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ABSTRACT 
Visual block-based programming environments allow elementary 
school students to create their own programs in ways that are 
more accessible than in textual programming environments. These 
environments help students write code by removing syntax errors 
and reducing typing. Students create code by dragging, dropping, 
and snapping constructs together (e.g. blocks) that are organized 
by lists, colors, shape, images, etc. However, programming in 
visual block-based environments is not always simple; in fact, it 
can become complex quickly. In addition to elements that create 
code, the visual aspects of these environments provide readers 
information about what happens, when, and how. Here, we focus 
on how students used visual cues when reading programs in our 
block-based programming environment, LaPlaya, a variant of 
Scratch. Specifically we identified the visual cues students noticed 
and acted upon. These included not only those that were intended 
by designers (perceptible affordances), but also those that were 
not intended by designers (false affordances). Through a detailed 
content analysis of 13 focus groups with fourth graders we created 
an initial taxonomy of visual cues in our programming 
environment and explored how students used these cues to make 
predictions about provided code, and the types of affordances 
such cues offered students. 

Categories and Subject Descriptors 
D.1.7 [Programming Techniques]: Visual Programming; K.3.2 
[Computer and Information Science Education]: Computer 
Science Education.  

General Terms 
Design, Human Factors, Languages. 

Keywords 
Block based languages; graphical programming; computer science 
education; elementary school; novice programming environments 

1. INTRODUCTION 
Block-based programming environments have become 
increasingly popular over the past decade particularly with 
children and novice programmers. These environments offer 

colorful, reactive interfaces that reduce the amount of typing 
needed to write a program, making them well suited for tablet 
computers and other touch screen devices. Many block-based 
environments such as Scratch [1] and LaPlaya [2] are centered on 
characters, or “sprites”. In these environments, programs are 
composed of multiple scripts (segments of code) that are 
organized by sprite. Not all scripts are visible to the programmer. 
When programming, the programmer will see four primary areas: 
a palette of commands (e.g. block lists); the scripting area (e.g. 
where the programmer connects blocks together); a menu of 
sprites (e.g. characters available in the program); and a stage (e.g. 
display visual output). The command palette includes categories 
of commands organized and displayed into lists by function such 
as motion or looks. The number of commands available is usually 
smaller than in textual languages. Next to this area is the scripting 
area. Scripts are organized by sprite and only those of the selected 
sprite are displayed.  

Many block-based environments are event-driven and implement 
parallel programming. This means that scripts are programmed to 
begin when something else happens—a user clicks on a key, or 
another sprite does something. Often events trigger multiple 
actions across multiple sprites simultaneously. This means that 
programmers must keep track of the ways that scripts interact as 
they work, and how different events trigger action.  

Reading and remixing others’ programs has increasingly become 
part of block-based programming environments. Online 
communities encourage users to view and experiment with others’ 
codes. Scratch [1], Hopscotch [3] and other block-based 
environments are more than just editors: they also serve as 
platforms for programmers to easily share their projects online. 
Scratch’s online community encourages “remixing” projects, 
where users modify another’s project. Additionally, programmers 
may use these online environments to follow coding tutorials, 
such as “The Hour of Code” on Code.org [4], and modify or 
expand code snippets provided in the lessons. In the curriculum 
and interface we designed, students were given sample scripts or 
partially completed programs to revise or complete [5]. Whether 
remixing others’ code or completing partial code, being able to 
read block-based programs is as important as being able to create 
new code.  

Reading programs in block-based environments differs 
considerably both from textual programming environments (e.g., 
C++ or Python) and other types of reading that children 
encounter. Block-based programming environments include visual 
information that may contribute to or, in some cases, hinder 
comprehension. Children also need to attend to complex and 
hidden structures that control the flow of the story or game 
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programmed. As a result, we wanted to explore how students 
understood and read existing code using the visual cues provided 
by our block-based programming environment (including the 
scripts and a still picture of the output). 

In this paper, we investigated how fourth graders read and made 
predictions about block-based programs written by other people. 
Fourth-graders from two schools participating in our 
computational thinking curriculum—Kids Engaged in Learning 
Programming and Computer Science (KELP-CS)—made   
predictions about projects in our programming environment, 
LaPlaya [2]. We interviewed 13 pairs of students from two local 
schools about projects conceptually at or slightly above the level 
they had reached in the curriculum. We asked them to use the 
information provided to predict and figure out what would happen 
when a provided program ran.  

