
Interactive Design by Children:
A Construct Map for Programming

Alexandria K. Hansen1, Hilary A. Dwyer1, Charlotte Hill2, Ashley Iveland1, Timothy Martinez2,
Danielle Harlow1, Diana Franklin2

 1Department of Education 2Computer Science Department
 Gevirtz Graduate School of Education 2104 Harold Frank Hall

 UC Santa Barbara UC Santa Barbara
 Santa Barbara, CA 93106-9490 Santa Barbara, CA 93106-9490
 {akillian, hdwyer, aockey, dharlow} {tmartinez}@umail.ucsb.edu
 @education.ucsb.edu {charlottehill, franklin}@cs.ucsb.edu

ABSTRACT
In this paper, we present our analysis of 92 fourth graders’ digital
story projects completed in LaPlaya, a Scratch-like programming
environment. Projects were analyzed for the way that students
programmed the start of the story, and if the program integrated
user-centered design by providing instruction to the user on how
to interact with the digital story. We found that fourth grade
students rarely used user-centered design while creating digital
stories in our block-based programming environment. Without
explicit instruction, the demands of learning programming and
simultaneously programming for an abstract user may be too
cognitively demanding for the average fourth grader.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming; K.3.2
[Computer and Information Science Education]: Computer
Science Education.

General Terms
Design, Human Factors, Theory

Keywords
Graphical programming; Computer science education; Elementary
school, Interactive, Design, Scratch

1. INTRODUCTION
Coding has taken K-12 education by storm. The increase in
popularity and prevalence of graphical, student-friendly
programming environments has greatly increased the amount of
students who are coding. A 2014 New York Times article [1]
claimed that 20,000 K-12 teachers nationwide have introduced
coding in their classrooms, and 30 school districts plan to add
coding in the fall of 2015. Over 4.5 million 4th-6th grade students
participated in this fall’s Hour of Code, hosted by Code.org [2].
As coding becomes integrated into the traditional school day,
research-based findings need to inform the instructional design of
curriculum and accompanying resources for students and teachers.

The popularity of block-based programming environments is no
surprise; these interfaces reduce the cognitive load required of
novice student programmers. Block-based programming
environments such as Scratch [3] and LaPlaya [4] reduce typing
requirements, remove potential for syntax errors, and provide
visual cues such as block color and shape. In these environments,
students drag and drop blocks (representing commands) to create
code (scripts). Each script begins with an event (e.g., “when space
bar is pressed”) and follows with a sequence of action blocks
(e.g., “move 10 steps,” “turn right”). The scripts are organized by
sprite (a programmable agent which is often an image of a person,
animal, or object), and each sprite’s code is shown next to a stage
that displays the visual output of the program. Block-based
programming environments are designed for creating interactive
projects that engage users, providing an opportunity to explore
novice programming along with novice interaction design.

In this paper, we present our analysis of 92 fourth grade students’
digital story projects. These fourth graders (aged 9-10) had
recently completed a 16-hour curricular module designed to teach
computational thinking concepts and computer programming
skills. The digital story was the final, culminating project for the
first module. Digital storytelling “allows computer users to
become creative storytellers” [5] by using their knowledge of a
variety of forms of technology, or, in our case, those created by
programming in the interface LaPlaya, a modified version of
Scratch. Digital stories consist of multiple characters (sprites) and
scenes. The characters can be programmed to interact by dialog or
actions triggered by motions of sprites or other actions on the
interface. Triggers include pressing keys, clicking on sprites,
timing, or messages passed between the characters.

We focus our analysis on two aspects of the interactive design.
First, we analyzed the sophistication of programming
implemented by children (e.g., key clicks, broadcasting
messages). Second, we analyzed children’s use of user-centered
design by examining how those control choices impacted the user.
User-centered design is the “design processes in which end-users
influence how a design takes place” [6]. In the context of digital
stories, we consider user-centered design as providing an
interactive experience with explicit instruction to the user about
how to progress through the story.

While extensive user-centered design has informed the
development of many block-based programming environments to
ensure the design and available tools are developmentally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
IDC '15, June 21 - 25, 2015, Medford, MA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3590-4/15/06�$15.00
DOI: http://dx.doi.org/10.1145/2771839.2771893

appropriate for a target age group [3, 4, 7, 8], scant research exists
on how young students integrate user-centered design in their own
block-based programming. We found no existing elementary
school curricula that included explicit lessons or activities to teach
students this distinction when programming. In this paper, we
present an initial categorization of the ways that children
controlled their digital stories and the ways in which they
integrated user-centered design without explicit, prior instruction.

