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Abstract — Parallelism is the key to continued performance
scaling in modern microprocessors. Yet we observe that this
parallelism can often contain a surprising amount of instruc-
tion redundancy. We propose to exploit this redundancy to im-
prove performance and decrease energy consumption.

We propose a multi-threading micro-architecture, Minimal
Multi-Threading (MMT), that leverages register renaming and
the instruction window to combine the fetch and execution of
identical instructions between threads in SPMD applications.
While many techniques exploit intra-thread similarities by de-
tecting when a later instruction may use an earlier result, MMT
exploits inter-thread similarities by, whenever possible, fetching
instructions from different threads together and only splitting
them if the computation is unique. With two threads, our de-
sign achieves a speedup of 1.15 (geometric mean) over a two-
thread traditional SMT with a trace cache. With four threads,
our design achieves a speedup of 1.25 (geometric mean) over a
traditional SMT processor with four-threads and a trace cache.
These correspond to speedups of 1.5 and 1.84 over a traditional
out-of-order processor. Moreover, our performance increases
in most applications with no power increase because the in-
crease in overhead is countered with a decrease in cache ac-
cesses, leading to a decrease in energy consumption for all ap-
plications.
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1. INTRODUCTION

As clock speeds plateau, all forms of parallelism have become
critical to increasing microprocessor performance. Research on
SMT and CMP processors has largely focused on multi-programmed
workloads, taking advantage of the different program characteris-
tics to better utilize cache space [1, 2, 3, 4], load-balance threads on
an SMT [5], and use thread priorities to execute efficiently [6].

While these differences in multi-programmed workloads allow
more efficient use of resources, we focus upon another important
class of of workloads: multi-threaded applications programmed in
a single-program-multiple-data (SPMD) style. The SPMD style
is a common way for programmers to simplify the task of writ-
ing parallel code, focusing on data parallelism rather than con-
trol parallelism. Programming paradigms in this category include
Pthreads-style multi-threaded programming, MPI-style message-
passing programming, and multi-execution programs whose exe-
cutions and results analysis are all separate programs. MMT pro-
vides purely hardware mechanisms to target the largest number of
application classes, even those the programmer did not explicitly
program in parallel.

We observe that the SPMD multi-threaded codes involve threads
which often execute the same instructions at approximately the same
time. Many of these instructions even operate on identical data.
MMT fetches these instructions together, only splitting instructions
that may produce different results. We further observe that existing
out-of-order mechanisms on multi-threaded microprocessors can be
leveraged to inexpensively achieve this. Specifically, we present
minor modifications to an SMT core that use register renaming and
the instruction window to implement combined instruction fetch,
combined instruction execute, and instruction synchronization for
SPMD multi-threaded workloads.

Our goal is to execute separate instructions for each thread only
when either the instructions are different or the inputs to those in-
structions are different without requiring program recompilation to
give hints as to when they are identical. We begin with the premise
that SPMD programs start with the same instructions in each thread
and decide instruction-by-instruction which must be split to accom-
modate the differences between the threads. This provides two dis-
tinct optimizations. First, if multiple threads need to fetch the same
set of instructions, we only need to fetch them once, though we may
execute them multiple times (once for each thread). Second, if these
identical instructions also have identical input values, we only need
to execute them once, applying the execution results to all threads.
In this paper, we focus on dynamic instantaneous instruction reuse
in two categories of parallel workloads - multi-threaded and multi-
execution, described in Section 3.1.

This work makes two main contributions. First, we present a
mechanism that facilitates the synchronization of multiple threads
without software hints to increase the time they spend fetching and
executing identical instructions. Second, we propose changes to
the decode and register renaming stages to identify and manage in-
structions with the same inputs, executing and committing those
instructions once for all threads.

We evaluated our design on a cycle-accurate simulation of an
SMT architecture. Compared to a traditional SMT core with a
trace cache running the same number of threads, we achieve av-
erage speedups of 1.15 and 1.25 (geometric mean) for two and four
hardware threads, respectively.

The paper is organized as follows. We present related research
in Section 2. Section 3 motivates our research by profiling the po-
tential of instruction sharing for our benchmark programs. Sec-
tion 4 presents our instruction fetch mechanism to track instruc-
tions shared by multiple threads, and discusses the details on how
to execute common instructions for multiple threads. Sections 5
and 6 discuss our experimental setup and results, followed by our
conclusions.



2. RELATED WORK

This is not the first, and certainly will not be the last, attempt to
exploit the redundancy in instructions and data on a modern proces-
sor. Our work focuses on removing inter-thread instruction redun-
dancy in SPMD programs.

Intra-thread instruction redundancy has been exploited by mem-
oizing values for later reuse, increasing performance and reducing
energy. Hardware approaches have been used to reuse results of
long-latency alu operations [7, 8,9, 10, 11] and compress functions
or arbitrary sequences of instructions into a single memoized result
[12,7, 8, 13, 14, 15, 16, 17, 18]. Further studies were performed
to analyze the effectiveness and propose solutions for instruction
reuse in the hardware [19, 20, 21, 22, 23, 24, 25, 26, 27]. Others
have proposed using compiler hints to find reuse [28, 29, 30, 31].
Inter-thread instruction sharing has also been exploited to reduce
cache misses [32, 33, 34]. Our work can be used in conjunction
with these intra-thread techniques.

