draft of this paper, we speculated that exhausting strategies could be used

to construct a reasonably e&cient “tautology checker” for IMLL i.e. to decide if a
given IMLL formula is provable. We have not made much progress in that direction,
instead we have obtained a linear-time tautology checker for (linearly balanced) IMLL
[18] by using a fast algorithm for checking the second correctness criterion of essential
nets. The algorithm can be extended to a linear-time tautology checker for (linearly
balanced) MLL.

6. Connexions with fair games

For the purpose of comparison, we take a slight detour and brie%y sketch another
fully complete model for IMLL− based on the notion of fair games [10]. Fairness
so restricts positions on linear function space games A(B that players can reach a
maximal position in B only if a maximal position has already been reached in A in
the same play so far.

De!nition 27. A fair game G is a triple 〈MG; %G; FG〉 where MG is a non-empty set
of an even number of moves; %G is de"ned as before; and FG is an anti-chain (w.r.t.
pre"x ordering) of even-length alternating sequences of moves; each beginning with
an O-move. We require FG to contain at least a non-void sequence; members of FG
are called fair positions.

Every fair game G can be viewed as a game (in the sense of De"nition 1) by taking
PG to be the set of all pre"xes of the fair positions of G i.e. by regarding the fair
positions as maximal positions. The e#ect is that at any position p in a fair game, a
player can make a particular move m if and only if pm can be extended to some fair
position. Tensor and linear function space constructions for fair games are de"ned in
terms of fair positions.
The Tensor game A⊗B is de"ned as follows:

MA⊗B = MA +MB;

%A⊗B = [%A; %B]

and s∈FA⊗B if and only if s is a "nite alternating sequence of moves from MA+MB,
beginning with an O-move, such that s !A∈FA and s !B∈FB. It is a consequence of
the de"nition that s∈FA⊗B satis"es the O-switching condition.
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The Linear function space game A(B is de"ned as follows:

MA(B = MA +MB;

%A(B = [%A; %B]

and s∈FA(B if and only if s is a "nite alternating sequence of moves from MA +MB,
beginning with an O-move, such that s !A∈FA and s !B∈FB. It follows from the
de"nition that s∈FA(B satis"es the P-switching condition.
For each a from a "xed universe of tokens, we de"ne the basic fair game Ba as

follows:

Ba = 〈{aq; aa}; {(aq; O); (aa; P)}; {aqaa}〉:

We can think of the two moves aq and aa as a pair of matching question and answer
(hence the subscripts). We shall be concerned with fair games that are freely generated
from the basic games using the tensor and linear function space constructions. Call
these games free fair games. It is easy to see that if G is one such, then there is
a perfect matching, between the question-moves and the answer-moves of G, which
is determined by the free construction. That is to say, let QG and AG, respectively,
be the subsets of question-moves and answer-moves of the free fair game G, then G
comes equipped with a bijection ans :QG→AG which is “lifted” from the respective
matchings aq 9→ aa of the component basic games.

De!nition 28. A strategy # for a free fair game G is linking if # is O-oriented and
generated by some bijection f such that for question-moves q and q′ of G

f(q) = q′ ⇔f(ans(q′)) = ans(q):

We can extract the following result from [10].

Theorem 29 (Full completeness). Linking strategies and free fair games are a fully
complete model of IMLL−.

It is worth relating the fair games model with the one based on exhausting strategies:
every position of the latter can be extended to a position of the former. This is one
reason why we decided to present our model from scratch rather than extracting it from
the (more general) fair games model. The fairness condition also has the consequence
that both players must explore the fair positions in order to make the next move.

7. The intermediate system IMLL[

Our ultimate goal is to give a fully complete interpretation of proofs of IMLL
with the tensor unit. So far we have not yet considered the tensor unit ", for which
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(id-atom) x : a % xa : a (a is atomic and non-unit)

(exch)
!; x : A; y : B;" % s : C
!; y : B; x : A;" % s : C

(cut) !; x : A % s : B " % t : A!;" % s{t=xA} : B

("-l) ! % s : A
!; x : " % 〈x"=∗〉s : A

("-r) % ∗ : "

(⊗-l) x : A; y : B;! % s : C
z : A⊗B;! % 〈zA⊗ B=xA⊗yB〉s : C

(⊗-r) ! % s : A " % t : B
!;" % s⊗ t : A⊗B

((-l)
! % s : A y : B;" % t : C

z : A(B;!;" % 〈zA(B; s=yB〉t : C

((-r)
!; x : A % s : B

! % !xA: s : A( B

Fig. 3. Rules de"ning the valid typing judgements of IMLL.

