
 Fourth Grade Students Reading Block-Based Programs:
Predictions, Visual Cues, and Affordances
Hilary Dwyer1, Charlotte Hill2, Alexandria Hansen1, Ashley Iveland1,

Diana Franklin2, & Danielle Harlow1

1 Gevirtz Graduate School of Education
University of California

Santa Barbara, CA 93106
{hdwyer, akillian, aockey, dharlow}@education.ucsb.edu

2 Department of Computer Science
University of California

Santa Barbara, CA 93106
{charlottehill, franklin}@cs.ucsb.edu

ABSTRACT
Visual block-based programming environments allow elementary
school students to create their own programs in ways that are
more accessible than in textual programming environments. These
environments help students write code by removing syntax errors
and reducing typing. Students create code by dragging, dropping,
and snapping constructs together (e.g. blocks) that are organized
by lists, colors, shape, images, etc. However, programming in
visual block-based environments is not always simple; in fact, it
can become complex quickly. In addition to elements that create
code, the visual aspects of these environments provide readers
information about what happens, when, and how. Here, we focus
on how students used visual cues when reading programs in our
block-based programming environment, LaPlaya, a variant of
Scratch. Specifically we identified the visual cues students noticed
and acted upon. These included not only those that were intended
by designers (perceptible affordances), but also those that were
not intended by designers (false affordances). Through a detailed
content analysis of 13 focus groups with fourth graders we created
an initial taxonomy of visual cues in our programming
environment and explored how students used these cues to make
predictions about provided code, and the types of affordances
such cues offered students.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming; K.3.2
[Computer and Information Science Education]: Computer
Science Education.

General Terms
Design, Human Factors, Languages.

Keywords
Block based languages; graphical programming; computer science
education; elementary school; novice programming environments

1. INTRODUCTION
Block-based programming environments have become
increasingly popular over the past decade particularly with
children and novice programmers. These environments offer

colorful, reactive interfaces that reduce the amount of typing
needed to write a program, making them well suited for tablet
computers and other touch screen devices. Many block-based
environments such as Scratch [1] and LaPlaya [2] are centered on
characters, or “sprites”. In these environments, programs are
composed of multiple scripts (segments of code) that are
organized by sprite. Not all scripts are visible to the programmer.
When programming, the programmer will see four primary areas:
a palette of commands (e.g. block lists); the scripting area (e.g.
where the programmer connects blocks together); a menu of
sprites (e.g. characters available in the program); and a stage (e.g.
display visual output). The command palette includes categories
of commands organized and displayed into lists by function such
as motion or looks. The number of commands available is usually
smaller than in textual languages. Next to this area is the scripting
area. Scripts are organized by sprite and only those of the selected
sprite are displayed.

Many block-based environments are event-driven and implement
parallel programming. This means that scripts are programmed to
begin when something else happens—a user clicks on a key, or
another sprite does something. Often events trigger multiple
actions across multiple sprites simultaneously. This means that
programmers must keep track of the ways that scripts interact as
they work, and how different events trigger action.

Reading and remixing others’ programs has increasingly become
part of block-based programming environments. Online
communities encourage users to view and experiment with others’
codes. Scratch [1], Hopscotch [3] and other block-based
environments are more than just editors: they also serve as
platforms for programmers to easily share their projects online.
Scratch’s online community encourages “remixing” projects,
where users modify another’s project. Additionally, programmers
may use these online environments to follow coding tutorials,
such as “The Hour of Code” on Code.org [4], and modify or
expand code snippets provided in the lessons. In the curriculum
and interface we designed, students were given sample scripts or
partially completed programs to revise or complete [5]. Whether
remixing others’ code or completing partial code, being able to
read block-based programs is as important as being able to create
new code.

Reading programs in block-based environments differs
considerably both from textual programming environments (e.g.,
C++ or Python) and other types of reading that children
encounter. Block-based programming environments include visual
information that may contribute to or, in some cases, hinder
comprehension. Children also need to attend to complex and
hidden structures that control the flow of the story or game

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER ‘15, August 9–13 2015, Omaha, NE, USA
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

programmed. As a result, we wanted to explore how students
understood and read existing code using the visual cues provided
by our block-based programming environment (including the
scripts and a still picture of the output).

In this paper, we investigated how fourth graders read and made
predictions about block-based programs written by other people.
Fourth-graders from two schools participating in our
computational thinking curriculum—Kids Engaged in Learning
Programming and Computer Science (KELP-CS)—made
predictions about projects in our programming environment,
LaPlaya [2]. We interviewed 13 pairs of students from two local
schools about projects conceptually at or slightly above the level
they had reached in the curriculum. We asked them to use the
information provided to predict and figure out what would happen
when a provided program ran.