Some prior work attacked the same problem: identifying and ex-
ploiting instruction redundancy in multi-execution workloads. Umut
et al [35] proposed a software approach by maintaining the depen-
dence graph of the computation and using the graph to propagate
changes from inputs to the output. By far the closest work to ours
is Thread Fusion[36], which proposes a hardware/software system
to merge the fetch portion of multi-threaded programs. We have
extended this idea in two significant ways. First, we have proposed
hardware that removes any use of software hints provided by either
the compiler or the programmer, greatly expanding the application
classes that can be targeted (adding legacy codes, message-passing
and multi-execution to multi-threaded apps). Our hardware could
be used in conjunction with their software hints system to provide
even better performance. Second, we have proposed a system that
allows identical execution in addition to the fetch, which is a sig-
nificant overall improvement.

3. MOTIVATION

The goal of SMT is simple: retain single-thread performance
while allowing a multi-threaded program to execute as quickly as
possible by dynamically sharing resources. We observe that when
an SMT core runs an SPMD program, the different threads fetch
large sections of the same instructions, with some subset of those
having identical input values. Our goal is to design and extend an
SMT core, so that it can fetch and possibly execute these identical
instructions with low overhead. In this section, we present our two
application classes followed by profiling results that motivate our
design.

3.1 Workloads

Our work focuses on the execution of instructions in data-parallel
SPMD workloads, not memory access, so we consider both shared-
memory and non-shared-memory workloads. There are three such
types of programs: multi-threaded, in which threads communicate
through shared memory; message-passing, in which threads com-
municate through explicit messages; and multi-execution, in which
threads do not communicate during execution (a separate program
accumulates results once all threads have completed). This work
evaluates two categories of workloads: multi-threaded and multi-
execution. Multi-execution workloads are, in normal use, appli-
cations that require many instances of the program with slightly
different input values. Simulations such as circuit routing, proces-
sor verification, and earthquake simulation require the application
to be run hundreds of times with different inputs. The applications

| Suite | Type | Applications |
SPLASH-2[38] | MT | LU, FFT, Water-Spatial,
Ocean, Water-Nsquared
Parsec[39] MT | swaptions, fluidanimate,
blackscholes, canneal
SPEC2000 ME ammp, twolf, vpr,
equake, mcf, vortex
SVM[37] ME Libsvm

Table 1: Summary of Applications
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Figure 1: Breakdown of Instruction Sharing Characteristics

we use are summarized in Figure 1. Seven applications are multi-
execution workloads from SPEC2000 and SVN[37] with varying
data inputs drawn from [34]. The next five are multi-threaded appli-
cations from the SPLASH-2 benchmark suite [38], using the same
inputs as in [38]. For Parsec programs, we use sim-small input sets
for our experimentation.

While multi-threaded and multi-execution workloads share the
characteristic that many identical instructions are potentially exe-
cuted in different contexts at the same time, they have three impor-
tant differences. The first is that different threads of multi-threaded
programs do not start with identical state - the stack pointers are dif-
ferent. Multi-execution workloads, on the other hand, begin with all
registers identical. The difference is in the input parameters, which
are stored in memory. The second difference is that threads in a
multi-threaded program share memory, so a load to the same vir-
tual address in multiple threads will always return the same value (if
executed without an intervening write). In a multi-execution work-
load, this may not be the case. No memory is shared, so a load from
the same virtual address in different threads may or may not return
the same data. Third, threads in a multi-threaded program are all
the same process, and instances of programs in a multi-execution
workload are different processes. In the rest of this paper, when
the word thread is used, it is a thread of execution, which can ei-
ther refer to a single thread of a multi-threaded program or a single
instance of a multi-execution workload.

3.2 Instruction Redundancy

For each application we want to see how much redundancy there
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Figure 2: Distribution of the difference in length of divergent
execution paths

is in the instructions executed. Because our goal is to reduce inter-
thread redundancy, not intra-thread redundancy, we only measure
when instructions from different threads are identical at the same
point during execution, taking into account that execution paths
may diverge for different amounts of time before coming back to-
gether. We do this by finding all of the common subtraces of each
trace.

We want to answer two questions for each application. First,
how often is the same instruction fetched by all threads? We call
this fetch-identical. Second, how many of these fetch-identical in-
structions have identical operand values? We call these execute-
identical. Note that execute-identical are also fetch-identical in-
structions, even though we no longer refer to them in this way.

Figure 3.1 shows the instruction breakdown for each application:
Execute-identical, fetch-identical, and not identical. The average
bar of the figure shows the algorithmic average of all applications.
Although the distribution of instructions varies for each applica-
tion, all applications have large amounts of fetch-identical instruc-
tions (since execute-identical instructions are also fetch identical).
About 88% of instructions, on average, can be fetched together,
making a shared fetch mechanism very promising. Previous work
also observed a similar phenomenon for server workloads [32] and
transaction processing in database systems [33].

For each application, we are particularly interested in execute-
identical instructions. Multi-execution applications have execute-
identical instructions mainly because part of the execution graph is
the same, whereas in multi-threaded applications, execute-identical
instructions exist because some data are shared by all threads. As
can be seen, this property varies greatly from application to applica-
tion. Both equake and ammp have lots of such instructions. There
are also applications (vpr, lu, fft, ocean, etc) with limited execute-
identical. On average, approximately 35% are execute-identical in-
structions. This observation motivates us to design hardware mech-
anisms to exploit this program property to boost performance.