the type theory IMLL has the following typing rules

("-r) % ∗ : " ("-l) ! % s : A
!x: " % 〈x"=∗〉s : A

and an additional equality axiom

(") ! % (〈x"=∗〉s){∗=x} = s : A:

In contrast to the tensor-let and lambda-let, note that the unit-let construct 〈x"=∗〉−
does not bind any variables. Note also that the de"nition of context C has an additional
rule C :: = 〈x"=∗〉C; and since ( now ranges over an extra let-construct 〈x"=∗〉−, the
axiom scheme ((-cong) has a new instantiation of the form

) % C[〈x"=∗〉t] ∼ 〈x"=∗〉C[t] : A:

For ease of reference we gather all the rules that de"ne IMLL in Fig. 3.
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Remark 30. The type theory IMLL is a slight variant of the Autonomous Type Theory
as introduced in [14]. The di#erence is that the type A in the identity axiom

x : A % xA : A

here is restricted to an atomic and non-unit type. Consequently the three ,-axioms (for
the equality judgements) are not necessary and have been omitted from IMLL.

7.1. The intermediate type theory IMLL[

We shall "rst consider an intermediate type theory IMLL[. The virtue of IMLL[

is that its syntax is comparatively easy to analyse, and yet it captures all IMLL terms
up to provable equality in the sense of Lemma 33. The typing rules de"ning IMLL[

are those of IMLL− (with the proviso that the type a in the typing axiom (id-atom)
ranges over non-" atoms) augmented by

("-l-var)
x1 : "; : : : ; xn : "; x : a % 〈x1=∗〉 · · · 〈xn=∗〉xa : a

;

("-l-r)
x1 : "; : : : ; xn : " % 〈x1=∗〉 · · · 〈xn=∗〉∗ : "

;

where n¿ 0. Note that the "rst rule subsumes the rule (id-atom); note also that x : " %
x : " is not provable but x : " % 〈=∗〉 : ∗" is.
The order in which the unit-let constructs 〈x"=∗〉− are introduced is considered

irrelevant in IMLL[ so that terms are required to satisfy the following (-congruence
axiom (Fig. 4):

! % C[〈x1=∗〉 · · · 〈xn=∗〉t] ∼ C[〈xp(1)=∗〉· · · 〈xp(n)=∗〉t] : A;

where p is a permutation of {1; : : : ; n}, t is either a variable or the constant ∗, and
where C is de"ned by recursion over the same rules that de"ne the one-holed contexts
of IMLL− (note though that the s and t in those rules now range over IMLL[

terms). There are three additional axioms in IMLL[ for the equality judgements:
n; k¿ 0

(〈x1=∗〉 · · · 〈xn=∗〉xa){〈y1=∗〉 · · · 〈yk=∗〉za=xa}

= 〈x1=∗〉 · · · 〈xn=∗〉〈y1=∗〉 · · · 〈yk=∗〉za : a

(〈x1=∗〉 · · · 〈xn=∗〉∗){〈y1=∗〉 · · · 〈yk=∗〉∗=x"n }

= 〈x1=∗〉 · · · 〈xn−1=∗〉〈y1=∗〉 · · · 〈yk=∗〉∗ : "

(〈x1=∗〉 · · · 〈xn=∗〉za){〈y1=∗〉 · · · 〈yk=∗〉∗=x"n }

= 〈x1=∗〉 · · · 〈xn−1=∗〉〈y1=∗〉 · · · 〈yk=∗〉za : a
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(re") ! % s= s : A

(symm)
! % s= t : A
! % t= s : A

(trans)
! % s= t : A ! % t= u : A

! % s= u : A

(context)
! % s= t : A !;" % C[s] : B

!;" % C[s] =C[t] : B

(cong)
! % s ∼ t : A
! % s= t : A

(id) ! % xa{s=xa}= s : a (a is a non-" atomic type)

(") ! % (〈x"=∗〉s){∗ =x}= s : A

(⊗) ! % (〈zA⊗ B=x⊗y〉s){u⊗ v=z}=(s{u=xA}){v=yB} : C

(() ! % (〈zA(B; s=yB〉t){!xA:u=z}= t{u{s=xA}=yB} : C

Fig. 4. Rules de"ning the valid equality judgements of IMLL.

(we omit the typing context in the above). It is straightforward to prove a cut-
elimination result using a rewrite system along the same lines as that for IMLL−.

Proposition 31 (Cut elimination). If ! % s : A is provable in IMLL[ then there is a
cut-free s′ such that ! % s= s′ : A is provable in IMLL[.