Here, we present a preliminary taxonomy of the features in
LaPlaya that students used to predict what would occur on the
stage (the output of a program), functions of individual blocks,
functions of individual scripts, and how scripts and sprites were
coordinated (understanding of the overall program). Students used
the visual features in both expected and unexpected ways. We
further analyzed students’ explanations through Gaver’s construct
of technology affordances [6] to identify visual cues that students
recognized and acted on, those they failed to notice, and those that
they acted on in ways unintended by the developers.

Our analysis demonstrates that, while visual block-based
environments reduce syntax errors and typing requirements, they
are definitely not simple. As Petre [7] wrote about visual
programming more generally:

Both graphics and text have their uses – and their
limitations. Pictorial and graphic media can carry
considerable information in what may be a convenient
and attractive form, but incorporating graphics into
programming notations requires us to understand the
precise contribution that graphical representations
might make to the job at hand (p. 33).

In block-based programming environments, almost all
information and constructs are graphical representations and as
yet little research has demonstrated how students use these visuals
to aid in program comprehension. In LaPlaya, students utilize a
number of intended and unintended visual cues to interpret
provided code. We found that, in addition to the scripts and
blocks, students used the layout of the stage and characteristics of
the sprites to predict program results. Further, students used visual
attributes of the programming blocks such as color, shape, and
arguments (e.g., words embedded in blocks) to predict how the
block or script would function.

2. RELATED WORK
Learning how to program is much like learning how to read: both
consist of multiple aspects of literacy such as knowing basic
vocabulary, identifying key words, comprehending how series of
words construct meaning, and ultimately composing text [8, 9].
Learning to program encompasses the same attributes of learning
to read with the added context and structure of the interface and
programming language.

Block-based programming environments offer innovative ways to
analyze how young students and novices read programs and
understand computational concepts (e.g., sequences, events, and
operators), practices (e.g., testing, debugging, or reusing), and

perspectives (e.g., expressing, connecting, and questioning) [10].
Some work has already demonstrated that students understand
programming concepts differently depending on the visual-nature
of a particular block-based programming environment. Lewis [11]
found that 6th grade students (ages 10-12 years old) appeared to
better understand loop construct when using Logo, but the
construct of conditionals better in Scratch.

The spatial organization of block-based programming
environments makes it easier for programmers to view the output
while looking at the scripts. Gross and Kelleher looked at how
university students with little to no programming experience
understood and reused code in Storytelling Alice [12]. Although
participants were not able to fully read and understand the scripts,
they were able to match the output to the scripts to find the
desired portions of the program. Ferriera et al. [13] found that
ninth graders in Brazil using AgentSheets attributed agency to
objects (such as an image of a shark) inside of the program, and
interpreted the program differently when looking at a program
report versus running the program. The program report allowed
users to see the whole set of program elements, not just parts
associated with a single object/character. Without the visible
program report, participants did not understand or notice all the
underlying logic and agent in the program. Rader, Brand and
Lewis [14] looked at students’ understanding of programs in
KidSim and found misconceptions stemming from students’
views of the objects: children expected objects to behave as they
do in the real world and expected the computer to understand the
way objects looked (e.g., a picture of a fish) the same way that the
children understood the object. Similarly, Pea [15] found that
students expected computers to understand programs like people
did: remembering code previously executed while running later
portions of the program, looking at multiple parts of the program
simultaneously, and having implicit knowledge of the program’s
overall goal.

Though block-based programming environments limit syntax
errors and typing requirements, they are complex learning
environment and assessing student learning can be challenging
[10]. Schulte [9] proposed a Block Model to aid teachers and
researchers in identifying different learning paths students may
take when comprehending programs “bottom up”—first reading
words or text, then making inferences about the relations between
blocks, and lastly understanding the overall program structure.
This model organized elements of a program by their structure
and function. Atoms were language elements and operations of
statements. Blocks were regions of interest that syntactically built
a unit. Relations referred to connections between blocks. Lastly
macrostructure was the overall structure, goal, and purpose of the
program. Schultz tested this model with a small sample of
potential teachers at one university.

Our work builds on the Schulte’s work [9] by examining program
and reading comprehension of young students from an ecological
perspective. Ecological perspectives [16] assume that objects have
actionable qualities that can be acted upon by individuals with the
appropriate cognitive and physical resources. For example, a chair
has the affordance of being sat in, but only for individuals of the
appropriate size. An adult may not be able to sit in a child’s high
chair, and thus a high chair does not have this affordance for an
adult. Affordances are an interaction between the user and the
object. In some cases, the actionable qualities are not clear.
Norman [17] introduced the term signifier to indicate visual cues
to the individual about the affordances of an object. “Push” signs
on doors are examples of signifiers, indicating how to access the

affordance of opening the door. Gaver [6] applied this work to
technology and proposed the idea of perceptible, hidden, and false
affordances.