3.3 Synchronization

The most efficient way to take advantage of this sharing is to syn-
chronize the threads as much as possible. Each time the execution

paths diverge, fetch resumes as normal. We want to gather data as
to the likelihood that we can design a mechanism to detect when the
threads begin fetching the same instructions again, given that they
are unlikely to return to the same point at the same time. Therefore,
we measure the difference between the lengths of the two divergent
execution paths between the common subtraces, where the length
is calculated in taken branches rather than instructions. Figure 2
presents a per-application histogram of this length for two threads.
That is, the leftmost bar in each cluster measures the percentage
of divergent dynamic paths that were within 16 taken branches or
less of each other. The next bar measures the percentage that were
within 32 taken branches or less, and so on.

For all programs except equake and vortex, more than 85% of all
diverged paths have a difference in length of no more than 16 taken
branches. This implies that if we track the paths while threads are
fetching different instructions, we need only a short history of taken
branches in order to detect when the threads begin executing on the
same path again.

4. ARCHITECTURE

In order to share the fetch and possibly the execution of identical
instructions, we face several design challenges. Both optimizations
depend on both threads fetching the same instruction at the same
time. Therefore, the first design challenge is to remerge the exe-
cution path when two threads follow divergent paths. The second
challenge is to provide an efficient way to detect whether instruc-
tions that were fetched together can also be executed together and
manage both types of instructions through the machine.

We present an initial hardware-only design for this problem, the
goal being to make changes to as few stages as possible. Each
mechanism has a relatively simple hardware implementation, and
the design integrates well into an SMT or hyperthreaded proces-
sor. The fetch optimization is performed in parallel with instruc-
tion fetches, adding negligible delay, and the execute optimization
requires a single pipeline stage between decode and register renam-
ing. Register merging requires changes to the commit stage. Gate
counts and delays are summarized in Table 3 at the end of this sec-
tion.

4.1 Instruction Fetch

In this section, we present a mechanism to remove redundant
fetches of fetch-identical instructions. This requires two parts. First,
when the PCs of two or more threads are identical, we perform a
single fetch. The instruction window is enlarged by 4 bits, and a
bit is set for each thread with the corresponding PC. We call this 4-
bit pattern, identifying the sharing of the instruction, the Instruction
Thread ID (ITID) of the instruction. Second, when two threads di-
verge, the hardware needs to detect when the thread paths remerge
and synchronize.

When the threads begin, all begin fetching at the same location.
We call this mode of instruction fetch MERGE. At some point in
execution, two threads will have a different outcome for the same
branch, resulting in divergent execution paths. We will present our
mechanism for remerging two threads, but it can be easily translated
to four threads.

We need a mechanism to track the two threads’ progress in order
to detect when the thread paths remerge. This is called DETECT
mode, during which threads fetch instructions independently. We
introduce a Fetch History Buffer (FHB) for each thread to record
the fetch history. Every taken branch, a thread in DETECT mode
records its target PC into its Fetch History Buffer. In parallel, it



checks the other thread’s history to see if its target PC is in an-
other thread’s FHB, as shown in Figure 3(b). If the PC is found,
the two threads attempt to synchronize, transitioning to CATCHUP
mode. Figure 3(a) shows the transition between three instruction
fetch modes.

In CATCHUP mode, in order to resynchrnonize the two threads,
we increase the fetch priority of the “behind" thread, whose target
PC was found in the others’ history. The other thread(s) receive
lower fetch priority. Because of the priority changes, CATCHUP
mode represents a performance penalty, so we want to stay in it for
as little time as necessary. It is also important to detect false posi-
tives - when the merged path was too short to resynchronize. Thus,
we continue as we did in DETECT mode, recording branch targets
and continuing to search for them in the other thread’s history. If,
while in CATCHUP mode, the “behind" thread’s branch target PC
is not in the FHB of the “ahead" thread, the state transitions back
to DETECT mode, with both threads receiving equal fetch priority
again.

The size of the FHB provides an interesting design tradeoff. A
larger FHB increases the chance that a path will remerge, providing
a large boost in performance, but it also increases the chances of
a false positive, resulting in wasted time in CATCHUP mode, a
performance penalty. We will explore this tradeoff in Section 6.4

Prior work used software hints for remerge points. A hardware
mechanism was provided to find and store a small set of remerge
points that were limited to the target of the branch that caused the
divergence. The scheme described above provides much more flex-
ibility in determining merge points and does not require space to
store successful merge points.

4.2 Detecting Identical Operands

During the fetch stage, a single instruction may be fetched for
multiple threads. The four bits that identify those threads are the
Instruction Thread ID, or the ITID. A later stage must determine
whether or not the instructions are execute-identical. This is what
determines whether to split the instructions into two (or more) dis-
tinct instructions, each with their own ITID, or to continue through
to the commit stage as a single instruction, applying the result to
all threads. Thus, there are two distinct tasks. First, given an ITID
corresponding to one or more threads, produce the minimal set of
1-4 ITIDs representing the instructions required to be executed for
the different threads. Second, for any merged instructions, apply
the result to all threads to which it corresponds.