Here, we present a preliminary taxonomy of the features in 
LaPlaya that students used to predict what would occur on the 
stage (the output of a program), functions of individual blocks, 
functions of individual scripts, and how scripts and sprites were 
coordinated (understanding of the overall program). Students used 
the visual features in both expected and unexpected ways. We 
further analyzed students’ explanations through Gaver’s construct 
of technology affordances [6] to identify visual cues that students 
recognized and acted on, those they failed to notice, and those that 
they acted on in ways unintended by the developers.  

Our analysis demonstrates that, while visual block-based 
environments reduce syntax errors and typing requirements, they 
are definitely not simple. As Petre [7] wrote about visual 
programming more generally:  

Both graphics and text have their uses – and their 
limitations. Pictorial and graphic media can carry 
considerable information in what may be a convenient 
and attractive form, but incorporating graphics into 
programming notations requires us to understand the 
precise contribution that graphical representations 
might make to the job at hand (p. 33). 

In block-based programming environments, almost all 
information and constructs are graphical representations and as 
yet little research has demonstrated how students use these visuals 
to aid in program comprehension. In LaPlaya, students utilize a 
number of intended and unintended visual cues to interpret 
provided code. We found that, in addition to the scripts and 
blocks, students used the layout of the stage and characteristics of 
the sprites to predict program results. Further, students used visual 
attributes of the programming blocks such as color, shape, and 
arguments (e.g., words embedded in blocks) to predict how the 
block or script would function. 

2. RELATED WORK 
Learning how to program is much like learning how to read: both 
consist of multiple aspects of literacy such as knowing basic 
vocabulary, identifying key words, comprehending how series of 
words construct meaning, and ultimately composing text [8, 9]. 
Learning to program encompasses the same attributes of learning 
to read with the added context and structure of the interface and 
programming language.  

Block-based programming environments offer innovative ways to 
analyze how young students and novices read programs and 
understand computational concepts (e.g., sequences, events, and 
operators), practices (e.g., testing, debugging, or reusing), and 

perspectives (e.g., expressing, connecting, and questioning) [10]. 
Some work has already demonstrated that students understand 
programming concepts differently depending on the visual-nature 
of a particular block-based programming environment. Lewis [11] 
found that 6th grade students (ages 10-12 years old) appeared to 
better understand loop construct when using Logo, but the 
construct of conditionals better in Scratch. 

The spatial organization of block-based programming 
environments makes it easier for programmers to view the output 
while looking at the scripts. Gross and Kelleher looked at how 
university students with little to no programming experience 
understood and reused code in Storytelling Alice [12]. Although 
participants were not able to fully read and understand the scripts, 
they were able to match the output to the scripts to find the 
desired portions of the program. Ferriera et al. [13] found that 
ninth graders in Brazil using AgentSheets attributed agency to 
objects (such as an image of a shark) inside of the program, and 
interpreted the program differently when looking at a program 
report versus running the program. The program report allowed 
users to see the whole set of program elements, not just parts 
associated with a single object/character. Without the visible 
program report, participants did not understand or notice all the 
underlying logic and agent in the program. Rader, Brand and 
Lewis [14] looked at students’ understanding of programs in 
KidSim and found misconceptions stemming from students’ 
views of the objects: children expected objects to behave as they 
do in the real world and expected the computer to understand the 
way objects looked (e.g., a picture of a fish) the same way that the 
children understood the object. Similarly, Pea [15] found that 
students expected computers to understand programs like people 
did: remembering code previously executed while running later 
portions of the program, looking at multiple parts of the program 
simultaneously, and having implicit knowledge of the program’s 
overall goal. 

Though block-based programming environments limit syntax 
errors and typing requirements, they are complex learning 
environment and assessing student learning can be challenging 
[10]. Schulte [9] proposed a Block Model to aid teachers and 
researchers in identifying different learning paths students may 
take when comprehending programs “bottom up”—first reading 
words or text, then making inferences about the relations between 
blocks, and lastly understanding the overall program structure. 
This model organized elements of a program by their structure 
and function. Atoms were language elements and operations of 
statements. Blocks were regions of interest that syntactically built 
a unit. Relations referred to connections between blocks. Lastly 
macrostructure was the overall structure, goal, and purpose of the 
program. Schultz tested this model with a small sample of 
potential teachers at one university. 