Affordances are, in the context of block-based programming,
objects that have possibilities for action. Visual cues provide
information about the possible actions. For example, the shape of
a block is a visual cue that may indicate which blocks it can
connect to or how commands can be linked (affordances). If a
child noticed this feature and acted on it, it would be considered a
perceptible affordance (from the child’s perspective) and an
appropriate visual cue. If a child did not notice the feature or did
not think that the visual feature had meaning attached to it, it
would be considered a hidden affordance. In contrast, students
sometimes attach meaning to features that were not intended to
impart value such as acting upon visual cues that were not
designed to impart information. For example a child might assume
(falsely) that the sprite on the far left of the stage would always be
the first to act. In reality, the position of sprites is not related to
the order in which they appear or act in the program. If this were
the case, then position of sprites would constitute a false
affordance meaning that students found information that was not
actually present.

3. RESEARCH DESIGN
We asked the question, “What perceptible, hidden, and false
affordances of a block-based programming environment do
students use to read block-based programs?” To answer this
question, we conducted focus group interviews in which we
presented LaPlaya programs and asked students to predict the
outcome.

We interviewed 13 pairs of fourth grade students at two schools,
Aguacate and Cabrillo Elementary (pseudonyms), participating in
our computational thinking curriculum. Students were interviewed
in same-sex pairs: eight pairs of girls and five pairs of boys. Each
pair shared a computer and answered questions about and
modified three programs written in LaPlaya, the block-based
environment used in their computational thinking curriculum.

3.1 Research Context
The fourth graders at both schools, Aguacate and Cabrillo, were
participating in our computer science curriculum related to
computational thinking and programming. The curriculum
includes on-computer and off-computer components: the on-
computer exercises are activities in LaPlaya [2] and the off-
computer activities relate computational thinking and
programming concepts back to every-day life examples.

LaPlaya is based on Snap! [18] and Scratch [1]: students use
multiple blocks of code to create scripts that control sprites,
images of animals or people that students draw or import. In our
curriculum, students were given partially completed projects in
LaPlaya that already contained some sprites and scripts. LaPlaya
allows project designers to hide elements of the programming
environment—such as sprites, scripts, or block options—to focus
students’ attention on specific computer science concepts and
reduce the cognitive load required to program. As students moved
through the curriculum, more blocks and LaPlaya features were
made available to them.

3.2 Participants
We interviewed 26 students in pairs at Aguacate Elementary (n =
16 students) and Cabrillo Elementary (n = 10) over several weeks.
We paired students by gender, and together they worked on three

programming projects in LaPlaya with an interviewer, a graduate
or undergraduate student in computer science or education. The
participants and interviewers were familiar with the programming
interface. At the time of the interviews, the students had
completed 3-4 hours of curricular time with the interface.

3.3 Data Collection
We used two sets of interview protocols each containing three
projects: the same introductory project followed by two different
projects. For this study, we only analyzed students’ actions and
discourse in the introductory activity, which was identical for all
students. In this activity, the interviewer asked students to predict
what the program would do if they ran it. Students explored the
program while the interviewer asked follow-up probes to further
clarify and expand upon what students were saying.

Figure 1 shows what students saw when they opened the
introductory project. On the stage were three sprites: a bat,
unicorn, and dragon. Because the bat sprite was selected at the
onset, only the scripts for the bat sprite were initially visible. To
see the scripts for the unicorn and dragon, the students needed to
click on each sprite individually in the sprite corral (lower right of
screen). The interviewer would then ask students to describe what
they expected the program to do when it ran. Students were
encouraged to interact with the program as long as they did
nothing to prompt action on the stage (e.g., click sprites or the
green flag).

This activity took approximately 10 minutes to complete, though
the complete interview lasted 30 minutes. We captured students
interacting with the computer through a combination of video,
table microphones and screen recordings of the interface. We
combined the video and screen recordings for each pair of
students, transcribed the interviews verbatim, and coded the
transcripts to find common threads throughout the interviews.

3.4 Data Analysis
We analyzed the focus groups in three iterations examining
smaller parts of the transcripts at each juncture. In the first and
second rounds (what students were predicting and student tools
for making predictions), we analyzed whole transcripts. In the
third round (affordances), we analyzed only the introductory
activity, and isolated individual instances of visual cues. This
impacted our results directly as the activity selected constrained
what visual cues could have been discussed and the types of
predictions that students made.

Figure 1. Layout of the first project

3.4.1 What students were predicting
In our first round of analysis, we focused on the ways students
responded to the interviewer’s probes about what would happen
when the program ran. We open-coded the transcripts and created
a domain analysis described by Spradley [19]. Using Spradley’s
specific analytic steps, we identified cover terms and terms related
in specific semantic ways to the cover terms. While Spradley’s
approach to analysis was created to interpret ethnographic studies,
we found it appropriate for understanding the programming
interface. Like ethnographers, we were trying to describe an emic
perspective. That is, our goal was to understand the programming
environment from the child’s perspective.