Except for load instructions in multi-execution workloads, as
long as the register input values of an instruction are identical, then
the output value will be identical, so the instruction may be ex-
ecuted only once. For loads with non-shared memory, the address
calculation may be performed merged, but the 1d/st queue must split
the actual loads and stores. The decision for when to split a fetch-
identical instruction is summarized in Table 1. We will address why
the multi-programmed loads have a predictor in Section 4.2.5

We add a stage between the decode stage and register alias ta-
ble lookup to split any fetch-identical instructions that do not have
identical inputs. The purpose of this stage is, given a single fetched
instruction, to produce the minimal set of 1-4 identical instructions
to produce correct execution. Each instruction will be executed for
different threads. We must account for four instructions in the case
when an incoming thread with ITID 1111 (indicating that it was
fetched for all threads) turns into four instructions with ITIDs 1000,
0100, 0010, and 0001, because all threads had a different register

| Stage | Inst | App | Type | Operation |
Decode | ALU/Ld | Both | F-id SPLIT
Branch
ALU/Br | Both | X-id MERGE
Load MT | X-id MERGE
Load ME | X-id Check LVIP

Ld/StQ Store ME | Both SPLIT

Ld/St MT | Both No Change
Load ME | Both | SPLIT; Verify
LVIP Pred

Table 2: Logic for splitting instructions. ME is Multi-
Execution, MT is Multi-Threaded. F-id is Fetch-identical, and
X-id is Execute-identical.

value for their inputs.

4.2.1 Register Sharing Table

The Register Sharing Table (RS) holds one entry for each archi-
tected register. Each entry contains a bit for each potential sharing
pair. For a 4-thread MMT, there are 6 combinations of paired shar-
ing, so there are 6 bits. A 1 indicates that the two threads share
the register (or the registers hold identical values), and a O indicates
that the register may contain different values.

4.2.2 Splitting Instructions

The first step is to read the bit in every entry corresponding to
each source register, regardless of whether the entry contains infor-
mation relevant to this particular instruction (ITID). Then different
combinations of bits are ANDed to produce the sharing information
for all combinations of sharing, 2-4 threads.

Filter.

The filter takes the ITID and filters out (setting to 0) any shared
bits from entries that are not possible outcomes of this ITID. For
example, if the ITID is 0110, then it could either stay merged at
0110 or be split into two instructions with ITID 0100 and ITID
0010. Thus, the three entries with EID 0100, 0010, and 0110 are the
relevant entries. All other entries are set to 0. When anded with the
sharing bits, this produces all possible valid sharing combinations.

Chooser.
The purpose of the chooser is to output the EID corresponding to
the entry with filtered output 1 that has the most threads sharing it.
With these components, we can split the instruction up to three
times, resulting in new instructions with decreasing amounts of
sharing. This produces the minimal set of instructions since, in each
stage, we choose the ITID with the greatest amount of sharing.

4.2.3 Updating Register Sharing Table

Each cycle, the sharing information must be updated for relevant
entries. If this is the destination register for a particular instruction
and at least one of the threads’ ID was in the ITID, then the bit
will be set to a 1 if a resulting ITID has both threads’ ID’s and 0
otherwise.

4.24 Register Alias Table
The Register Alias Table (RAT) remains largely the same. For



State transition conditions:

3 1. A branch causes path divergence;

2. One detects a PC in the
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9(a) State Transitions of Instruction Fetch
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Figure 3: Hardware Added for Synchronizing Fetch

each instruction it receives, it needs to read the operands once (re-
gardless of the sharing) and create a single physical destination reg-
ister. For execute-identical instructions, however, that destination
register gets recorded in the RAT of all corresponding threads, not
just one.

4.2.5 Load/Store Queue

For multi-execution workloads, even when the address calcula-
tion is merged, loads and stores must be performed independently.
The load/store queue expands the loads and stores to the appropriate
number and performs them serially.

This complicates the instruction splitting mechanisms because
even if the inputs are the same, the loaded value may be differ-
ent, which is what determines whether or not to split an instruction.
This loaded value will not be known until much later, and we need
to know during this stage in order to a) keep current sharing infor-
mation to decide whether or not to split instructions that use the
loaded value and b) know whether to allocate separate registers.

Previous work [34] found that loads from the same virtual ad-
dress in multi-execution workloads often contain the same value
across instances. For this reason, we use a predictor that predicts
whether the current load, which has the same inputs (and therefore
virtual address), is going to load the same value from the differ-
ent processes. We maintain a table of PC’s whose loads have been
previously mispredicted. We begin by predicting the value will be
identical. This is the Load Values Identical Predictor (LVIP). It is
stored with the Register Sharing Table to provide an extra check for
load instructions.

Therefore, when running a multi-execution program, the queue
must wait for both loads to return, check the values, compare the
result to the prediction, and possibly trigger a rollback.

4.2.6 Initial Design Summary

In order to illustrate how this works, we begin with the start of
program execution. When two threads begin, in a multi-execution
workload, all architected registers are mapped to the same physi-
cal registers - memory is different, not register values. The RST
bits are all set to 1, and the RAT values are identical. In a multi-
threaded workload, all architected registers except the stack pointer
are mapped to physical registers. The RST and RAT values are all
identical except the stack pointer.