Our work builds on the Schulte’s work [9] by examining program 
and reading comprehension of young students from an ecological 
perspective. Ecological perspectives [16] assume that objects have 
actionable qualities that can be acted upon by individuals with the 
appropriate cognitive and physical resources. For example, a chair 
has the affordance of being sat in, but only for individuals of the 
appropriate size. An adult may not be able to sit in a child’s high 
chair, and thus a high chair does not have this affordance for an 
adult. Affordances are an interaction between the user and the 
object. In some cases, the actionable qualities are not clear. 
Norman [17] introduced the term signifier to indicate visual cues 
to the individual about the affordances of an object. “Push” signs 
on doors are examples of signifiers, indicating how to access the 



affordance of opening the door. Gaver [6] applied this work to 
technology and proposed the idea of perceptible, hidden, and false 
affordances.  

Affordances are, in the context of block-based programming, 
objects that have possibilities for action. Visual cues provide 
information about the possible actions. For example, the shape of 
a block is a visual cue that may indicate which blocks it can 
connect to or how commands can be linked (affordances). If a 
child noticed this feature and acted on it, it would be considered a 
perceptible affordance (from the child’s perspective) and an 
appropriate visual cue. If a child did not notice the feature or did 
not think that the visual feature had meaning attached to it, it 
would be considered a hidden affordance. In contrast, students 
sometimes attach meaning to features that were not intended to 
impart value such as acting upon visual cues that were not 
designed to impart information. For example a child might assume 
(falsely) that the sprite on the far left of the stage would always be 
the first to act. In reality, the position of sprites is not related to 
the order in which they appear or act in the program. If this were 
the case, then position of sprites would constitute a false 
affordance meaning that students found information that was not 
actually present.  

3. RESEARCH DESIGN 
We asked the question, “What perceptible, hidden, and false 
affordances of a block-based programming environment do 
students use to read block-based programs?” To answer this 
question, we conducted focus group interviews in which we 
presented LaPlaya programs and asked students to predict the 
outcome.  

We interviewed 13 pairs of fourth grade students at two schools, 
Aguacate and Cabrillo Elementary (pseudonyms), participating in 
our computational thinking curriculum. Students were interviewed 
in same-sex pairs: eight pairs of girls and five pairs of boys. Each 
pair shared a computer and answered questions about and 
modified three programs written in LaPlaya, the block-based 
environment used in their computational thinking curriculum. 

3.1 Research Context  
The fourth graders at both schools, Aguacate and Cabrillo, were 
participating in our computer science curriculum related to 
computational thinking and programming. The curriculum 
includes on-computer and off-computer components: the on-
computer exercises are activities in LaPlaya [2] and the off-
computer activities relate computational thinking and 
programming concepts back to every-day life examples.  

LaPlaya is based on Snap! [18] and Scratch [1]: students use 
multiple blocks of code to create scripts that control sprites, 
images of animals or people that students draw or import. In our 
curriculum, students were given partially completed projects in 
LaPlaya that already contained some sprites and scripts. LaPlaya 
allows project designers to hide elements of the programming 
environment—such as sprites, scripts, or block options—to focus 
students’ attention on specific computer science concepts and 
reduce the cognitive load required to program. As students moved 
through the curriculum, more blocks and LaPlaya features were 
made available to them.  

3.2 Participants 
We interviewed 26 students in pairs at Aguacate Elementary (n = 
16 students) and Cabrillo Elementary (n = 10) over several weeks. 
We paired students by gender, and together they worked on three 

programming projects in LaPlaya with an interviewer, a graduate 
or undergraduate student in computer science or education. The 
participants and interviewers were familiar with the programming 
interface. At the time of the interviews, the students had 
completed 3-4 hours of curricular time with the interface. 

3.3 Data Collection 
We used two sets of interview protocols each containing three 
projects: the same introductory project followed by two different 
projects. For this study, we only analyzed students’ actions and 
discourse in the introductory activity, which was identical for all 
students. In this activity, the interviewer asked students to predict 
what the program would do if they ran it. Students explored the 
program while the interviewer asked follow-up probes to further 
clarify and expand upon what students were saying. 

Figure 1 shows what students saw when they opened the 
introductory project. On the stage were three sprites: a bat, 
unicorn, and dragon. Because the bat sprite was selected at the 
onset, only the scripts for the bat sprite were initially visible. To 
see the scripts for the unicorn and dragon, the students needed to 
click on each sprite individually in the sprite corral (lower right of 
screen). The interviewer would then ask students to describe what 
they expected the program to do when it ran. Students were 
encouraged to interact with the program as long as they did 
nothing to prompt action on the stage (e.g., click sprites or the 
green flag). 

This activity took approximately 10 minutes to complete, though 
the complete interview lasted 30 minutes. We captured students 
interacting with the computer through a combination of video, 
table microphones and screen recordings of the interface. We 
combined the video and screen recordings for each pair of 
students, transcribed the interviews verbatim, and coded the 
transcripts to find common threads throughout the interviews. 