In this process, we identified multiple levels of the program that
students made predictions about: individual blocks, single scripts,
collections of scripts, and the program as a whole. Figure 2
demonstrates our first semantic relationship. We collapsed these
terms to align with the functional structure of LaPlaya. This left us
with four codes [20] to describe what student made predictions
about in LaPlaya: individual blocks, single scripts, multiple
scripts, and the output (actions and timing of sprites for program).

Figure 2. Semantic Relationship - Attribution

3.4.2 Student tools for making predictions
In our second analytic cycle, we developed semantic relationships
[16] for each of the codes developed in our first round of analysis.
Each took the form, “X is a tool for predicting Y,” where X was
an aspect of LaPlaya and Y was one of the predictable attributes
listed above. We created a list of terms related to this semantic
relationship for each of the four predictable attributes (blocks,
single scripts, multiple scripts, and output). As we developed
these lists, we realized that many of the tools children used were
not necessarily related to the scripts or blocks; rather, the tools
related to some visual cue embedded in the interface (e.g.,
physical characteristics of a sprite).

With this notion of visual cues in mind, we created a summative
table relating visual cues to what students were predicting. The
visual cues listed in this table were developed both through our
group conversations about what was possible, and what students
actually talked about in the focus groups with this specific
activity. Through multiple rounds of systematic coding [20] and
discussion, we reduced, added, and combined visual cues into
categories until the group reached consensus.

3.4.3 Affordances
In our third analytic cycle, we systematically coded [20]
transcripts again by when students made predictions and what
tools they drew on to make those predictions using the construct
of affordance [6]. For each prediction, we coded for visual cue
and type of affordance (perceptible, false, and hidden).
Perceptible affordances occurred when students identified an
attribute that developers intended to be useful. False affordances
occurred when students interpreted a visual element as useful
when that aspect did not in fact contain useful information.
Hidden affordances occurred when students overlooked an
attribute that developers intended to be useful. Due to

methodological limitations, we were not always able to determine
hidden affordances as students did not see these attributes. If they
did not see a tool, they likely did not discuss it during the focus
groups and it would not be captured in the transcripts.

3.4.4 Final analysis
Taken together, our final coding scheme included the taxonomy
created in the first two rounds of analysis, and the affordances in
round three. Researchers coded transcripts by hand as they
watched video and screen recordings for each pair of students.
They identified each instance when students made predictions
about how a program ran and then identified the visual cue or tool
used, what aspects of LaPlaya students were making predictions
about (block, single script, multiple scripts, and output) and the
type of affordance offered (perceptible, hidden, or false).

Four researchers coded transcripts together until internal
consistency was reached with this coding scheme about student
predications, tools drawn on on to make predictions, and the
intended use of the tool [20]. Then two researchers (one each from
computer science education) coded transcripts independently.
Pairs resolved discrepancies in coding through discussion and at
times with the entire group until consensus was reached. Then,
transcripts were uploaded into the qualitative data analysis
software Dedoose [21] to aid in the development of findings.

4. RESULTS
Our analyses led to the development of two sets of findings. In the
first finding, we describe a taxonomy of visual cues embedded in
our visual block-based programming environment, LaPlaya. We
developed this taxonomy through several iterations of domain
analysis [15], group discussions about theoretically possible visual
cues, and visual cues that students discussed during the focus
groups. We then outline how this taxonomy linked to what
students made predictions about in the focus groups during the
introductory activity (block, single scripts, multiple scripts, and
output).

In our second finding, we connect the visual cues students
discussed with the construct of technology affordances [6]. We
provide examples from the focus group transcripts of students
acting upon affordances when reading provided code in the
activity.

4.1 Taxonomy of Visual Cues in LaPlaya
Using our domain analysis, group discussions, and transcripts we
created a taxonomy of visual cues embedded in LaPlaya (see left-
hand side of Table 1 and Figure 3 as a reference).

We further sorted these tools into categories based on their
function in LaPlaya (blocks, scripts, stage, and interface) and
subcategories as necessary. Visual cues in parentheses signaled
tools that did not impact how a program ran and thus were
categorically false affordances (see following section). For
example, in Scratch, whether a programmer places a script in the
upper right corner of the scripting area or in the bottom left corner
has no bearing on when or how that script is run. Thus
interpreting the layout of scripts as providing information is
always false. Across the top of Table 2, we listed the aspect of
LaPlaya that students could make predictions about (blocks,
single scripts, multiple scripts, and output). An “X” signified that
students cited a visual cue when making a prediction during the
introductory activity. Note that there are two shaded columns with
no X’s (Single Script and Multiple Scripts). This is because our
analysis could not identify these types of predictions but they will
be part of future work

Table 1. How Students Used Visual Cues in LaPlaya to Predict Aspects of a Program