One can think of the ("-l- ) rules as introducing links between the occurrences of
unit on the left and the atomic type on the right (of the turnstile). In IMLL[ each
negative occurrence of an atomic type is an end of exactly one link, whereas each
positive occurrence may be an end of more than one links (the ("-l) rules with n¿ 1
create such) or it may not be linked at all (("-l-r) where n=0). These links play a
crucial role in the proof theory. Consider, for example, the following IMLL[ terms
(we distinguish the two occurrences of " as "1 and "2)
(i) x1 : "1; x2 : "2; y : b; z : c % (〈x1=∗〉〈x2y=∗〉)⊗ z : b⊗ c;
(ii) x1 : "1; x2 : "2; y : b; z : c % (〈x2=∗〉〈x1=∗〉y)⊗ z : b⊗ c;
(iii) x1 : "1; x2 : "2; y : b; z : c % 〈x1=∗〉y⊗〈x2=∗〉z : b⊗ c
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(re") ! % s ∼ s : A

(symm)
! % s ∼ t : A
! % t ∼ s : A

(trans)
! % s ∼ t : A ! % t ∼ u : A

! % s ∼ u : A

(context)
! % s ∼ t : A !;" % C[s] : B

!;" % C[s] ∼ C[t] : B

((-cong) ! % (C[t] ∼ C[(t] : A

(#-cong) ! % C[t]# ∼ C[t#] : A

Fig. 5. Rules de"ning the valid congruence judgements of IMLL. The last two axioms are required to satisfy
the strong typability side condition: the expressions on both sides of ∼ be typable of the same declared
type.

.
(i) and (ii) induce the same linkage ("1 and "2 are both linked to b) which is di#erent
from that induced by (iii) ("2 is linked to c).
As the next lemma shows, IMLL[ terms of the same type which induce the same

linkage between positive and negative occurrences of atoms are equal.

Lemma 32. In IMLL[; if ! % t1 : A and ! % t2 : A are provable and determine the
same linkage then ! % t1 = t2 : A is provable.

Proof. W.l.o.g. we can assume that t1 and t2 are cut-tree (i.e. have no explicit sub-
stitution subterm). We use induction on the number of occurrences of " in ! % A. If
there is none, we are done. Otherwise, there are two cases. First suppose there is at
least one positive occurrence. There are two subcases:
• If no other unit connects to it by a link, then for some C[-], both ti have one of
the following shapes in common:

Ci[∗ ⊗ t]; Ci[t ⊗ ∗] or Ci[〈x"(B; ∗=yB〉t];

where the occurrence of ∗ corresponds to that occurrence of " in ! %A and so,
it is uniquely determined in each ti. Now construct t′i by “erasing” ∗⊗−, −⊗∗;
〈x"(B; ∗=yB〉−, respectively. In the last case the unique occurrence of y in t is re-
placed by x whose type is changed to B. It remains to change all type annotations
associated with "(B to B in order to get a typable term. By the induction hy-
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pothesis t′1 and t
′
2 are equivalent. The passage from one to another can be adapted

to one for t1 and t2.
• Otherwise suppose there is another occurrence of " linked to it. Then we have
ti=Ci[〈x"=∗〉∗] (up to ∼) where ∗ and 〈x"=∗〉− are the respective constructs cor-
responding to the two occurrences. Let t′i =Ci[y] where y is of a fresh atomic type
Y and appeal to the induction hypothesis.

Secondly, there is no positive occurrence of " in ! %A but there is a negative
one. Then we have ti=Ci[〈x"i1 =∗〉 : : : 〈x"iki =∗〉〈x

"=∗〉y], where x, y correspond in both
terms to the respective occurrences of the unit and the matched atomic type. Take
t′i =Ci[〈x"i1 =∗〉 : : : 〈x"iki =∗〉y⊗ x

a] where x′s type is a fresh atom so as to get a term
whose type has fewer occurrences of the unit. Again, it is necessary to replace any
occurrences of " related with x to a if t′i is to be a typable term. We then conclude
by appealing to the induction hypothesis.

Lemma 33. For any IMLL-provable ! % t : A; there is a IMLL[-term t′ such that
! % t ∼ t′ : A is IMLL-provable.

Proof. Easy structural induction. Consider the expressions that can appear immediately
to the right of the occurrence of 〈z"=∗〉−.

The lemma shows that every = -equivalence class of terms in IMLL has some
representative in IMLL[. Consequently we can derive the following result.