3.4 Data Analysis 
We analyzed the focus groups in three iterations examining 
smaller parts of the transcripts at each juncture. In the first and 
second rounds (what students were predicting and student tools 
for making predictions), we analyzed whole transcripts. In the 
third round (affordances), we analyzed only the introductory 
activity, and isolated individual instances of visual cues. This 
impacted our results directly as the activity selected constrained 
what visual cues could have been discussed and the types of 
predictions that students made. 

Figure 1. Layout of the first project 



3.4.1 What students were predicting 
In our first round of analysis, we focused on the ways students 
responded to the interviewer’s probes about what would happen 
when the program ran. We open-coded the transcripts and created 
a domain analysis described by Spradley [19]. Using Spradley’s 
specific analytic steps, we identified cover terms and terms related 
in specific semantic ways to the cover terms. While Spradley’s 
approach to analysis was created to interpret ethnographic studies, 
we found it appropriate for understanding the programming 
interface. Like ethnographers, we were trying to describe an emic 
perspective. That is, our goal was to understand the programming 
environment from the child’s perspective.  

In this process, we identified multiple levels of the program that 
students made predictions about: individual blocks, single scripts, 
collections of scripts, and the program as a whole. Figure 2 
demonstrates our first semantic relationship. We collapsed these 
terms to align with the functional structure of LaPlaya. This left us 
with four codes [20] to describe what student made predictions 
about in LaPlaya: individual blocks, single scripts, multiple 
scripts, and the output (actions and timing of sprites for program).  

 

Figure 2. Semantic Relationship - Attribution 

3.4.2 Student tools for making predictions  
In our second analytic cycle, we developed semantic relationships 
[16] for each of the codes developed in our first round of analysis. 
Each took the form, “X is a tool for predicting Y,” where X was 
an aspect of LaPlaya and Y was one of the predictable attributes 
listed above. We created a list of terms related to this semantic 
relationship for each of the four predictable attributes (blocks, 
single scripts, multiple scripts, and output). As we developed 
these lists, we realized that many of the tools children used were 
not necessarily related to the scripts or blocks; rather, the tools 
related to some visual cue embedded in the interface (e.g., 
physical characteristics of a sprite). 

With this notion of visual cues in mind, we created a summative 
table relating visual cues to what students were predicting. The 
visual cues listed in this table were developed both through our 
group conversations about what was possible, and what students 
actually talked about in the focus groups with this specific 
activity. Through multiple rounds of systematic coding [20] and 
discussion, we reduced, added, and combined visual cues into 
categories until the group reached consensus.  

3.4.3 Affordances 
In our third analytic cycle, we systematically coded [20] 
transcripts again by when students made predictions and what 
tools they drew on to make those predictions using the construct 
of affordance [6]. For each prediction, we coded for visual cue 
and type of affordance (perceptible, false, and hidden). 
Perceptible affordances occurred when students identified an 
attribute that developers intended to be useful. False affordances 
occurred when students interpreted a visual element as useful 
when that aspect did not in fact contain useful information. 
Hidden affordances occurred when students overlooked an 
attribute that developers intended to be useful. Due to 

methodological limitations, we were not always able to determine 
hidden affordances as students did not see these attributes. If they 
did not see a tool, they likely did not discuss it during the focus 
groups and it would not be captured in the transcripts.  

3.4.4 Final analysis 
Taken together, our final coding scheme included the taxonomy 
created in the first two rounds of analysis, and the affordances in 
round three. Researchers coded transcripts by hand as they 
watched video and screen recordings for each pair of students. 
They identified each instance when students made predictions 
about how a program ran and then identified the visual cue or tool 
used, what aspects of LaPlaya students were making predictions 
about (block, single script, multiple scripts, and output) and the 
type of affordance offered (perceptible, hidden, or false).  

Four researchers coded transcripts together until internal 
consistency was reached with this coding scheme about student 
predications, tools drawn on on to make predictions, and the 
intended use of the tool [20]. Then two researchers (one each from 
computer science education) coded transcripts independently. 
Pairs resolved discrepancies in coding through discussion and at 
times with the entire group until consensus was reached. Then, 
transcripts were uploaded into the qualitative data analysis 
software Dedoose [21] to aid in the development of findings. 