 What Students Were Predicting

Visual Cues in LaPlaya Block
Single
Script

Multiple
Scripts Output

Blocks

Word choice Prior experience with word X X
 Word's everyday meaning X
Block layout Block argument X X
 Color
 Shape
Same block, other script X X

Scripts

Ordering of blocks within scripts X X
(Layout of scripts) X
Other blocks in script
Other scripts X

Stage
(Sprites on the stage)

(Physical characteristics) X X
(Orientation) X
(Stage position) X

(Background)

Interface

Sprite corral X X
(Costume tab) X
(Costume images) X X
(Instruction tab) X

Note: Parentheses distinguish visual cues that were categorically false affordances. “X” signifies that students used a
visual cue when making predictions during the introductory activity. Both “Single Script” and “Multiple Scripts” columns
are shaded because the introductory activity did not provide students with opportunities to predict single or multiple
scripts though each emerged in the other focus group activities.

Figure 3. Overview of LaPlaya Interface

Figure 4. Scripts for

Dragon Sprite
Figure 5. Scripts for

Bat Sprite
Figure 6. Scripts for

Unicorn Sprite
Figure 7. Stage for Introductory Activity

4.1.1 Categories of Visual Cues
Block-level visual cues focused on attributes of blocks such as
color, shape, and argument. Users could infer block function by
the words embedded in a block (e.g. “glide”). Block argument
included information that could be passed through the program
such as when a user selected from a dropdown menu or wrote in
his or her own text (e.g., “say ___ for ___ sec”). Users could
look at how a block functioned elsewhere in a project (same
block, other script).

Script-level visual cues related to multiple blocks connected
together into single or multiple scripts. Users could look at the
order of blocks within script or more generally what other
blocks were included in a script. They could also get
information based on where the scripts were located (layout of
scripts) and the way a script functioned in other instances such
as under another sprite.
Stage-level visual cues related to the screen in the upper right-
hand corner of LaPlaya. Here, users could see sprites
(characters) and different backgrounds depending on a project.
Users could make predictions based on attributes of the sprites
such as physical characteristics (image or icon used for a sprite),
orientation (e.g., whether a sprite faced up or down), and stage
position (where on the stage a sprite started). Users could also
get information from the image displayed in the background.
These visual cues were categorically false affordances; attributes
of sprite images do not functionally impact a program.

Lastly, interface-level visual cues related to the ways users
engaged with the LaPlaya environment not captured in the other
categories. The sprite corral was located in the lower right
corner and displayed all active sprites by small images or icons.
Users clicked on each image to create code for a particular
sprite. Within each sprite, users could manipulate the iteration of
an image (costumes). Costumes used in sequence create
animation on the stage and were listed as icons for each sprite.
Users could gain information both from the costume tab listing
the costumes, and the particular image for a costume. Finally,
LaPlaya included instructions in the lower right-hand side of the
interface. These visual cues were categorically false affordances
as they did not functionally impact how a LaPlaya program ran.

4.1.2 Linking Visual Cues to Student Predictions
The introductory project we selected to analyze constrained
what students could make predictions about and what visual
cues they discussed. The introductory activity included six

scripts total (two for each sprite). One script initialized each
sprite and the second script created output on the stage (e.g.
action for each sprite). Thus, we could not distinguish when
students discussed a single script or output, and we did not
provide opportunities for students to make predictions about
multiple scripts in the first activity. As a result, these two
columns in Table 2, single script and multiple scripts, were
blank but still theoretically possible were we to analyze other
focus group activities.
In most cases, students used the cues we identified as potential
sources of information. For example, when predicting the
function of blocks, students discussed the embedded text and
arguments in blocks, or how the block was used elsewhere in a
program. However, we were also surprised by what visual cues
students drew upon to make predictions. When making
predictions about blocks, students talked about physical
attributes of a sprite, the images of sprites in the sprite corral,
and the different costume images provided for a sprite. Though
students attributed meaning and acted upon these visual cues,
none directly connected to block functionality in LaPlaya.
We found similar patterns when students made predictions about
the output of the project – what would happen when the program
ran. Students discussed the words and arguments embedded in
blocks, and how blocks or scripts were used elsewhere. As we
expected, they also read blocks sequentially within a script.
However, they attributed meaning to visual cues in unexpected
ways. They predicted that some scripts would run first or more
quickly depending on where they were located in relation to
each other (upper right or left-hand area of scripting area). As
well, they used features of particular sprite images to predict the
output: physical characteristics, orientation, and position on the
stage. They also discussed multiple interface features such as the
sprite corral, costume tab, costume images, and instruction tab.
In the following section we provide more detailed examples of
these different types of visual cues.

