Floors and Flexibility: Designing a Programming
Environment for 4th-6th Grade Classrooms
Charlotte Hillt, Hilary A. Dwyerf, Tim Martinezt, Danielle Harlowt, Diana Franklint

{charlottehill, franklin}@cs.ucsb.edu, {hdwyer, dharlow}@ education.ucsb.edu, tmartinez@ umail.ucsb.edu

TComputer Science Department
UC Santa Barbara

ABSTRACT

The recent renaissance in early computer science education has
provided K-12 teachers with multiple options for introducing
children to computer science. However, tools for teaching
programming for children with wide-scale adoption have been
targeted mostly at pre-readers or middle school and higher grade-
levels. This leaves a gap for 4 _ gh grade students, who differ
developmentally from older and younger students.

In this paper, we investigate block-based programming languages
targeted at elementary and middle school students and
demonstrate a gap in existing programming languages appropriate
for 4" — 6™ grade classrooms. We analyze the benefits of Scratch,
ScratchJr, and Blockly for students and curriculum developers.
We describe the design principles we created based on our
experiences using block-based programming in 4™ — 6™ grade
classrooms, and introduce LaPlaya, a language and development
environment designed specifically for children in the gap between
grades K-3 and middle school students.

Categories and Subject Descriptors

D.1.7 [Programming Techniques]: Visual Programming;
K.3.2 [Computer and Information Science Education]:
Computer Science Education.

Keywords
Computer science education, elementary school, middle school,
graphical programming. novice programming environments

1. INTRODUCTION

In an effort to engage young children in computer science,
computer scientists have developed a variety of educational
programming platforms, activities [23, 9, 17, 4] and outreach
programs [3, 2, 12]. In the past few years, momentum has
increased for elementary schools to teach computational thinking
in their classrooms. Eighth graders’ reported interest in pursuing a
career in science and engineering areas is a strong predictor of
whether or not they will later pursue a science career [28].
Further, after-school opportunities or summer camps where
middle and elementary school students are likely to be introduced
to computer science are less available to students from
impoverished areas [6]. Adding computational thinking to earlier

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4-7, 2015, Kansas City, MO, USA.

Copyright © 2015 ACM 978-1-4503-2966-8/15/03...$15.00.
http://dx.doi.org/10.1145/2676723.2677275

546

1Gevirtz Graduate School of Education
UC Santa Barbara

grade levels and integrating the subject into K-8 schooling will
provide students from more backgrounds exposure to computer
science at an age when they prepare to make decisions about their
future. Moreover, these efforts may increase diversity in computer
science fields, combat the dire shortage of computing majors, and
create a higher level of the computing literacy that will be
necessary for the innovators of the next century.

In order to gain deeper insight into how 4™ — 6™ grade students
(children ages 9-12) learn computer science, we modified an
existing middle-school curriculum from the Animal Tlatoque
summer camp to be appropriate for 4™ grade [12]. We provided
programming activities in a variant of Scratch [23] with starting
files that the students manipulated and modified. During the 2013-
14 academic year, we revised and refined these activities based on
feedback from the classrooms about what students struggled with
and excelled in.

Although elementary school students are capable of programming
[21, 28], while developing curricula for 4t _gh grade, we found a
gap in the programming languages available for children. Many
popular block-based languages are targeted either toward pre-
readers or children with math and language skills above 4™ — 6™
grade. Moreover, these languages are embedded in programming
environments with interface features not developmentally
appropriate for this age group; they contain features that are too
complex, making the floor for entry too high for these students, or
they do not provide students appropriate control over their
projects. Additionally, existing block-based languages either
require curriculum developers to create projects that fit the
constraints of the environment, or to have the programming
background needed to customize the environment for the project.
New tools that are sufficiently flexible and have an entry floor
level appropriate level for upper elementary school students are
needed to make computer science successful in a regular
classroom.

Here we present our design goals for a block-based language
targeted towards 4™ — 6™ grade. Our design goals are influenced
by the challenges that students faced during the pilot of our
curriculum when using a programming environment not
developmentally appropriate for their age. We look at Scratch,
ScratchJr, and Blockly, and assess their appropriateness for
curriculum development at this age group [23, 13, 10]. Finally, we
introduce LaPlaya, the language we designed to fill the gap in
development environments for upper elementary school
classrooms.