4. RESULTS  
Our analyses led to the development of two sets of findings. In the 
first finding, we describe a taxonomy of visual cues embedded in 
our visual block-based programming environment, LaPlaya. We 
developed this taxonomy through several iterations of domain 
analysis [15], group discussions about theoretically possible visual 
cues, and visual cues that students discussed during the focus 
groups. We then outline how this taxonomy linked to what 
students made predictions about in the focus groups during the 
introductory activity (block, single scripts, multiple scripts, and 
output).  

In our second finding, we connect the visual cues students 
discussed with the construct of technology affordances [6]. We 
provide examples from the focus group transcripts of students 
acting upon affordances when reading provided code in the 
activity. 

4.1 Taxonomy of Visual Cues in LaPlaya 
Using our domain analysis, group discussions, and transcripts we 
created a taxonomy of visual cues embedded in LaPlaya (see left-
hand side of Table 1 and Figure 3 as a reference).  

We further sorted these tools into categories based on their 
function in LaPlaya (blocks, scripts, stage, and interface) and 
subcategories as necessary. Visual cues in parentheses signaled 
tools that did not impact how a program ran and thus were 
categorically false affordances (see following section). For 
example, in Scratch, whether a programmer places a script in the 
upper right corner of the scripting area or in the bottom left corner 
has no bearing on when or how that script is run. Thus 
interpreting the layout of scripts as providing information is 
always false. Across the top of Table 2, we listed the aspect of 
LaPlaya that students could make predictions about (blocks, 
single scripts, multiple scripts, and output). An “X” signified that 
students cited a visual cue when making a prediction during the 
introductory activity. Note that there are two shaded columns with 
no X’s (Single Script and Multiple Scripts). This is because our 
analysis could not identify these types of predictions but they will 
be part of future work 



Table 1. How Students Used Visual Cues in LaPlaya to Predict Aspects of a Program 

 What Students Were Predicting 

Visual Cues in LaPlaya Block 
Single 
Script 

Multiple 
Scripts Output 

Blocks 

Word choice Prior experience with word X   X 
 Word's everyday meaning    X 
Block layout Block argument  X   X 
 Color     
 Shape     
Same block, other script X   X 

Scripts 

Ordering of blocks within scripts X   X 
(Layout of scripts)    X 
Other blocks in script     
Other scripts    X 

Stage 
(Sprites on the stage) 

(Physical characteristics) X   X 
(Orientation)    X 
(Stage position)    X 

(Background)     

Interface 

Sprite corral X   X 
(Costume tab)    X 
(Costume images) X   X 
(Instruction tab)    X 

 
Note: Parentheses distinguish visual cues that were categorically false affordances. “X” signifies that students used a 
visual cue when making predictions during the introductory activity. Both “Single Script” and “Multiple Scripts” columns 
are shaded because the introductory activity did not provide students with opportunities to predict single or multiple 
scripts though each emerged in the other focus group activities. 
 

 

 
Figure 3. Overview of LaPlaya Interface 

 
 



    
Figure 4. Scripts for 

Dragon Sprite 
Figure 5. Scripts for 

Bat Sprite 
Figure 6. Scripts for 

Unicorn Sprite 
Figure 7. Stage for Introductory Activity 

 

4.1.1 Categories of Visual Cues 
Block-level visual cues focused on attributes of blocks such as 
color, shape, and argument. Users could infer block function by 
the words embedded in a block (e.g. “glide”). Block argument 
included information that could be passed through the program 
such as when a user selected from a dropdown menu or wrote in 
his or her own text (e.g., “say ___ for ___ sec”). Users could 
look at how a block functioned elsewhere in a project (same 
block, other script). 

Script-level visual cues related to multiple blocks connected 
together into single or multiple scripts. Users could look at the 
order of blocks within script or more generally what other 
blocks were included in a script. They could also get 
information based on where the scripts were located (layout of 
scripts) and the way a script functioned in other instances such 
as under another sprite. 
Stage-level visual cues related to the screen in the upper right-
hand corner of LaPlaya. Here, users could see sprites 
(characters) and different backgrounds depending on a project. 
Users could make predictions based on attributes of the sprites 
such as physical characteristics (image or icon used for a sprite), 
orientation (e.g., whether a sprite faced up or down), and stage 
position (where on the stage a sprite started). Users could also 
get information from the image displayed in the background. 
These visual cues were categorically false affordances; attributes 
of sprite images do not functionally impact a program.  