4.2 Affordances and Visual Cues
In this section, we provide examples of how students used visual
cues to make predictions during the focus groups. We organized
these examples by the three types of affordances. Perceptible
affordances were visual cues that students recognized and acted
on. False affordances were those that students acted on in ways
unintended by the developers. Hidden affordances were those
they failed to notice. For each type,we provide multiple
vignettes demonstrating how students discussed a visual cue and

used it to read provided code. All student names are
pseudonyms.
4.2.1 Perceptible Affordances
Scripts in LaPlaya are triggered by events. The most common
way to run scripts is to click the green flag button, but scripts
can also be programmed to run when a user clicks a sprite or
presses a key. In the following example, the interviewer asked
Kaylee and Ivy to predict what would happen without running
the program (clicking the green flag). The students read the
embedded argument in visible blocks to predict the output (see
Figure 4). This was a perceptible affordance as the students read
the blocks and scripts in ways that developers intended.

Interviewer: What do you think will happen when you click
the green flag?

Kaylee: Ready. Go. [Program will run].
Ivy: It [the program] will go [run].
Interviewer: It will go [run] …does anything else make the

program run?
Kaylee: Maybe clicking on the dragon because it says…oh,

no! Space key.
Interviewer: How did you figure out the space key?
Kaylee: Because it [the block] says “When Space Key

Pressed.”

Kaylee quickly recognized by reading the provided scripts that
the “When Space Key Pressed” block controlled how to run that
script. This was an example of students using block arguments
to make predictions because “space key” was a dropdown option
that also included other keys on the keyboard.

In the next example, Richard and Bryan predicted the output of
the program by reading the blocks sequentially for all three
sprites. Richard also recognized that he needed to click through
the different sprites to see the visible scripts (e.g., sprite corral).
Both students used block arguments (e.g. number of steps and
direction) and words embedded in blocks (e.g. costume “fire”)
to make predictions.

Interviewer: … So before you click on anything, without
running the code, what do you think the sprites will do?

Richard: … with just reading them?
Interviewer: Yep, just reading the code.
Richard: Well first of all … can we go through each one

[sprite in the sprite corral]?
Interviewer: Yep! Go through each one [sprite].
Richard: … when you click the [get] ready [button], they

[the sprites] all go back to where they are …When you
click the [green] flag, the bat will glide, to right here
[points to stage] –

Bryan: [overlap] 200 steps.
Richard: Yeah and [move] down, and then [move] over

right here. And then the unicorn will say hello and get
placed back here like that and say hello. And then the
dragon, when you click it, it’ll go back to where it is and
then it’ll switch to fire I’m guessing, and then it’ll wait
point five, like half a second and then switch back to [].

Richard and Bryan used multiple, perceptible affordances to
make predictions about how the program ran. These visual cues
(block word choice, block argument, ordering of blocks within
scripts, and sprite corral) were intended to be useful when
reading LaPlaya programs, and both students acted upon the
affordances in expected ways.

4.2.2 False Affordances
Students also acted on visual cues in ways unintended by the
developers. These visual cues such as the sprites on the stage or
parts of the interface imparted information to students as they
made predictions. However, in most cases these visual cues did
not functionally impact the program.

In the following, Kaylee and Ivy were predicting what the
dragon, unicorn, and bat sprite would do when the program ran
(see Figure 4, 5, 6, and 7 for visible scripts and stage setup).
Both students looked at the sprites, their attributes, and their
location on the stage – instead of the scripts – to predict what
they would eventually do when running the program.

Interviewer: Ok. So, how did you figure out which ones
doing what?

Ivy: …This one’s [the bat’s] the highest, so I assumed that
it must be going down. And, this [the dragon] must be
gliding. And this is the only one [the unicorn] that’s
actually stepping.

Interviewer: So, they look like they’re about to do
something?

Kaylee: Yeah.

As illustrated in the transcript, Ivy predicted that the bat would
move downwards because it was positioned in the background’s
sky (stage location and orientation of sprite on stage). Also, she
predicted that the unicorn would take a step because its feet
were in the air (physical characteristics of sprite on stage).

In the following, Ethan and Luis also made predictions using
attributes of the sprites rather than reading the scripts.

Interviewer: … So without running the code in this activity,
what do you think will happen? What will the sprites do?

Ethan: I think the bat will start flying to the cactus.
Luis: The dragon’s gonna eat the horse. I think that dragon

wants to eat, needs to get to the horse [points to unicorn]

Ethan predicted that the bat sprite would fly across the stage
because already located in the upper, right corner of the stage.
As well, since the sprite was a bat he concluded that it would
“start flying to the cactus” located on the left side of the stage
(physical characteristics and stage location of sprite on stage).
Luis described how the dragon would move to the unicorn.
Since the dragon sprite appeared predatory, he inferred that the
dragon would “need to get to the horse” (physical characteristics
and stage position of sprite on stage).