Corollary 34 (Coherence 1). If ! % A is linearly balanced and contains only positive
occurrences of the unit; then there is at most one = -equivalence class of terms
inhabiting ! % A in IMLL[ (IMLL).

7.2. Essential nets with units

Having observed that IMLL[ is based on links between occurrences of atoms of
opposite polarities we extend the de"nition of essential nets to take account of the
non-standard links between positive occurrences of atoms and negative occurrences
of the tensor unit. The right introduction rule of the tensor unit provides a new node,
whereas introductions on the left in addition to a new node bring a link from a positive
occurrence of an atom to the negative occurrence of the unit. The links leading from
negative occurrences of units will be called unit links. An easy induction shows that
all derivations yield essential nets satisfying the two correctness criteria. We will show
that they are enough to ensure provability. For an example see Fig. 6.

Theorem 35 (Sequentialization). A correct essential net for IMLL[ is sequentializ-
able. I.e. for any correct essential net for a formula ! there is a IMLL[ derivation
for !.
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Fig. 6. The essential net of (a⊗ (a(G∗))⊗ b( b.

Proof. We use induction on the number of negative occurrences of the unit in the
formula !. If there are none, the unit may occur positively in the following contexts
C+["⊗T ], C+[T ⊗"] or C−["(T ]. In all cases, the occurrence of the unit ends all
paths visiting it. Thus, if we erase the units and associated nodes, we get a correct es-
sential net for IMLL− which by Theorem 12 is sequentializable. That sequentialization
de"nes an IMLL[ derivation by introducing the units as soon as T is introduced.
Suppose there are n+1 negative occurrences of the unit. Let us pick an arbitrary one

" and let x be the source of the associated unit link so that !=C["−; x+]. Consider
now a new net for C["; x⊗"1] in which the unit link from x now has "1 as its source
and the other links remain as before. If we replace the new unit link with a non-unit
axiom link joining a+ and a− for some fresh atom a, we can appeal to the induction
hypothesis and get a sequentialization of C[a; x⊗ a]. That sequentialization has to be
modi"ed to yield a proper IMLL[ derivation for the original sequent. This is quite
easy: omit the introduction of the distinguished non-unit axiom link, and introduce the
unit link when the axiom link for x is introduced.

8. Joker moves and conditionally exhausting strategies

We can now consider the game interpretation of the tensor unit. We de"ne the atomic
game

G∗ = 〈{∗}; {(∗; O)}; {&; ∗}〉;

where ∗ here (by abuse of notation) is a new distinguished token (which is assumed
not to be an element of U), for which special game rules as follows apply:
( j1) P may play ∗ in response to any O-move.
( j2) When O plays ∗, P is not obliged to respond, but if he does, he must do so
with ∗.
Note that ∗ is available as a P-move, and so (j1) is applicable, in a game which

has G∗ as a subgame “in a negative position”; similarly ∗ is available as an O-move
in a game which has G∗ as a subgame “in a positive position”. We regard ∗ as a kind
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of joker move (for P) as these rules are biased towards P. We de"ne a joker move
to be a move whose token is ∗, and refer to the game G∗ as the Joker Game. By
interpreting the tensor unit as the Joker Game, the following types:

"( "; "⊗"; "

are distinguished (they are all identi"ed by the semantics in [2] which interprets the
unit as the empty game). Also games of the shape A(G∗ can have non-trivial sets
of positions, in contrast to A( ∅.

Remark 36. Another way to think of the ∗-moves is as O’s “surrender moves”: when-
ever O plays ∗, he surrenders, and P wins by default.

We extend exhausting strategies to interpret joker moves in accord with the above
rules. This leads to a new class of strategies.

De!nition 37. A strategy # for A is conditionally exhausting if it is O-oriented and
generated by some (total) function f : MP→MO (i.e. #= #f) such that
(i) f is bijective and token-re%ecting when restricted to non-joker moves,
(ii) if f(x) is a joker move then so is x.
We refer to f as the linkage (between atomic types of A) associated with #.

The reader might wish to check that conditionally exhausting strategies satisfy the P-
exhaustion condition. Note that it is possible for a conditionally exhausting strategy to
be
(i) non-deterministic, since we may have f(j)=f(m) for some joker move j and

non-joker move m; e.g. the canonical strategy for a⊗G∗( a
(ii) partial, since there may be some O-move, which must be a joker move, that is

not in the image of f; e.g. the canonical strategy for a(G∗ ⊗ a.
But at odd-length positions ending with a non-joker O-move and where the joker move
is not available to P, local determinacy and totality of the strategy are guaranteed. For
this reason, we call the strategies conditionally exhausting. It follows from the de"nition
that if the game has no joker move then the notions of exhausting and conditionally
exhausting coincide.
There is a correspondence between the linkage f which de"nes a conditionally

exhausting strategy, and the linkage given by the IMLL[ unit rules, which is the crux
of our main result. In fact we shall see that every term (in context) in IMLL[ is
interpreted by a conditionally exhausting strategy.