This paper is organized as follows. We provide background on the
elementary school classroom setting and a brief summary of
related work in Section 2. In Section 3, we look at existing block-
based languages (Scratch, ScratchJr, and Blockly). In Section 4

we detail the design principles we used to create a new
programming environment, LaPlaya. Finally, Section 5 contains
our plans for future work.

2. BACKGROUND & RELATED WORK

Students’ academic knowledge and skills increase rapidly as they
progress throughout elementary school and into middle school. A
development environment for this age group must be flexible and
expand as they learn, or the students will outgrow it. Students in
upper elementary school differ in important ways from their
younger counterparts. In second and third grade, “the mechanical
demands of learning to read are so taxing at this point that
children have few resources left over to process the content. In
fourth through eighth grade, children become increasingly able to
obtain new information from print” (p. 333) [26]. In fact, upper
elementary school is an important transitional time for children’s
development. These students are developing linguistic,
kinesthetic, and cognitive skills necessary to successfully interact
with computers. Further, these students are learning key concepts
from other fields, like math and science, needed to successfully
program. As examples, key math concepts such as division,
negative numbers, and percentages are taught during upper
elementary school.

Fourth graders today are commonly described as “digital natives”
because they have never known a world without computers or the
Internet [5]. Although access to technology varies, particularly
depending on students’ socioeconomic levels, today’s 4™ graders
have some familiarity with computers and ideas about how to
interact with them. Students enter the computer lab already
familiar with computers, but as users rather than developers.
Kolikant characterizes computer science classes as encounters
between intertwined cultures. Students are members of the culture
of school, and are already familiar with computers as part of the
“user” culture [5], but they are newcomers to the computing
culture.

Previous studies have looked at the development environment’s
influence on students’ roles as users or developers. In the creation
of Scratchlr, a visual language based on Scratch, the developers
removed “instant gratification” buttons, or buttons that produce an
immediate effect on the state of the program, so children would
spend less time playing with the software’s features and more
time creating [18]. However, Kazakoff found that kindergarteners
using Scratchlr in their classroom still spent a significant time
using the environment’s paint editor instead of programming [18].
Kerr provided pre-built scenes to students for creating digital
stories and found that they used more constructs and methods, and
spent twice as long modifying their programs as students who
created all the scenes themselves [19]. The development
environment itself plays a crucial role in guiding students to be
developers rather than users.

Researchers in human computer interaction have identified
multiple points to consider when designing software for children,
as children interact with computers differently than adults.
Bruckman, Bandlow, Dimond, and Forte noted that software
designers must attend to the physical and cognitive differences of
children such as their limited skills with typing, reading, and
manipulating keyboards and mice, as well as their more limited
linguistic experiences which prevent them from understanding
metaphors common among adults [7]. For example, program
designers must attend to children’s fine motor control. Compared
to adults, children struggle holding down the mouse for extended
periods or even double-clicking; therefore, young children tend to

547

perform point-and-click movements more quickly and accurately
than drag-and-drop commands [15, 27]. As another example,
young children can become easily distracted by complex
interfaces, and Halgren et al chose to redesign interface by hiding
advanced tools, so children (ages 5-14) would not stumble upon
them and get lost in their functionality [16]. These findings
influenced our development of LaPlaya, which we describe in
Section 5.

Studying children’s learning of computer science is additionally
complex because the programming environment directly impacts
available opportunities for learning. Several programming
languages developed for children and novice programmers such as
Scratch, Alice, and AgentSheets use graphical programming
environments and limit the commands available for students to
use [23, 8, 25]. Compared to traditional programming
environments, graphical programming lowers the cognitive
barriers to programming by removing obstacles such as
remembering specific vocabulary and formatting rules of
computer languages. Instead of writing out programming
commands, users snap commands together to form scripts and see
the output of their programs immediately, thereby circumventing
most required syntax or specific vocabulary. As a result, these
languages offer benefits for novice programmers of all ages.
Malan and Leitner advocated using Scratch even at the
undergraduate level, as a gateway language to languages like Java
[22]. Further, block based languages like Scratch can improve
students’ attitudes and increase confidence in programming [20].