The attributes of sprites on the stage do not functionally impact
how the program ran, only the associated scripts impart change.
However, as these examples demonstrate, students associated
the actual image (bat, dragon, or unicorn) with their prior
knowledge of each character. They then used this prior
knowledge to predict how the program ran. These were all false
affordances because students were acting on visual cues not
intended to be useful by designers.

4.2.3 Hidden Affordances
Hidden affordances were challenging to identify
methodologically with our research design. Hidden affordances
existed when a child did not notice a LaPlaya feature or did not
think that the visual cue had meaning attached to it – in both
cases, evidence of the hidden affordance would be the absence
of student talk. As well, we as environment and curriculum
developers possessed subjective, insider perspective about what
visual tools students should or could be using as they read code.

As a result, there may have been more hidden affordances than
we found in this particular analysis. Below we provide one
vignette in which students overlooked a LaPlaya feature initially
and later in the interview decided that feature was helpful in
making predictions. Because they found the tool later, they
could articulate that they had not identified it earlier, a rare
instance of students describing hidden affordances.

In the following, Kevin did not originally perceive that he could
click on sprite icons in the sprite corral to view individual
sprites’ scripts. He was originally confused about the visible
scripts, and how to associate scripts with a particular sprite. He
overlooked the affordance of clicking on the sprite icons in the
sprite corral. It was not until the moderator asked what the
unicorn would do that Kyle eventually realized what he had
overlooked. In this event, Kyle vocalized his confusion,
allowing us to label this a hidden affordance.

Interviewer: … Ok, what do you think it [the bat] will do?
Kevin: I’m not sure if it [bat] will do anything because,

well…I don’t know which one [script] will be the bat.
Ben: This one [script] is [for] the bat.
Kevin: No, but like, on there [points to scripts]. Are they all

for the bat?
Ben:(overlapping) That one [script]. This is the dragon

and this is the bat.
Kevin: So I think the bat might not do anything. [Kevin

does not associate scripts for the bat sprite]
Kevin: Maybe.
Ben: Yeah, maybe we point the dragon to the bat and the

bat is going to … go away.
Interviewer: … so what do you guys think the unicorn is

going to do?
Kevin: Point left and then, maybe just, might not do

anything because it’s already pointing left.
Ben: Left is on the (??) and right is to the – right here. And

this is right.
Interviewer: So for the sprites, it’s easier- this is one is for

the (bat) right?
Kevin: Oh! It’s all for the bat. [Kevin recognizes all scripts

refer to bat]
Interviewer: Yes, so how do you see what the unicorn will

do?
Kevin: Oh, you have to click on the unicorn.
Interviewer: So what do you think will happen when you

click on the unicorn?
Kevin: It will say hello.

In this example, the students initially overlooked that they could
click through sprites in the sprite corral. Kevin did not use this
feature as designers had intended, a false affordance. As the
interview progressed however he realized that he could click
through the different icons and change what scripts were visible.

5. DISCUSSION
Students in our focus groups recognized that blocks and scripts
were important tools in predicting what would happen in a
visual block-based program. They read provided scripts to
inform their predictions; and nearly always, they recognized that
the scripts held information that would aid in figuring out what
would happen in the program. However, students did not use
scripts as the only tool or even as their first tool. Students
attempted to use information on the stage (e.g., placement of
sprites), to imagine what the characters could do based on sprite
characteristics (e.g., a bat image flies horizontally), and visual

information related to blocks (e.g., whether it contained a
dropdown menu). In some cases this information was effective
and provided information that was usable. In other cases, the
visual cues were distracting.

We analyzed how students read code in our block-based
programming environment – LaPlaya – that had been adapted
from Scratch for our particular student population and learning
objectives. The taxonomy we created reflects the particular
visual cues and affordances embedded in our interface.
However, since LaPlaya was a variant of Scratch, the taxonomy
may reflect tools in comparable Scratch-based environments.
Many of the attributes implemented in LaPlaya (e.g., blocks,
sprites, scripts, and stage) are available in other environments.

Though our specific findings are LaPlaya or Scratch specific,
they offer two major contributions more generally to the
computer science research community. First, reading code in
visual block-based programming environments is complex.
There are many components to a single program that could be
analyzed (e.g. single blocks, single scripts, single scripts with
multiple sprites, multiple scripts across multiple sprites, etc.).
Young students like those in this study may be better able to
discern, interpret, and read individual aspects of a visual
blocked-based program but not all. Young students reading
these programs may need explicit instruction about how the
different attributes work independently and together alongside
the development of their own programs.

Second, students use the visual nature of block-based
programming environments in both intended and unintended
ways. In many of these environments, users create code (e.g.,
scripts) alongside the output (e.g., stage) within a single
interface. As designers and developers add features to the
interface in the hopes of facilitating the creation of code (e.g.,
such as listing sprites by images) they are also creating sources
of (mis)information for users. In some cases young students may
overlook provided features (hidden affordances); in other cases,
they act upon features that do not have actual use in the
environment (false affordances). Curriculum developers and
researchers should consider all visual cues and affordances –
hidden, false, and perceptible – when analyzing how novices
and young students read projects in these environments.