Example 38. (i) There is a conditionally exhausting strategy for the game

a⊗ (a( G∗)⊗ b( b

given by the function b 9→ b; ∗ 9→ b; a 9→ a. The corresponding essential net is shown
in Fig. 6.
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(ii) There are three conditionally exhausting strategies for a⊗ (a(G∗1 )⊗ b⊗
c⊗ (c(G∗2 )( b; their respective generating functions, restricted to joker moves, are:
(a) f1 : ∗1 9→ b; ∗2 9→ a
(b) f2 : ∗1 9→ b; ∗2 9→ b
(c) f3 : ∗1 9→ c; ∗2 9→ b.
(iii) The game "(m; n)= G∗ ⊗ · · · ⊗G∗

︸ ︷︷ ︸

m

( G∗ ⊗ · · · ⊗G∗
︸ ︷︷ ︸

n

admits nm conditionally

exhausting strategies, whereas

((a( G∗)( G∗)( ((a( G∗)( G∗)

admits only one.
(iv) There are two conditionally exhausting strategies for the game:

((a( G∗1 )( G∗2 )⊗ ((b( G∗3 )( G∗4 )( (((a⊗ b)( G∗5 )( G∗6 )

de"ned by
(a) ∗2 9→ ∗3; ∗4 9→ ∗6; ∗5 9→ ∗1
(b) ∗2 9→ ∗6; ∗4 9→ ∗1; ∗5 9→ ∗3.
This example is due to Barry Jay.

8.1. Interpretation of IMLL[ in G, and the subcategory Gce

Recall the category G of free games and (non-deterministic and partial) strategies
introduced in De"nition 1. From now on, by G we shall mean the same category but the
object-generators now include G∗. We give an interpretation of IMLL[ in the category
G. The denotation of a IMLL[ sequent as a G-map is written <! % s : A=[, and its
de"nition for the IMLL−-fragment is exactly the same as the canonical interpretation
of IMLL− in any autonomous category (considered in Section 3 and de"ned in [14]).
For the unit part, we de"ne <"=[=G∗; for n¿0 and a∈U

(i) we de"ne <x1 : "; : : : ; xn : "; x : a % 〈x1=∗〉 · · · 〈xn=∗〉x : a=[ to be the non-
deterministic, total strategy #f for the game (⊗ni=1 G∗ ⊗ a)( a where f : ∗1 9→
a; : : : ; ∗n 9→ a; a 9→ a, and

(ii) we de"ne <x1 : "; : : : ; xn : " % 〈x1=∗〉 · · · 〈xn=∗〉∗ : "=[ be the non-deterministic
strategy #f for the game (⊗ni=1 G∗)(G∗ given by f : ∗1 9→ ∗; : : : ; ∗n 9→ ∗; note
that #f is total if and only if n¿0.

We take ⊗0i=1G∗= ∅ so that < % ∗ : "=[ is the unde"ned strategy for the game G∗.

Proposition 39. If ! % s : A is provable and s is cut-free in IMLL[ then <! % s : A=[
is a conditionally exhausting strategy.

Proof. Similar to the proof of Proposition 11.

As expected, every conditionally exhausting strategy is the denotation of some IMLL[

term. Weakly conditionally exhausting strategies are de"ned in a similar way to weakly
exhausting strategies and we also denote them by #f. Observe that the correspondence
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between shortsighted sequences and paths in the essential net is analogous to that de-
scribed in Section 3. That way we get an immediate proof of an analogue of the "rst
part of Corollary 22 for conditionally exhausting strategies:

Theorem 40. If #f is a weakly conditionally exhausting strategy for G; then f de!nes
a conditionally exhausting strategy #f for G and G is IMLL[-provable.