Lastly, interface-level visual cues related to the ways users 
engaged with the LaPlaya environment not captured in the other 
categories. The sprite corral was located in the lower right 
corner and displayed all active sprites by small images or icons. 
Users clicked on each image to create code for a particular 
sprite. Within each sprite, users could manipulate the iteration of 
an image (costumes). Costumes used in sequence create 
animation on the stage and were listed as icons for each sprite. 
Users could gain information both from the costume tab listing 
the costumes, and the particular image for a costume. Finally, 
LaPlaya included instructions in the lower right-hand side of the 
interface. These visual cues were categorically false affordances 
as they did not functionally impact how a LaPlaya program ran. 

4.1.2 Linking Visual Cues to Student Predictions 
The introductory project we selected to analyze constrained 
what students could make predictions about and what visual 
cues they discussed. The introductory activity included six 

scripts total (two for each sprite). One script initialized each 
sprite and the second script created output on the stage (e.g. 
action for each sprite). Thus, we could not distinguish when 
students discussed a single script or output, and we did not 
provide opportunities for students to make predictions about 
multiple scripts in the first activity. As a result, these two 
columns in Table 2, single script and multiple scripts, were 
blank but still theoretically possible were we to analyze other 
focus group activities.  
In most cases, students used the cues we identified as potential 
sources of information. For example, when predicting the 
function of blocks, students discussed the embedded text and 
arguments in blocks, or how the block was used elsewhere in a 
program. However, we were also surprised by what visual cues 
students drew upon to make predictions. When making 
predictions about blocks, students talked about physical 
attributes of a sprite, the images of sprites in the sprite corral, 
and the different costume images provided for a sprite. Though 
students attributed meaning and acted upon these visual cues, 
none directly connected to block functionality in LaPlaya. 
We found similar patterns when students made predictions about 
the output of the project – what would happen when the program 
ran. Students discussed the words and arguments embedded in 
blocks, and how blocks or scripts were used elsewhere. As we 
expected, they also read blocks sequentially within a script. 
However, they attributed meaning to visual cues in unexpected 
ways. They predicted that some scripts would run first or more 
quickly depending on where they were located in relation to 
each other (upper right or left-hand area of scripting area). As 
well, they used features of particular sprite images to predict the 
output: physical characteristics, orientation, and position on the 
stage. They also discussed multiple interface features such as the 
sprite corral, costume tab, costume images, and instruction tab. 
In the following section we provide more detailed examples of 
these different types of visual cues. 

4.2 Affordances and Visual Cues 
In this section, we provide examples of how students used visual 
cues to make predictions during the focus groups. We organized 
these examples by the three types of affordances. Perceptible 
affordances were visual cues that students recognized and acted 
on. False affordances were those that students acted on in ways 
unintended by the developers. Hidden affordances were those 
they failed to notice. For each type,we provide multiple 
vignettes demonstrating how students discussed a visual cue and 



used it to read provided code. All student names are 
pseudonyms. 
4.2.1 Perceptible Affordances 
Scripts in LaPlaya are triggered by events. The most common 
way to run scripts is to click the green flag button, but scripts 
can also be programmed to run when a user clicks a sprite or 
presses a key. In the following example, the interviewer asked 
Kaylee and Ivy to predict what would happen without running 
the program (clicking the green flag). The students read the 
embedded argument in visible blocks to predict the output (see 
Figure 4). This was a perceptible affordance as the students read 
the blocks and scripts in ways that developers intended. 

Interviewer: What do you think will happen when you click 
the green flag? 

Kaylee: Ready. Go. [Program will run]. 
Ivy: It [the program] will go [run].  
Interviewer: It will go [run] …does anything else make the 

program run? 
Kaylee: Maybe clicking on the dragon because it says…oh, 

no! Space key. 
Interviewer: How did you figure out the space key? 
Kaylee: Because it [the block] says “When Space Key 

Pressed.” 
 

Kaylee quickly recognized by reading the provided scripts that 
the “When Space Key Pressed” block controlled how to run that 
script. This was an example of students using block arguments 
to make predictions because “space key” was a dropdown option 
that also included other keys on the keyboard.  

In the next example, Richard and Bryan predicted the output of 
the program by reading the blocks sequentially for all three 
sprites. Richard also recognized that he needed to click through 
the different sprites to see the visible scripts (e.g., sprite corral). 
Both students used block arguments (e.g. number of steps and 
direction) and words embedded in blocks (e.g. costume “fire”) 
to make predictions. 

Interviewer: … So before you click on anything, without 
running the code, what do you think the sprites will do? 