There are three ways that the register values become different for
the same architected register in two threads. First, if the threads
diverge in their execution paths, their instructions will not be fetch-

identical, so each instruction’s destination register is set to 0. Sec-
ond, if a fetch-identical instruction has input values in different
physical registers, then the instruction will be split, and the two
results will be placed into different physical registers (and the cor-
responding bit will be set to 0 in the RST). Third, if the threads
are running a multi-execution program, a load to the same virtual
address may load a different value because no memory is shared
between different instances of the same program.

4.2.7 Register Merging

Using the Register Sharing Table is not always perfect, because
the values within the registers are not checked, only the mapping is
checked. Two instructions on divergent paths may write the same
value into the same architected register. Because these were on
divergent paths, the bit will be set to O in the RST, and future fetch-
identical instructions will consider these input registers to be dif-
ferent. It would not be unlikely to have the entire register set be-
come divergent for this reason, resulting in no detection of execute-
identical instructions.

It would be clearly impractical to check all non-execute-identical
results to check the contents of all registers between threads. We
observe that it is only during DETECT and CATCHUP mode that
two instructions are likely to write the same value to the same ar-
chitected register but different physical registers, and we only care
about the comparison between the current result and the value in the
same architected registers of the other threads. In addition, if a later
instruction has already passed the RST and writes to this register, it
is too late to update the entry. Thus, we only check the destination
registers of instructions fetched in DETECT or CATCHUP mode
whose destination register is not being overwritten by a younger
instruction in this or another thread.

In order to make sure a later instruction in the current thread
is not writing to the same architected register, we would need to
access the register mapping in the register alias table. This would
require too many read ports, so we keep a copy of the mapping table
for this purpose. This involves no addition to the RAT’s critical path
since we are only taking its results, not sending information to it.
If the instruction being committed is writing to the same physical
register as its architected destination register still maps to, then it
is the only instruction in the pipeline writing to this register for
this thread. We refer to this as the instruction’s mapping still being
valid.

In order to track the other threads’ use of the architected registers,
we keep a single bit for each architected register for each thread.



| Component | Description |  Area [ Delay |
Inst Win ITID/entry 4b/entr 0
FHB CAM 32%32b 1 cyc
RST Ident Reg Info 11*50 b 0.5ns
Inst Split Make ITIDs 80k um?

RST Update | Update dest reg

Reg State Thread owners 256*4 b N/A

LVIP Pred table 4B*4K entr | 1cyc

Track Reg Reg Map 4*50*%9 b 1 cyc
bit vector

Table 3: Conservative Estimate of Hardware Requirements

This bit is a 1 if no active instruction is writing to the register and
0 otherwise. When an instruction is assigned its physical register,
it sets the architected register bit to 0. If its mapping is still valid
when it commits, it sets the bit back to 1.

When an instruction commits, it checks to make sure its mapping
is valid. If it is, then it looks at the bit vector for the other threads.
For any other thread whose bit is 1, the architected to physical reg-
ister mapping is used to determine which register to read. If there
are read ports available this cycle in the register file, the physical
register is read and compared to the committed value. If they are
the same, the appropriate bit(s) are set to 1 in the Register Sharing
Table to indicate that the register values are identical.

4.3 Summary

Figure 4 shows the high-level, logical view of the processor pipe-
line, highlighting the components which are closely related to our
design. There are a total of four instructions shown in this figure
before renaming. For each instruction, we give the operation type
along with a bit vector, indicating which thread owns the instruc-
tion. As can be seen, there are three fetch-identical instructions.
The last one (MUL) belongs to only one thread.

After register renaming, instructions are put into the issue queue.
In this example, only SUB is split because its source registers have
different architecture-to-physical mappings. The LOAD is not split,
because all source registers share the same mapping. But for multi-
execution workloads, the LSQ fetches data for each thread sepa-
rately and checks if previous prediction on the load is correct.

Table 3 gives details on the hardware requirements for the major
components we are adding to the SMT core. The major storage
components are the CAM containing the Fetch History Buffers,
RST for register sharing tracking, and the LVIP to predict which
loads should share a destination register. The major delay intro-
duced is in splitting instructions, which can be accomplished within
a single cycle. Note that the storage requirement for the RST shows
only 11 entries. This is because the first four entries are hard-coded
to 1 and not stored in the table. The table shows the hardware re-
quirements for an optimized implementation of the RST and in-
struction splitting logic.

As a sanity check, we implemented the RST components in struc-
tural VHDL and evaluated power and area using the Synopsis de-
sign tools and their academic 90 nm technology library. To scale to
32 nm, we assumed a reduction in 2x power, 7.9x power[40], and
9x delay[41].

4.4 Operating System Support

In order to realize the performance gains illustrated in the results
section, the operating system must be aware and support the system.

Threads 4
Issue/Commit Width 8/8
LVIP/CAM Size 4KB/32 entries
LSQ Size 64

ROB Size 256
ALU/FPU units 6/3

Branch Predictor 2-level, 1024 Entry

History Length 10

BTB/RAS Size 2048/16

LVIP 4K

FHB 32 entries

Trace Cache Size 1MB

L1I/L1D Cache 64KB+64KB, 4 way,64B lines
L1 Latency 1 cycle

L2 Cache 4MB, 8 way, 64B lines

L2 Latency 6 cycles

DRAM Latency 200

Table 4: Simulator Configuration

| Name | Description |
Base Traditional SMT
MMT-F MMT, shared fetch only
MMT-FX MMT, shared fetch and execute
MMT-FXR | MMT-FX with register merging
Limit MMT-FXR running two instances
with identical inputs

Table 5: Summary of Minimal Multi-Threading (MMT) and
baseline Configurations

The scheduler needs to gang schedule the threads in pairs or larger
groups. If an exception occurs, threads that are currently merged
might benefit from both being suspended and restarted together.
Synchronization is a rich area to study the trade-offs between the
performance suffered from stopping threads that need not suspend
and gaining performance from being merged when restarted.