3. POPULAR BLOCK-BASED
ENVIRONMENTS

Block based environments have gained popularity with novice
programmers because they reduce the need for typing and get rid
of many syntax errors. Unlike textual programming languages,
block based languages are closely tied to the development
environment in which they are embedded. Many development
environments are inspired by Scratch, a block-based language
designed for ages 8-16 [23]. Scratch provides blocks of
programming commands that users attach together like puzzle
pieces to create scripts that control the actions of the sprites, 2D
characters on the stage. In this section, we present our findings
from using Scratch in 4™ — 6™ grade classrooms and then look at
ScratchJr and Blockly, two other block-based environments, and
their appropriateness for this age group [13, 10]. Example scripts
from Scratch, ScratchJr, Blockly, and LaPlaya are shown in
Figure 1.

3.1 Methods

Our results on Scratch are informed by the pilot of a 4" grade
computational thinking curriculum. This curriculum consists of
three types of activities: short, pre-populated projects that students
can finish within a lab period; off computer activities in the
classroom that tie computational thinking concepts back to every
day life; and an open-ended design-thinking digital story project.
This curriculum was designed specifically for Scratch [12] and
introduced multiple concepts necessary for digital storytelling:
sequential execution, event-based programming, initialization,
message passing, costume changes, and scene changes. The
initial version used the original Scratch language in a slightly
modified environment; blocks that had not been introduced were
hidden in order to support the short, lab-length conceptual
learning tasks.

We piloted the curriculum in fifteen 4™ — 6™ grade classrooms at
five schools across California. We refer to these schools as A, B,

C, D and E, with A being the first school trial and E being the last.
In schools B and E, we collected only student projects. In schools
A, C, and D, we observed instruction and interviewed students.
The schools had varying numbers of classrooms, grades
participating, start dates, and order of projects.

3.2 Findings

We originally intended our curriculum to use Scratch, but when
we piloted it in 4™ grade classrooms, we found that students
struggled with some math concepts and parts of the interface. For
this analysis, we focus on schools A and B, the first to use our
pilot materials. For the schools with later start dates (C-E), we
used a variant of Scratch and changed the interface to address
difficulties students had at schools A and B.

3.2.1 The Interface: Distractions and Difficulties

In our pilot classes, we found aspects of the development
environment distracted or allowed students to delete parts of the
pre-populated projects without clear ways of recovering lost
elements. Some students deleted the scripts or sprites that the file
started with, making it difficult or even impossible in some cases
to add these back later. In schools A and B (142 students, 516
projects), we found that students deleted provided sprites in at
least 4.5% of projects, and deleted provided scripts in at least
9.6% of projects. These numbers might be lower than the actual
number of projects where sprites or scripts were deleted. We
developed these statistics from final versions of assignments that
students submitted, but when students realized they had deleted an
element of the project they needed, they frequently restarted with
the original version of the provided file.

Additionally, students of this age group are likely to be distracted
by “instant gratification” buttons [18]. For example, a “surprise
sprite” button adds a new random sprite to the stage every time
you click on it. These buttons can be distracting for younger age
groups. As an example, one student in our study added 34 sprites
to one project. Further, in schools A and B, students added
unnecessary sprites in 10.1% of projects. Although it is important
to allow students to explore and find different ways of solving the
problem, “instant gratification” buttons can switch from being
vehicles for exploration to distractions that spread through the
computer lab as students observe their peers’ computers.
Providing the ability to limit such features is important when
designing an interface for this age group.

3.2.2 The Language: Math Content

Scripts can move sprites across the screen and change the way
they look, from their size to their color. However, many of the
blocks needed to change the states of sprites require math
concepts above the 4™ grade level. Although some of these blocks
are appropriate for older groups, Scratch does not provide ways to
hide specific blocks when working with younger age groups. In

Common Core Concept | Grade | Example Scratch Block
Cartesian coordinates 5
Negative numbers 6
Percentages 6
Decimal numbers 4 wait @

Table 1. Math Concepts in Scratch and the Common Core

548

this section, we look at the math concepts used in the Scratch
language and when they are introduced in the Common Core
Math Standards [24].

Initializing position and changing values (size, volume,
coordinates, variables, time) require mathematical concepts that
students have not learned by the start of 4™ grade (e.g, Xy
coordinates, negative numbers, decimals, and percentages),
making the entry floor too high for 4™ grade students, our target
audience. Table 1 shows each concept, the grade in which this
concept appears in the Common Core Math Standards, and an
example block that requires this concept [24].