Proof (Sketch): We shall confuse free games with types in the following. We prove
this by induction on the number of negative occurrences of " in the type -= ⊗!(A.
If there is none, let -− be the type obtained from - by erasing all positive occurrences
of " in -. Now -− is an IMLL− game, so the linkage f determines an exhausting
strategy for -− which is the denotation of a term s− by Corollary 22; from s− we can
obtain s where <! % s : A=[= #f. Now suppose there is a negative occurrence of " in
-. Create a new link between two atoms by replacing the occurrence of " itself by one
fresh atom and adding, with ⊗, an occurrence of the same atom to the atom at the other
end of the link to get -′. The number of negative occurrences of " in -′ is strictly
smaller than that in -. The resultant linkage, call it f′, determines a conditionally
exhausting strategy for the “smaller” game -′; by the induction hypothesis, the strategy
#f′ is the denotation of some IMLL[-term s−. Again from s− we can obtain s such
that <! % s : A=[= #f as required.

We de"ne a new category Gce whose objects are (non-empty) free games generated
from atomic games G∗; Ga; Gb; : : : by the tensor and linear implication, and whose maps
are given by conditionally exhausting strategies. Since the interpretation of IMLL[ in G
is sound (we easily check that the new IMLL[-axioms are validated; the other axioms
from IMLL− are valid because G is autonomous), and since we have Cut Elimination
for IMLL[ (Proposition 31), Proposition 39 and the De"nability Theorem 40, we can
prove the compositionality of conditionally exhausting strategies by exactly the same
reasoning as the compositionality of exhausting strategies. Note that the composition
is the standard one inherited from G. Thus we can conclude:

Theorem 41 (Full completeness). (i) The category Gce is a well-de!ned subcategory
of G which respects the tensor and linear implication.
(ii) Gce is a fully complete model for IMLL[.

9. A fully complete game model for IMLL

Though the category Gce is equipped with a tensor bifunctor and linear implication,
it is not autonomous because it lacks a tensor unit (the obvious candidate G∗ is not
the unit since there are nm conditionally exhausting strategies for the game "(m; n) in
Example 38(iii)). In this section, we aim to turn Gce into an autonomous category by
quotienting its homsets by an appropriate equivalence relation.
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Let J be the universe of joker moves. For conditionally exhausting strategies #1 = #f1
and #2 = #f2 for the same game G, we de"ne the (re%exive and symmetric) relation ∼
as follows:

#f1 ∼ #f2 ⇔∃j ∈ J :∀x ∈ MG:f1(x) := f2(x)⇒ x = j:

In words #f1 ∼ #f2 means that the two generating functions f1 and f2 agree everywhere
except at a speci"c joker move j. For instance, in Example 38(ii), we have #f1 ∼ #f2
and #f2 ∼ #f3 but #f1 :∼ #f3 .

De!nition 42. We set the equivalence relation ≈ to be the transitive closure of ∼, and
de"ne Ga to be the category whose objects are the Gce-objects and whose maps A→B
are given by ≈-equivalence classes of conditionally exhausting strategies for A(B.

Our aim is to show that this relation characterizes the equivalence of essential nets
needed to ensure their compatibility with the autonomous theory. The idea is that two
essential nets with units should be deemed equivalent if and only if it is possible to
transform one to another by changing the positive end of unit links, one at a time, so
that the intermediate linkages also de"ne essential nets.

Theorem 43. Ga is a well-de!ned autonomous category.

Proof. We prove that if #f1 ∼ #f2 then
(i) #f1 ⊗ '∼ #f2 ⊗ ',
(ii) '⊗ #f1 ∼ '⊗ #f2 ,
(iii) #f1 ; ' ≈ #f2 ; ',
(iv) '; #f1 ≈ '; #f2 .
The "rst two are easy. The third is analogous to the fourth, so we just prove the last
one. Because the composition of conditionally exhausting strategies is a conditionally
exhausting strategy, the composites '; #f1 and '; #f2 , where ' : A→B and #fi : B→C,
are generated by functions g1 and g2, respectively. Let j be the joker move in MB(C
that witnesses #f1 ∼ #f2 . There are two cases. First suppose j is in the C-component.
Then for any x∈MA(C , g1(x)= g2(x) i# x := j by the de"nition of composition, and
so, #g1 ∼ #g2 and we are done. Otherwise suppose j is in the B-component. Then there
is a set ?= {∗1; : : : ; ∗n} ⊆ MA(C of joker moves (of the game A(C) such that:
(a) for i=1; 2, for j; k ∈?, gi(j)= gi(k), and
(b) if g1(j) := g2(j) then j∈?.
We need the following lemma in order to prove #g1 ≈ #g2 .