5. EXPERIMENTAL SETUP

Our SMT simulation infrastructure is extended from Godson-
T [42], a many-core architecture with a validated simulator built
on the simplescalar toolset [43]. Table 5 shows the detailed sim-
ulator configuration. We chose this aggressive core for two rea-
sons. First, this width has been used in prior well-known SMT
research[6]. Second, the speedups of our system increase as the
system is scaled down, so we chose an aggressive baseline in order
to not give our system an unfair advantage. We also chose an ag-
gressive fetch mechanism, a trace cache[44, 45] with perfect trace
prediction for a similar reason. The worse the fetch performance,
the more our system benefits from the shared fetch and execution.
We found that the trace cache actually had a negligible effect on the
results, so the results with a traditional cache are virtually identical
to our presented results.

In order to evaluate the effectiveness of our design, we ran several
different configurations, summarized in Table 5. Our baseline is a
traditional SMT with a trace cache. We began by running MMT-F,
with only the shared fetch capability, always splitting into differ-
ent instructions in the decode stage. Next, we executed MMT-FX
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Figure 4: High-Level View of the Pipeline

with shared execution, allowing instructions with identical register
mappings to continue executing as a single instruction. Finally, we
implemented MMT-FXR with register merging, which occasionally
compares the value being written to the register file with the same
architected register in the other threads in order to increase the num-
ber of registers identified as identical, in turn increasing the number
of instructions executed as one. As a comparison point, we also ex-
ecuted a Limit configuration. In this configuration, we execute two
identical threads. This represents the case in which all instructions
are fetched and executed together, though memory operations may
still be performed separately. This is an upper limit on potential per-
formance, though no application will ever attain this performance,
since not all instructions can possibly be execute-identical.

We also varied the number of threads executed. As the number
of threads increases, we expect an increase in savings due to the
opportunities for greater degrees of identical instructions. The way
in which we increase the threads differs for each workload. For a
multi-threaded program, when we double the number of threads,
we are still solving the same problem, so each thread performs less
work than before. For a multi-execution workload, on the other
hand, the executable itself has no notion of parallelism. When we
double the number of threads, we are doubling the amount of work
performed.

6. EXPERIMENTAL RESULTS

The goal of our work is to increase performance and decrease en-
ergy consumption in workloads with threads or processes that are
nearly-identical. We expect to increase performance, because the
instruction window is easier to keep full, fewer instructions need
to be executed, and fewer cache accesses must occur. We expect
to reduce energy consumption by performing fewer cache accesses
and executing fewer instructions. We begin by analyzing the per-
formance and energy consumption. We then evaluate our remerging
mechanism by comparing our observed results with the profiling re-
sults. Finally, we perform sensitivity analysis to see how our design
works as the size of the remerging history buffer is changed as well
as the width of the instruction fetch.

6.1 Performance Benefit Analysis

We first analyze the performance of the overall design, as well as
the contributions of different elements of the design. Figures 5(a)
and 5(c) show the performance improvement of our design for all
applications. The configurations were described in Table 5.

The overall performance gain for different workloads varies sub-
stantially. Some programs, such as libsvm, twolf, vortex, vpf, ocean,
lu, fft, waterscholes, and canneal, gain between 0-10% with two
threads and 8-20% with four threads. Other programs, such as
ammp, equake, mcf, water-ns, water-sp, swaptions, fluidanimate,

gain between 20-42% with two threads and 20-80% with four threads.

This results in an average performance improvement of 15% and
25% for two and four threads, respectively.

The performance results show that every element of our design
was helpful to some applications. With two threads, each element
(fetch, execute, and register merging) contributes equally- about
5% . With four threads, shared fetch contributes 10%, shared execu-
tion 9%, and register merging 6%. The contribution varies widely
by application - ammp benefits most by shared execution, whereas
equake and water gain significantly from register merging.

Finally, while a majority of the applications show little differ-
ence between the SMT-FXR configuration and the Limit configu-
ration, four applications (libsvm, twolf, vortex, vpr) do well but
have a large potential for improvement. This can be explained by
looking at Figure 5(b), which depicts the percentage of instruc-
tions executed in fetch-identical and execute-identical mode, and
comparing it with Figure 3.1, which depicts the percentage of in-
structions that our profiling showed could be executed in fetch-
identical and execute-identical mode. Figure 5(b) introduces one
additional category of interest: Exe-Identical+RegMerge. This cat-
egory means that with register merging, these instructions are iden-
tified as execute-identical, but without it, they would only be iden-
tified as fetch-identical.

We see that for several of the applications (ammp, equake, mcf,
lu, and fft), our mechanism was able to find most of the identi-
cal instructions. With our current design, we can track approxi-
mately 60% of fetch-identical instructions on average, almost half
of which are execute-identical instructions. In four applications,
libsvm, twolf, vortex, and vpr, there is a large gap between the iden-
tical instructions found and the existing identical instructions. This
explains the gap between the realized performance and the limit of
the performance.