Our goal was to understand the information on the screen that a
typical student might interpret as useful to understand the
program. Here, our unit of analysis was the interface, not
individual children. So while we described vignettes from
individual focus groups to elaborate on our findings, the findings
were not used to describe how well an individual or pair of
students understood the LaPlaya programming environment. We
sought to illuminate the complexities within a block-based
programming environment for young students reading projects.
To simplify the analysis, we also focused on a single project in
LaPlaya that constrained the visual tools students could discuss
during the interviews. Next steps in this area could focus on
using a variety of projects that align with particular aspects of a
taxonomy like the one described we created. As well, future
work could focus on which visual cues are used most commonly
used by different groups of students such as by age, background
in programming, and gender.

6. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
CE21 Award CNS-1240985. We are grateful to the teachers and
children who participated in this project.

7. REFERENCES
[1] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,

N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., Kafai, Y. (2009). Scratch:
Programming for all. Commun ACM, 52, 11, 60-67.

[2] Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., &
Franklin, D. (2015). Floors and flexibility: Designing a
programming environment for 4th – 6th grade classrooms.
In SIGCSE ’15. Kansas City, MO: ACM.

[3] Hopscotch Technologies. (2015). Hopscotch –
Programming made easy! Make games, stories, animations
and more! (Version 2.12) [Mobile application software].
Retrieved from https://www.gethopscotch.com

[4] Alvarado, C. (2014). CS Ed Week 2013: The hour of code.
ACM SIGCSE Bull, 46(1), 2-4.

[5] Franklin, D., Harlow, D., Dwyer, H., Henken, J., Hill, C.,
Iveland, A., Killian, A., & Development Staff. (2014). Kids
enjoying learning programming and computer science
(KELP-CS)- Module 1 Digital Storytelling. Available at
https://discover.cs.ucsb.edu/kelpcs/educators.html

[6] Gaver, W. W. (1992). Technology affordances. In CHI ’91.
New York, NY: ACM.

[7] Petre, M. (1995). Why looking isn’t always seeing:
Readership skills and graphical programming. Commun
ACM, 38(6), 33-44.

[8] Pea, R., D. & Kurland, D., M. (1984). On the cognitive
effects of learning computer programming. New Ideas
Psychol, 2 (2), pp. 137-168.

[9] Schulte, C. (2008). Block model – an eductional model of
program comprehension as a tool for a scholarly approach
to teaching. In ICER ’08. Sydney, Australia: ACM.

[10] Brennan, K., & Resnick, K. (2012). New frameworks for
studying and assessing the development of computational
thinking. Presented at AERA ’12. Vancouver, BC.

[11] Lewis, C. M. (2010). How programming environment
shapes perception, learning and goals: Logo vs. Scratch. In
SIGCSE ’10. Milwaukee, WI: ACM.

[12] Gross, P., & Kelleher, C. (2009). Non-programmers
identifying functionality in unfamiliar code: Strategies and
Barriers. J Visual Lang Comp, 21(5), 263-276.

[13] Ferreira , J. J., de Souza, C. S., de Castro Salgado, L. C.,
Slaviero, C., Leitão , C. F., de F. Moreira, F. (2012).
Combining cognitive, semiotic and discourse analysis to
explore the power of notations in visual programming. In
VL/HCC ’12. Innsbruck, Austria: IEEE.

[14] Rader, C., Brand, C. & Lewis, C. (1997). Degrees of
comprehension: Children’s understanding visual
programming environment. In CHI ’97. Los Angeles, CA:
ACM.

[15] Pea, R. D. (1986). Language-independent conceptual
“bugs” in novice programming. J Educ Comput Res, 2(1),
25-36.

[16] Gibson, J. J. (1979). The ecological approach to visual
perception. New York, NY: Houghton Mifflin.

[17] Norman, D. (2002). The design of everyday things. New
York, NY: Basic Books.

[18] Garcia, D., Segars, L. & Paley, J. (2012). Snap! (build your
own blocks): tutorial presentation. J Comput Sci Coll 27(4),
pp. 120-121.

[19] Spradley (1979). The ethnographic interview. Forth Worth,
TX: Hancourt Brace.

[20] Saldana, J. (2013). The coding manual for qualiative
researchers (2nd ed.). Thousand Oaks, CA: SAGE
Publications, Inc.

[21] Dedoose. (2014). Web application for managing, analyzing,
and presenting qualitative and mixed method data (Version
5.0.11). Los Angeles, CA: SocioCultural Research
Consultants, LLC. Retrieved from www.dedoose.com