Lemma 44. For each 06i6n; hi as de!ned by

hi(j) =











g1(j)(= g2(j)); j =∈ ?;

g1(j); j ∈ {∗1; : : : ; ∗i};

g2(j); j ∈ {∗i+1; : : : ; ∗n}:

induces a conditionally exhausting strategy.
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Proof. We prove that hi de"nes a correct essential net. First we show that all paths
in the net come from the essential nets corresponding to g1 or g2. Because g1 and g2
de"ne correct nets, so will hi.
Suppose there is a path in the net de"ned by hi that is not a path from the net

corresponding to g1 or g2 i.e. one that crosses an axiom link between g1(j) and "j for
j6i and an axiom link between g2(j) and "j for j¿i. This means that there exists a
path from "j to gk(j) for either some j6i and k =2, or j¿i and k =1 (depending
on the order in which the two axiom links occur in the path) that is a path in the nets
induced both by g2 and g1. But the nets have axiom links between g2(j) and "j and
between g1(j) and "j respectively, so the existence of such a path would contradict
acyclicity of one of them.

Because h0 = g2, hn= g1 and #hi ∼ #hi+1 for 06i¡n, we have #g1 ≈ #g2 . The category
Gce already features tensor, linear function space and the canonical morphisms $A;B;C
and #A;B making the corresponding diagrams commute. By (i)–(iv) this structure will
be preserved in Ga. Hence, it su&ces to de"ne the maps lA. and rA so that the remaining
diagrams commute.
Take any game A and let m be an opening move (in fact any O-move). We de"ne

lA :"⊗A→A as the ≈-equivalence class of #fm where fm : ∗ 9→m but, when restricted
to the non-joker moves, generates the identity map A→A. (Of course the choice of m
is immaterial.) We de"ne rA similarly. We invite the reader to check that lA and rA
are isos natural in A, and that all the required diagrams commute.

Our task now is to prove that Ga is fully complete for IMLL. The “gap” between
IMLL[ and IMLL is the axiom ((-cong) in all its generality when ( is instantiated
to the unit-let 〈x"=∗〉−

! % C[〈x"=∗〉t] ∼ 〈x"=∗〉C[t] : A

subject, of course, to the strong typability side condition. Because Ga is autonomous,
it is a model of IMLL, and so, if ! % s= t : A is provable in IMLL[ we must have
<! % s : A=[≈ <! % t : A=[. It remains to show that if two conditionally exhausting
strategies for the same game are ≈-related, then the respective IMLL[ terms determined
by the strategies (by Theorem 40) are equal in IMLL. The following proposition allows
us to infer that.

Proposition 45. Suppose we have provable IMLL[ sequents ! % s : A and ! % t : A
such that

<! % s : A=[ ∼ <! % t : A=[;

then ! % s= t : A is provable in IMLL.

Proof. By assumption < % ! x: s : ⊗ !(A=[ and < % ! x: t : ⊗ !(A=[ conditionally
exhausting strategies corresponding to linkages that di#er only by one link whose
target is the same negative occurrence of the joker move. Set ⊗!(A=C−["] for
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some type context C− where the hole marks out the (negative) occurrence of the "
in question. We depict the two links that distinguish the two strategies as follows:

" · · · · · · · · · · · · a · · · · · · b

" · · · · · · · · · · · · a · · · · · · b

We call the two strategies #a and #b (for the game C−[G∗]). Consider the new linkage
which is obtained by augmenting the links that are common to both #a and #b by the
following:

Call the strategy de"ned by the augmented linkage # (for the game C−[G∗a ⊗G∗b ]).
We need the following lemma:

Lemma 46. The strategy # is conditionally exhausting.

Proof. Equivalently, we prove that the new linkage de"nes a correct essential net.
Firstly, let us note that in the new essential net there is no path going through both
of the distinguished unit links. Suppose the contrary. Then there must be a path from
either "a to b or from "b to a. From the structure of the essential net, it then follows
that there are paths either from "b to b or from "a to a. Therefore there are cycles
in the nets corresponding to #a or #b—a contradiction as both of them de"ne correct
essential nets.
By the previous remark, paths in the new net are morally paths from the old nets

(without any combinations). Hence acyclicity and Condition L hold.

Let % u :C−["⊗"] be the IMLL[ term that corresponds to # by Theorem 40.
To complete the proof, consider the two conditionally exhausting strategies for the
game

C−[G∗a ⊗ G∗b ]( C−[G∗];

which behave everywhere in the same (copycat) manner except that they di#er in
which one of the two ∗’s on the left triggers the ∗ on the right. Call the IMLL[ terms
corresponding to these strategies (via Theorem 40)

y : C−["⊗"] % l : C−["] and y : C−["⊗"] % r : C−["];

respectively. By an easy structural induction, we have

y : C−["⊗"] % l = r : C−["]

is provable in IMLL. Thus % l{u=y}= r{u=y} : C−["] is also provable in IMLL. But
since both ! x: s= l{u=y} and r{u=y}= ! x: t are provable in IMLL[ (as Gce is a fully
complete model of IMLL[), we have ! % s= t : A is IMLL-provable as required.
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Consequently we have the main result of the paper.