This figure also shows why shared execution and register merg-
ing are important design components. Almost half of fetch-identical
instructions are execute-identical instructions. For applications such
as equake, mcf, fft, and water-ns, the Exe-Identical+RegMerge sec-
tion is a noticeable component, meaning that register merging is
necessary to identify these instructions as execute-identical. These
are the applications that exhibit the most speedup when using reg-
ister merging.

In conclusion, we show good initial results on many applications.
In addition, even our applications that showed less improvement
have the potential for much better performance if more instructions
can be identified as fetch-identical and execute-identical.

6.2 Energy Savings

Energy savings are realized, because our mechanisms have low
power requirements, yet they result in fewer cache accesses (fetch-
identical instructions) and fewer instructions executed, registers read
and written, and instructions committed (fetch-identical instructions).
For most applications, this results in lower average power and lower



Il Base

L2 MMT-F
144 f [ IMMT-FX
d S MMT-FXR
Limit
12 i 4
1.0 N gl e 1N i L 718 g
o
308 i
3
2 ¥
D 06 i
04
¥
02
0.0 T T T T 'ﬂ
RLCEI T I LAV ® R ® QP DL
& Pt S ¢ ® & PP DGR
RS X o P LSS EF S @
R St P

9(a) Speedup for Two Threads, Normalized to an SMT running two threads

I Base
MMT-F
CIMMT-FX
MMT-FXR

Speedup

1.0 j i f
0.8
0.6 7]
0.4
| 7 | |
0.2
0.0 IEﬁ H

T
SO d &L
2R & R P
ISR A

L W
R ¢
'b((\

A
9(c) Speedup for Four Threads, Normalized to an SMT running four threads

[__1Separate
Fetch-Identical
Exe-Identical-Regmerge
I Exe-Identical

o
=)

V)

N\ 7]

N
80

60

Percentage of Instructions (%)

- N
N
40
\\AN >
Z N N
20 NN N } > z. %
2\
> |g?\|w ZN
0
QLI FIAVR ORGP L
S O & 0"(\?}'6'\9?@%&\0\?1\& &
TN o & q\'z%b(\\ & P 2
N

9(b) Percentage Identical Instructions Identified

[ JMERGE

110 4 Y222 CATCHUP

DETECT
100 4—r— — ——— —
T |
S N7 %
5 704 Z% I %
2 I % e
@ 60 [~ %
= 7 o
S 50 Yl 7 7
| e
£ 404 %
8 s
E 30
o
20 =
= e
10
0 .
QL LESFS A OR® RO 0P > B
S LI L@ R N N )
SRE TS ¢ A A0 PO P
T h $$$'Z§®360%i?’§0’§’§®
N

9(d) Instruction Breakdown in Fetch Modes

Figure 5: Overall Speedup and Instruction Behavior Results

total energy, with ammp being the only exception. Ammp results
in higher average power, because the machine can be used so much
more efficiently (resulting in a dramatic reduction in execution time
and thus lower total energy).

In order to show the combined effect of the increase in power
due to the scheme’s overhead and the decrease in energy due to a
decrease in total work performed, we graph the energy consumption
of each application. We modeled the power with Wattch [46] and
our conservative Synopsis power estimates from Section 4.3. We
assume 32nm technology throughout our power modeling to reflect
future trends.

Figure 6 shows the energy consumption per job completed of a
SMT and MMT cores running two and four threads, normalized to
a traditional SMT core running two threads. For each application,
we graph four bars - SMT core with 2 threads, MMT core with 2
threads, SMT core with 4 threads, and MMT core with 4 threads.
We also present the breakdown of total energy consumption in three
components: cache power, overhead of our scheme, and the power
of other components of the processor.

We can make two observations from these results.  First, al-
though we introduce several hardware components, the power con-
sumption contributed by the overhead is negligible. Even without



power gating, the power contributed by the overhead is less than
2% of total processor power. Note that the Load Value Identical
Predictor (LVIP) is only accessed when instructions are fetched in
MERGE mode, and the Fetch History Buffers and Register Merge
Hardware are only accessed when instructions are not in MERGE
mode. The Register Sharing Table is updated every cycle, regard-
less of whether it is used to split instructions. Because of this, the
FHB’s are used less than 30% of the time, on average. With power
gating, the power consumption contributed by these components
can be further reduced to less than 1%.

Finally, the total energy consumption of our design is signifi-
cantly lower than the traditional SMT core. We gain by both reduc-
ing cache accesses and reducing instruction execution. As the num-
ber of threads increases, the energy reduction continues to increase
across both workloads, especially the multi-execution workloads.
With four threads, the MMT core consumes 50-90% as much en-
ergy as the traditional SMT core, with a geometric mean of 66%,
though a majority experience 10%-20% savings.

6.3 Instruction Fetch Merging

The MMT design results in performance improvement and en-
ergy reduction, but we need to analyze where there is room for
improvement. In this section, we analyze the effectiveness of our
instruction fetch synchronization mechanism.

Figure 5(d) is a different view of the instruction breakdown from
the instruction fetch mode. The best possible performance will be
attained if the percentage of instructions fetched in MERGE mode
is the same as the percentage of instructions that are fetch-identical
or execute-identical, and the rest is in DETECT mode. On the
other hand, during CATCHUP mode, most of the instructions in
the pipeline are from one thread. This degrades performance.