Cartesian Coordinates: Setting a sprite to an absolute location is
done with a go to (sprite or mouse pointer) block or a go to x: y:
(x and y coordinates) block. The latter requires an understanding
of the Cartesian coordinate system, which is not introduced until
5™ grade. Students can use an alternate approach of placing the
sprite where they want it to go before selecting the go fo block, as
Scratch auto-populates the proper x and y values. The sequence of
moves to memorize would require more repetition than we wanted
for our projects, and we do not encourage procedures based on
memorizing rather than understanding.

Negative numbers: Negative numbers are used in most motion
blocks, and embed in blocks that change the appearance of the
sprite (such as the size or color). Scratch’s Cartesian plane places
the origin, (0,0), in the center of the stage, which means that
anything out of the top-right quadrant requires a negative x or y
value. Negative numbers are also used by change (something) by
X blocks to reduce the size, volume, x or y coordinate, and
variable value. Negative numbers are not in the Common Core
Math Standards until 6th grade, so many students in upper
elementary school will not know how to make the value smaller.

Percentages: Size and volume are set with percentages, which
are not introduced until 6™ grade. Not only must students
understand percentage parts of a whole, they also need to
understand what 100% means for that variable; for example, the
size percentages are of the original picture size, which the
students are unlikely to know.

3.3 Other block-based environments

In this section, we look at ScratchJr and Blockly for their
appropriateness on 4" — 6™ grade classrooms and curriculum.
Scratchlr, recently released for the iPad, is aimed toward ages 5-7
[13]. Blockly is used by Code.org in its curriculum and the Hour
of Code, a programming initiative that has been massively
successful in encouraging students and teachers to try
programming [10].

3.3.1 ScratchJr

ScratchJr fixes many of the math and interface issues present
when using Scratch with younger age groups. Most the “instant
gratification” buttons have been removed to encourage students to
focus on programming. The blocks in ScratchJr require less math
knowledge, and an optional grid overlay on the stage adds extra
support for using x,y coordinates.

Because it is aimed at 5-7 year olds, Scratchlr’s ceiling is not as
high as is desired for 4" — 6™ grades. The programming language
uses symbols instead of words and has a smaller block selection
than Scratch.

point in direction L9

|2
change size by)
b

clicked

| move forward |l glide @D steps @R
move forwa decrease x by

N
Figure 1. Movement scripts in (from left) Scratch, ScratchJr, Blockly and LaPlaya

It does not have variables, lists, or many of the control structures
present in Scratch. Additionally, ScratchJr is more structured than
Scratch; users pick scenes for their sprites to act in. Scratchlr lacks
the complexity needed to appropriately challenge 4™ — 6™ graders.

Like Scratch, ScratchJr works best for open-ended projects, but
teachers can use pre-populated files for assignments. The danger is
that students can see and modify any given sprites and scripts so
they may delete sprites and find they need them later on.

3.3.2 Blockly

Blockly is the block-based language used in the popular Hour of
Code. Unlike Scratch and ScratchlJr, users cannot simply open up
Blockly and begin coding; each project is created in Javascript,
limiting users to specific projects designed by developers. Projects
in Blockly are similar to Scratch and Scratchlr; users create scripts
out of blocks to control characters.

Developers create each project in Javascript, which allows them to
create unique blocks and interface elements for each project. This
added control for developers means that Blockly can be used for
any age group, but curriculum developers need to know Javascript
to create projects. Additionally, students cannot engage in open-
ended, exploratory projects like in Scratch or Scratchlr. Although
Blockly can be used to create scaffolded projects for 4™ — 6™ grade,
it lacks the open-ended options present in Scratch and ScratchJr and
it has a high overhead for project development. It is unlikely that
classroom elementary school teachers will have the background
necessary to develop projects using Blockly.