Theorem 47 (Full completeness). (i) Ga is a fully complete model of IMLL.
(ii) Ga is isomorphic to the autonomous category freely generated from the discrete

graph whose vertices are a; b; c; : : : .

10. Coherence and the tower of units problem

By the Categorical Type Theory Correspondence and by the Full Completeness
Theorem 47, we can use our games to examine coherence properties of free autonomous
categories. As an immediate corollary of the Full Completeness Theorem, we have the
following.

Corollary 48 (Coherence 2). If a sequent of IMLL is linearly balanced and contains
one negative occurrence of the unit; then it has at most one = -equivalence class of
proofs.

Conjecture 49 (Coherence 3). If ! is linearly balanced and contains only two negative
occurrences of the tensor unit; then there is at most one = -equivalence class of proofs
of !.

10.1. Triple unit problem

There are sequents for which we cannot hope to prove “coherence”. The standard
example is the Triple Unit Problem (see e.g. [12]), but here we recast it using the
language of IMLL, via the Categorical Type Theory Correspondence. If a is an atomic
type not equal to ", it is known that there are exactly two inequivalent ways of proving

((a( ")( ")( "% ((a( ")( ")( "

in IMLL. See [14] for a proof using the syntax of IMLL. This fact does not depend
on the number of occurrences of unit of positive polarity: as Francois Lamarche has
observed, there are exactly two inequivalent ways of proving

((a( ")( (x ( x))( ")% ((a( (y ( y))( ")( (z ( z);

where x; y and z are atomic.

10.2. The tower of units problem

Take any type A. We de"ne inductively:

A(0) = A;

A(n+ 1) = A(n)( ":
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We aim to compute the number of maps of the type a(n)→ a(n), where A= a is
atomic, in a free autonomous category. There are two cases.
Suppose n is odd. Enumerate all the unit occurrences starting from the right. The

two occurrences of the atomic type will be referred to as aL and aR. By P-exhaustion
aR must be reached at some point. There is no choice as to the move that triggers
aR—it must be aL. But for that to happen, all other moves must be played "rst—this is
a consequence of the rules of the game. Therefore the position ending in aR (coupled
with the fact that strategies are deterministic and contain just one maximal position)
tells us everything about the strategy. Besides, each such must be built using two-move
blocks

∗2∗3; ∗4∗5; · · · ∗2n−2 ∗2n−1;

∗2n always precedes aL and every play is started by ∗1:

∗1 · · · · · · · · · · · · · · ·︸ ︷︷ ︸

2n−2

∗2naLaR:

The blocks from one side must appear in the order dictated by their subscripts, the
way the two sides interleave is arbitrary, though. There are n− 1 places for the blocks
to "ll in and it su&ces to choose which places will be occupied by each side. There
are (n−1)=2 blocks on each side, so the number of conditionally exhausting strategies

is
(

n−1
n−1
2

)

. None of them can be equated in Ga as they di#er by at least two links.

The case where n is even is similar. Each position begins in ∗1 as before but ends
in ∗naRaL. The building blocks are:

∗2∗3; : : : ; ∗n−2∗n−1; ∗n+1∗n+2; : : : ; ∗2n−1 ∗2n :

There are (n − 2)=2 and n=2 of them on the left and right, respectively. The total

number of strategies is thus
(

n−1
n
2

)

. We summarize our "ndings as follows.

Theorem 50. Let )=A(n)(A(n).

(i) If A :="; there are at least
(

n−1
n
2

)

inequivalent proofs of ) if n is even and
(

n−1
n−1
2

)

if n is odd.

(ii) The estimate becomes accurate if A is linearly balanced and (is isomorphic to
an object that) does not contain any unit.

We illustrate the theorem by showing that the two strategies in the Triple Unit
Problem coincide in our model if and only if A=". In fact, in that case, we have as
many as eight conditionally exhausting strategies, as shown in Fig. 8; note that the last
one in the "gure is the canonical identity. The way the eight strategies are related by
∼ is depicted in Fig. 7: the numbers therein refer to the order in which the strategies
appear in Fig. 8.
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Fig. 7. The ∼-relation between the eight strategies in Figure 8.

Fig. 8. Eight conditionally exhausting strategies.
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