Richard: … with just reading them? 
Interviewer: Yep, just reading the code. 
Richard: Well first of all … can we go through each one 

[sprite in the sprite corral]? 
Interviewer: Yep! Go through each one [sprite]. 
Richard: … when you click the [get] ready [button], they 

[the sprites] all go back to where they are …When you 
click the [green] flag, the bat will glide, to right here 
[points to stage] – 

Bryan: [overlap] 200 steps. 
Richard: Yeah and [move] down, and then [move] over 

right here. And then the unicorn will say hello and get 
placed back here like that and say hello. And then the 
dragon, when you click it, it’ll go back to where it is and 
then it’ll switch to fire I’m guessing, and then it’ll wait 
point five, like half a second and then switch back to []. 

 
Richard and Bryan used multiple, perceptible affordances to 
make predictions about how the program ran. These visual cues 
(block word choice, block argument, ordering of blocks within 
scripts, and sprite corral) were intended to be useful when 
reading LaPlaya programs, and both students acted upon the 
affordances in expected ways. 

4.2.2 False Affordances 
Students also acted on visual cues in ways unintended by the 
developers. These visual cues such as the sprites on the stage or 
parts of the interface imparted information to students as they 
made predictions. However, in most cases these visual cues did 
not functionally impact the program. 

In the following, Kaylee and Ivy were predicting what the 
dragon, unicorn, and bat sprite would do when the program ran 
(see Figure 4, 5, 6, and 7 for visible scripts and stage setup). 
Both students looked at the sprites, their attributes, and their 
location on the stage – instead of the scripts – to predict what 
they would eventually do when running the program. 

Interviewer: Ok. So, how did you figure out which ones 
doing what? 

Ivy: …This one’s [the bat’s] the highest, so I assumed that 
it must be going down. And, this [the dragon] must be 
gliding. And this is the only one [the unicorn] that’s 
actually stepping. 

Interviewer: So, they look like they’re about to do 
something? 

Kaylee: Yeah. 
 

As illustrated in the transcript, Ivy predicted that the bat would 
move downwards because it was positioned in the background’s 
sky (stage location and orientation of sprite on stage). Also, she 
predicted that the unicorn would take a step because its feet 
were in the air (physical characteristics of sprite on stage).  

In the following, Ethan and Luis also made predictions using 
attributes of the sprites rather than reading the scripts. 

Interviewer: … So without running the code in this activity, 
what do you think will happen? What will the sprites do?  

Ethan: I think the bat will start flying to the cactus.  
Luis: The dragon’s gonna eat the horse. I think that dragon 

wants to eat, needs to get to the horse [points to unicorn] 
 

Ethan predicted that the bat sprite would fly across the stage 
because already located in the upper, right corner of the stage. 
As well, since the sprite was a bat he concluded that it would 
“start flying to the cactus” located on the left side of the stage 
(physical characteristics and stage location of sprite on stage). 
Luis described how the dragon would move to the unicorn. 
Since the dragon sprite appeared predatory, he inferred that the 
dragon would “need to get to the horse” (physical characteristics 
and stage position of sprite on stage).  

The attributes of sprites on the stage do not functionally impact 
how the program ran, only the associated scripts impart change. 
However, as these examples demonstrate, students associated 
the actual image (bat, dragon, or unicorn) with their prior 
knowledge of each character. They then used this prior 
knowledge to predict how the program ran. These were all false 
affordances because students were acting on visual cues not 
intended to be useful by designers. 

4.2.3 Hidden Affordances 
Hidden affordances were challenging to identify 
methodologically with our research design. Hidden affordances 
existed when a child did not notice a LaPlaya feature or did not 
think that the visual cue had meaning attached to it – in both 
cases, evidence of the hidden affordance would be the absence 
of student talk. As well, we as environment and curriculum 
developers possessed subjective, insider perspective about what 
visual tools students should or could be using as they read code. 



As a result, there may have been more hidden affordances than 
we found in this particular analysis. Below we provide one 
vignette in which students overlooked a LaPlaya feature initially 
and later in the interview decided that feature was helpful in 
making predictions. Because they found the tool later, they 
could articulate that they had not identified it earlier, a rare 
instance of students describing hidden affordances.  

In the following, Kevin did not originally perceive that he could 
click on sprite icons in the sprite corral to view individual 
sprites’ scripts. He was originally confused about the visible 
scripts, and how to associate scripts with a particular sprite. He 
overlooked the affordance of clicking on the sprite icons in the 
sprite corral. It was not until the moderator asked what the 
unicorn would do that Kyle eventually realized what he had 
overlooked. In this event, Kyle vocalized his confusion, 
allowing us to label this a hidden affordance. 