3.4 Bridging the gap with lower floors and
greater flexibility

When creating our curriculum, we wanted a language that combined
aspects of Scratch, ScratchJr, and Blockly. Scratch gives students
low floors, wide walls, and high ceilings, but in some cases (such as
the math) the floors are not low enough for our target age group.
ScratchJr provides a lower floor and ceiling, but they are too low to
be challenging for upper elementary school students. Although
Blockly provides more content flexibility, it has too high an
overhead for project creation and lacks the open-ended,
“playground” environment option present in Scratch and ScratchJr.
We wanted a combination of Scratch’s “playground” programming
environment and low entry point for curriculum developers,
ScratchJr’s attention to developmental requirements of the target
age group, and Blockly’s flexibility. We used our experiences with
these languages and the feedback from our pilot classrooms to
construct a set of design principals that guided our development of a
new programming environment, LaPlaya.

549

4. LAPLAYA

LaPlaya is a block-based language based on Snap!, a development
environment inspired by Scratch for supporting higher grade levels
[14]. We created a set of design principles for LaPlaya based on
existing block-based environments and our experiences in the pilot
classrooms. A beta version of LaPlaya was used in some of our pilot
classes in the 2013-14 school year, and we plan to use an updated
version in the 2014-15 school year.

Our design principles, shown in Table 2, were informed by several
criteria. First, we wanted to support different kinds of curricula for
4" _ 6™ grade, rather than privilege cither open-ended or scaffolded
projects over each other. Our second criterion was that our interface
could support use in formal learning environments with elementary
teachers with or without a background in computer science.
Practical challenges that teachers face in a traditional classroom
create different constraints and opportunities than informal learning
environments. Our third criterion was that we wanted the designer
interface to support creating student projects and tasks to be
accessible to curriculun developers without extensive programming
backgrounds. The design principles are informed by existing block-
based languages and our own findings during the pilot
implementation of our curriculum and while running computer
science summer camps for 6™ — 8" grade students for three
summers [13].

4.1 Support multiple types of tasks.

Our goal was to create an environment that did not limit curriculum
designers when developing assignments. This led to the first design
principal: support multiple types of tasks. We wanted to support a
range of curricular types, from purely open-ended projects that
students design and create over long periods of time, to scaffolded
curricula with targeted projects of pre-populated sprites and pre-
determined goals completed in as little as 10 minutes. The
programming environment should offer a wide range of blocks and
functionality to support open-ended projects; and developers may
want to constrain available blocks and functions to only those
necessary to complete the task.

The LaPlaya environment allows developers to create prepopulated
projects with options for the scripts and sprites that will be visible to
students. Developers can hide sprites or scripts that work in the
background; for example, a project with a distinct end goal may
include an analysis script that says “Great job!” when the student
completes the project. Scripts can be shown as inert examples that
do not run but show students how to create the script. Developers
can lock scripts or sprites available to students, but that students do
not need to manipulate. For example, in Figure 2, students program
the car sprite to move to the different cities. Curriculum developers
already programmed the other sprites so they are locked. Some

LaPlaya blocks and block categories, such as “Sounds”, are hidden
since they are not needed for this project. Alternatively, developers
may also choose to leave the entire environment visible to students
for open-ended projects.

4.2 Require only grade- and age-appropriate

content.

The computer science content in the environment should not rely on
non-computer science content above grade level. Programming
requires both math and literacy skills as programmers must be able
to read and understand commands. Some commands require
mathematical understandings like addition, which gt graders do
understand, and percentages, which they may not. While we
contend that the interface and programming language should
support the development of new math and literacy skills, we do not
want math and literacy requirements to preclude students from
coding. Nor do we want to require teachers to teach content before
they would do so in their normal curricular plans.

In LaPlaya, the origin, (0,0), is in the lower left-hand corner of the
stage, removing the need for negative numbers in the go to x: y: (x
and y coordinates) block. All change (state) by X blocks were
replaced by increase/decrease (state) by X blocks so students would
not need negative numbers to decrease the value. Finally, LaPlaya
has set size to X blocks with absolute amounts (small, medium,
large) that correspond to absolute sizes on the screen rather than
percentages relative to the original picture size. Removing the need
for the Cartesian coordinate system is much more challenging and is
the subject of ongoing research.

4.3 Include an age-appropriate interface.

The development environment should encourage novice
programmers to write code. Those comfortable in the role of “user”
might be inclined to avoid coding in favor of activities they are
more familiar with, such as manipulating settings or non-
programming aspects of the environment, like an image editor.
Students today enter the computer lab already familiar with
computers as computer users. Using the computer as a developer is
a new experience for these students. Kolikant argues that computer
science education is a cultural encounter where students have
multiple viewpoints; they are newcomers to computer science,
students in a classroom, and also computer users [5]. A
development environment that introduces students to computer
science should encourage students to be developers creating their
own programs for an audience rather than users playing with
unrelated features of the interface (such as a paint editor).