Luckily, CATCHUP mode is rare in most programs. This is be-
cause the processor enters the mode only when a potential remerge
point has already been detected. Unfortunately, three programs
(vpr, twolf and vortex) spend less time in MERGE mode than other
programs. This also indicates that our instruction fetch logic can be
further improved. We will leave this for our future work.

Finally, although not graphed, we analyzed the number of fetched
branches encountered before the hardware remerged the threads.
We found that in 90% of the cases, the remerge point was found
within 512 branches, though many were found in less time.

6.4 Fetch History Buffer Size

A major design question for the instruction merging design is
how large to make the CAM for the Fetch History Buffer. The
CAM uses space, consumes power (when in use), and must be small
enough to be accessed in a single cycle. With 32 entries, in more
than 90% of the cases, the remerge point is found within 512 taken
branches. Increasing the FHB size has the potential to improve
the number of fetch-identical instructions that can be tracked. It
may, however, also make the catchup process longer, hurting per-
formance. These two effects are depicted in Figures 7(c) and 7(a).

The direct effect the FHB size has is to the time spent in DE-
TECT, CATCHUP, and MERGE modes. Figure 7(c) shows that
several applications, including equake, vortex, ocean, lu, FFT, and
water-ns, spend more time in MERGE mode with a larger FHB,
because it captures merge points the small FHB did not. Other ap-
plications, such as twolf, vortex, vpr, and water-sp, spend an in-
creasing amount of time in CATCHUP mode, potentially decreas-
ing their performance.

As the FHB size increases, we expect from these statistics to
see a performance improvement in equake, FFT, and water-ns, but
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Figure 6: Energy Consumption Comparison. The four bars,
from left to right, are: SMT - 2 threads, MMT - 2 threads, SMT
- 4 threads, MMT - 4 threads

perhaps not for vortex. We also have the potential for a decrease in
performance for twolf, vpr and water-sp.

Figure 7(a) shows the performance results when we vary the His-
tory Buffer size from 8 entries to 128 entries. As predicted, the per-
formance increases slightly as the percentage of MERGE instruc-
tions increases. We see small increases in vortex, vpr, ocean, lu,
and fft, and greater increases in equake and water-ns. As expected,
two applications, twolf and water-sp, exhibit a small decrease in
performance at large FHB sizes.

Because there is an increase in performance for all applications
through 32 entries, and a larger FHB has the danger of not being
accessed in a single cycle, we chose an FHB size of 32 entries. The
average performance does continue increasing slightly as the size is
doubled, so, depending on the cycle time of the computer, an FHB
size up to 128 entries would be beneficial.

6.5 MMT Sensitivity Analysis

Finally, we see how dependent our results are on the width of
the instruction fetch. Figure 7(d) shows the performance sensitivity
when the instruction fetch width varies from 4 to 32. Depicted is the
geometric mean of the results from all applications. The gains are
reduced as the width of the instruction fetch is increased, because
the fetch is entirely removed as a bottleneck. Even at 32 instructions
per cycle and a trace cache with perfect prediction, we still observe
average speedups of 11%. The design point we chose in our design
is 8 instructions per cycle for fetch, issue, and commit. Although
not shown, similar trends exist if the entire machine width is varied
from 4 to 32.

Figure 7(b) shows the performance sensitivity when the num-
ber of load/store ports varies from 2 to 12. When the number of
load/store ports increases, we also increase the number of MSHRs
accordingly to understand the impact of memory bandwidth on the
performance gain. The results show that, more load/store ports, or
more aggressive memory bandwidth, leads to better performance
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Figure 7: Energy and Sensitivity Results

increases due to shared fetch and execution. The observation is that
if the system is less constrained by the memory hierarchy perfor-
mance, the performance advantage of instruction merging is more
promising. This makes sense because, if we reduce contention in
parts of the processor other than the fetch unit, then the fetch unit
becomes more of a bottleneck. We already showed that as the fetch
unit becomes more of a bottleneck, our system is more beneficial.

7. CONCLUSION
In this work, we present Minimal Multi-Threading (MMT), hard-

ware designed to take advantage of the similarities in multiple threads
of SPMD programs. Specifically, our design provides three opti-
mizations. First, it removes redundant fetches by allowing multiple
threads to fetch the same instruction at the same time. Second, it
removes redundant execution by checking for identical inputs on
fetch-identical instructions, allowing instructions with identical in-
puts to be executed together in the machine. Finally, it manipulates
fetch priority to increase the time that two threads fetch and execute
identical instructions. We show that with these low-overhead mod-
ifications to an SMT architecture, execution time and energy con-
sumption decrease significantly. Compared to a traditional SMT



core with a trace cache running the same number of threads as an
MMT core, our design achieves average speedups of 1.15 and 1.25
for two and four threads, respectively.

Despite these successes, we still have room for improvement.
With a minority of our applications, although they showed improve-
ment, the MMT was unable to synchronize the threads enough to
identify many of the identical instructions. In addition, different
workloads, such as software diversity in the security domain, have
similar execution but different executables, requiring a new, but
similar, approach. Finally, we have not evaluated another appli-
cation class that would benefit greatly from our MMT hardware:
message-passing applications.
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