Interviewer: … Ok, what do you think it [the bat] will do?  
Kevin: I’m not sure if it [bat] will do anything because, 

well…I don’t know which one [script] will be the bat.  
Ben: This one [script] is [for] the bat.  
Kevin: No, but like, on there [points to scripts]. Are they all 

for the bat? 
Ben: ....(overlapping) That one [script]. This is the dragon 

and this is the bat.  
Kevin: So I think the bat might not do anything. [Kevin 

does not associate scripts for the bat sprite] 
Kevin: Maybe.  
Ben: Yeah, maybe we point the dragon to the bat and the 

bat is going to … go away.  
Interviewer: … so what do you guys think the unicorn is 

going to do?  
Kevin: Point left and then, maybe just, might not do 

anything because it’s already pointing left.  
Ben: Left is on the (??) and right is to the – right here. And 

this is right.  
Interviewer: So for the sprites, it’s easier- this is one is for 

the (bat) right?  
Kevin: Oh! It’s all for the bat. [Kevin recognizes all scripts 

refer to bat] 
Interviewer: Yes, so how do you see what the unicorn will 

do?  
Kevin: Oh, you have to click on the unicorn.  
Interviewer: So what do you think will happen when you 

click on the unicorn?  
Kevin: It will say hello.  
 

In this example, the students initially overlooked that they could 
click through sprites in the sprite corral. Kevin did not use this 
feature as designers had intended, a false affordance. As the 
interview progressed however he realized that he could click 
through the different icons and change what scripts were visible.  

5. DISCUSSION 
Students in our focus groups recognized that blocks and scripts 
were important tools in predicting what would happen in a 
visual block-based program. They read provided scripts to 
inform their predictions; and nearly always, they recognized that 
the scripts held information that would aid in figuring out what 
would happen in the program. However, students did not use 
scripts as the only tool or even as their first tool. Students 
attempted to use information on the stage (e.g., placement of 
sprites), to imagine what the characters could do based on sprite 
characteristics (e.g., a bat image flies horizontally), and visual 

information related to blocks (e.g., whether it contained a 
dropdown menu). In some cases this information was effective 
and provided information that was usable. In other cases, the 
visual cues were distracting. 

We analyzed how students read code in our block-based 
programming environment – LaPlaya – that had been adapted 
from Scratch for our particular student population and learning 
objectives. The taxonomy we created reflects the particular 
visual cues and affordances embedded in our interface. 
However, since LaPlaya was a variant of Scratch, the taxonomy 
may reflect tools in comparable Scratch-based environments. 
Many of the attributes implemented in LaPlaya (e.g., blocks, 
sprites, scripts, and stage) are available in other environments.  

Though our specific findings are LaPlaya or Scratch specific, 
they offer two major contributions more generally to the 
computer science research community. First, reading code in 
visual block-based programming environments is complex. 
There are many components to a single program that could be 
analyzed (e.g. single blocks, single scripts, single scripts with 
multiple sprites, multiple scripts across multiple sprites, etc.). 
Young students like those in this study may be better able to 
discern, interpret, and read individual aspects of a visual 
blocked-based program but not all. Young students reading 
these programs may need explicit instruction about how the 
different attributes work independently and together alongside 
the development of their own programs.  

Second, students use the visual nature of block-based 
programming environments in both intended and unintended 
ways. In many of these environments, users create code (e.g., 
scripts) alongside the output (e.g., stage) within a single 
interface. As designers and developers add features to the 
interface in the hopes of facilitating the creation of code (e.g., 
such as listing sprites by images) they are also creating sources 
of (mis)information for users. In some cases young students may 
overlook provided features (hidden affordances); in other cases, 
they act upon features that do not have actual use in the 
environment (false affordances). Curriculum developers and 
researchers should consider all visual cues and affordances – 
hidden, false, and perceptible – when analyzing how novices 
and young students read projects in these environments.  

Our goal was to understand the information on the screen that a 
typical student might interpret as useful to understand the 
program. Here, our unit of analysis was the interface, not 
individual children. So while we described vignettes from 
individual focus groups to elaborate on our findings, the findings 
were not used to describe how well an individual or pair of 
students understood the LaPlaya programming environment. We 
sought to illuminate the complexities within a block-based 
programming environment for young students reading projects. 
To simplify the analysis, we also focused on a single project in 
LaPlaya that constrained the visual tools students could discuss 
during the interviews. Next steps in this area could focus on 
using a variety of projects that align with particular aspects of a 
taxonomy like the one described we created. As well, future 
work could focus on which visual cues are used most commonly 
used by different groups of students such as by age, background 
in programming, and gender. 
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