B » € (v 5 % cAGeognpny (M2 [# .~ °

Costumes
glide €3 steps €T
glide €7D steps nomasy

‘when uparow key pressed
ot In drecton €T
turn &) @D degrees glide €D steps qucy

Instructions.

Sprites_Eventa |

Rk % % % % % |

“ Cor SentaBa LosAnge Fresno SenFram Secramer Lake Tah

Figure 2. A KELP-CS project in LaPlaya, as seen in student
mode

550

Table 2. Comparison of Scratch, ScratchJr, Blockly and
LaPlaya for 4th — 6th grade

Design

Principle Scratch | ScratchJr | Blockly | LaPlaya

Support
multiple types
of tasks

v

Require only
grade- and age-
appropriate
content

Include an age-
appropriate
interface

v

Support project
developers

v v v

As mentioned earlier, in our pilot classes, we found that “instant
gratification” buttons distracted students and led to unrecoverable
errors because it was easy to delete sprites and scripts in the pre-
populated projects, but hard to get them back. In LaPlaya,
developers can hide aspects of the interface that might be distracting
for students, such as the “add sprite” button. To encourage students
to experiment with the programming blocks (instead of staying in
the more familiar role of “user” and playing with non-programming
areas), curriculum developers could hide these “non-programming”
elements in early projects.

4.4 Support project developers.

Finally, creating a starting file for a project should not require a
degree in computer science. Although most computer science
teachers at the elementary school level may be more comfortable
using existing projects, we believe in lowering the threshold for
creating content so someone without a strong computer science
background could create new material. In our scenario, any person
with facility in Scratch could make a new project in less than a day.
As teachers become more comfortable with the environment, they
may want to adjust existing material or map projects to their other
classroom activities. As such, we contend that the project creation
environment (developer mode) should be similar to the environment
used by students to finish the projects.

LaPlaya has two modes for viewing and editing a project: a
developer mode for project developers and teachers, and a student
mode for teachers and students. The developer mode allows
developers to manage available content in a project when it is
opened in the student version. Developers create projects using the
same blocks that could be used in student mode, so creating starting
files for assignments does not require more advanced computer
science knowledge.

4.5 Summary

Scratch, Scratchlr, and Blockly were not designed to be consistent
with our stated design principals, so identifying inconsistencies
between the languages and our design principles is not a criticism of
these languages, only an indication that they were not ideal for the
learning and development context that we are working with.

We found the Scratch interface features and math content were too
advanced for 4™ — 6™ grade. ScratchJr remedied many of these
issues but is designed for a younger age group, making it also not
developmentally appropriate for 4" — 6™ grade. Scratch and
Scratch]Jr can be used with open-ended or scaffolded projects, but
their interface designs are problematic when working with pre-
populated projects. Blockly provides developers greater control

over block options when creating projects and can be used to make
grade level-appropriate assignments for 4h _ gt grade. However,
experienced programmers must design these projects. Further,
Blockly does not have an option for a “playground” environment
where students can create their own projects without a starting file.
In developing LaPlaya we built on the strengths of each of these
interfaces to create a programming environment tailored to 4™ — 6™
grade students in a classroom setting.

5. FUTURE WORK

We plan to continue studying students’ experiences learning
computational thinking and how development environments shape
their learning. In particular, we will look at the word choice of
blocks in visual programming languages, and whether younger
students benefit from a language with more blocks that produce
visual effects.

In addition, we plan to extend our work to looking at teachers’
learning. In our pilot, we found that many teachers did not have
prior experience teaching computational thinking. We plan to
research how teachers learn computational thinking, and map the
terrain of teacher education in science and technology.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation
BPC Award CNS-0940491 and CE21 Award CNS-1240985.

7. REFERENCES

[1] Achieve, I. The Next Generation Science Standards. The
National Academies Press, 2013.

[2] Alliance, S. The stars alliance: A southeastern partnership for
diverse participation in computing. NSF STARS Alliance

Proposal. http://www.itstars.org/.

[3] Arroyo, L. et al. Effects of web-based tutoring software on

students’ math achievement. In AERA, 2004.

Bell, T., Witten, 1. H. & Fellows, M. Computer Science
Unplugged. 2006.

Ben-David Kolikant, Y. (Some) Grand Challenges of
Computer Science Education in the Digital Age: A Socio-
Cultural Perspective. In WiPSCE, 2012.

Bradley, R. H., & Corwyn, R. F. (2002, February).
Socioeconomic status and child development. Annual Review
of Psychology, 53, 371-399.

Bruckman, A., Bandlow, A., & Forte, A. 2012. HCI for kids.
In J. A. Jacko (Ed.) The human-computer interaction
handbook: fundamentals, evolving technologies, and emerging
applications (841 — 862). Boca Raton, FL: Taylor & Francis
Group, LLC.

Cooper, S., Dann, W., and Pausch, R. 2000. Alice: a 3-D tool
for introductory programming concepts. J. Comput. Sci. Coll.
15, 5 (April 2000), 107-116.

Dann, W., Cooper, S., & Pausch, R. Making the connection:
programming with animated small world. ITiCSE, 2000.
[10] Empson, R. 2 Weeks and 600+ Lines of Code Later, 20M

Students Have Learned An “Hour Of Code”, TechCrunch.
http://techcrunch.com/2013/12/26/code-org-2-weeks-and-

(4]

(9]

551

600m-lines-of-code-later-20m-students-have-learned-an-hour-
of-code/

[11] Flannery, L. P., et al. Designing ScratchJr: Support for Early
Childhood Learning Through Computer Programming. In IDC
’13.

[12] Franklin, D., Conrad, P., Aldana, G., et. al. Animal Tlatoque:
Attracting Middle-School Students to Computing through
Culturally-Relevant Themes. In SIGCSE “11.

[13] Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M.,
Dreschler, G., Aldana, G., et al. Assessment of Computer
Science Learning in a Scratch-Based Outreach Program. In
SIGCSE ’13.

[14] Garcia, D., Segars, L. & Paley, J. 2012. Snap! (build your own
blocks): tutorial presentation. J. Comput. Sci. Coll. 27, 4 (April
2012), 120-121.

[15] Gelderblom, H., & Kotze, P. 2009. Ten design lessons from
literature on child development and children’s use of
technology. In IDC 2009.

[16] Halgren, S., et al. 1995. Amazing Animation™: Movie making
for kids design briefing. In SIGCHI “95.

[17] Hood, C. S. & Hood, D. J. Teaching programming and
language concepts using legos. In ITiCSE, June 2005.

[18] Kazakoff, E. R. Cats in Space, Pigs that Race: Does self-
regulation play a role when kindergartners learn to code?
(Unpublished doctoral dissertation). Tufts University,
Massachusetts, 2014.

[19] Kerr, J., Kelleher, C., Ellis, R. & Chou, M. 2013. Setting the
scene: scaffolding stories to benefit middle school students
learning to program. In /EEE VL/HCC, 95-98.

[20] Lewis, C. M. 2010. How programming environment shapes
perception, learning and goals: Logo vs. scratch. In SIGCSE
’10.

[21] Lewis, C. M. 2011. Is pair programming more effective than
other forms of collaboration for young students?, Computer
Science Education, 22, June 2011,
DOI=10.1080/08993408.2011.579805

[22] Malan, D. J. & Leitner, H. Scratch for Budding Computer
Scientists. In SIGCSE’07.

[23] Maloney, J., et al. The scratch programming language and
environment. Trans. Comput. Educ., 10(4): 1-15, Nov. 2010.

[24] National Governors Association Center for Best Practices,
Council of Chief State School Officers. Common Core State
Standards (Math), National Governors Association Center for
Best Practices, Council of Chief State School Officers,
Washington D.C., 2010.

[25] Repenning, A. 1993. Agentsheets: a tool for building domain-
oriented visual programming environments. In CHI '93.

[26] Santrock, J. W. Child Development. McGraw Hill, Boston,
2004.

[27] Strommen, E. 1994. Children’s use of mouse-based interfaces
to control virtual travel. In CHI *94.

[28] Tai, R., Liu, C., Maltese, A., & Fan, X. 2006. Planning early
for careers in science, Science, 312, 5777, 1143-11.44.