2. RELATED WORK
Seymour Papert’s learning theory of Constructionism [9]
motivates this work. Like Papert, we believe that individuals learn
best when they are actively constructing an entity for public
consumption; in our case, students created digital stories. Papert’s
theory shares roots with Piaget’s theory of constructivism. Piaget
believed that individuals construct knowledge through
experiences, and those experiences are then sorted into cognitive
schemes [10]. As more complex experiences occur, new
information is integrated into pre-existing cognitive schemes.

Some researchers have recently questioned when students should
begin programming [11]. Piaget’s developmental stages can help
answer this question. While many scholars no longer view
Piaget’s stages as fixed, they still provide a basic model for what
children are able to accomplish, and at what age. According to
Piaget’s model, children from approximately 7 to 11 years old are
in the concrete operational period and are acquiring increased
physical dexterity. We contend that students at this age are able to
interact with computers through actions such as clicking and
dragging, which have proven to be a limiting factor for younger
children [12]. Additionally, children at this age are starting to be
able to “represent transformations as well as static states,”- an
important component of programming [13]. However, children in
the concrete operational period still struggle with abstract
reasoning. It is not until the formal operational stage is reached at
age 11-12 that children are capable of using abstract and
systematic thinking, necessary skills for computer science.

Following Piaget’s model, our participants (aged 9-10) were
approaching the formal operational period. We believe this was an
ideal time to begin teaching programming, with age-appropriate
instruction. Similarly, Duncan, Bell and Tanimoto [11] concluded
that while “there might be a limit on the level of abstraction that
students of this age can naturally work with…a different
pedagogical approach” can still support their learning.

User-centered design involves “understanding the user and his or
her experiences” - an abstract idea. Some claim that this can be
achieved through engaging with empathetic design [14]. Cognitive
empathy is described as “intellectually taking the role or
perspective of another person” [15]. Integrating cognitive
empathy as a pedagogical tool may support children’s use of user-
centered design while programming.

3. RESEARCH METHODS
This study is part of a larger study in which we are developing a
computational thinking curriculum and researching how 4th-6th
grade students learn programming. As stated above, we use a
modified version of Scratch, called LaPlaya, which was developed
to be user-friendly and age-appropriate for upper elementary
school students in classroom settings. For more information about
our modifications to Scratch, see [4], and for more information
regarding our curriculum, see [16].
This larger study was informed by design-based research methods

and used both qualitative and quantitative data analysis. Design-
based research studies [17] simultaneously inform the
development of curriculum, research, and practice [18], allowing
improvements for curriculum and practice as more is learned
about student learning.

3.1 Data Collection
In the 2013-2014 school year, we piloted our curriculum in fifteen
4th-6th-grade classrooms at five schools across California. In two
that were located furthest away (nine classrooms), we collected
only student projects. In the remaining three schools (six
classrooms), we filmed classroom instruction and interviewed
teachers and students to iteratively inform the curriculum and
programming environment. The schools had varying numbers of
classrooms, grades participating, start dates, and order of
curriculum. Participating schools ranged from 2%-82%
designated English language learners, and 4%-100% of students
qualifying for free or reduced lunch. Schools generally had equal
numbers of female and male students. For this study, we analyzed
only the final projects. Students were allowed to select the topic
for their final, digital stories.

Overall we collected 103 digital stories from fourth grade
students. We omitted eleven stories because they either did not
have human subjects permission or children did not write any
code. Thus our data set consisted of 92 digital stories. We
reviewed a subset of these by watching videos of children
presenting their stories and inspecting the children’s projects to
create an initial construct map and related coding scheme. We
used this to create an automated analysis of all 92 projects [19].
This was augmented by visual inspection of each project to
determine if children provided directions to the user.

3.2 Developing the Construct Map
We identified two sub-constructs related to interactive design by
children: 1) User-Centered Design and 2) Sophistication of
Programming. We assigned levels by letters for user-centered and
numbers for sophistication of programming.

We defined “user-centered” to mean that the student provided a
mechanism for a user to control the actions of the program (e.g.,
by clicking on sprites or keys) and they provided instruction for
doing so. Instruction could be provided by typing instructions
onto a background scene (e.g., “Click cat to begin program!”) or
by creating buttons or sprites that say, “Click me”. Our qualitative
analysis revealed three levels: (A) Programmer-controlled, (B)
Non-Interactive, and (C) Interactive. In programmer-controlled
programs, multiple sprites were controlled in different ways, but
the control was unintuitive and, as such, the programmer needed
to be present to run the program. Non-interactive programs had a
single, clear mechanism for running the program (e.g., clicking
the green flag) and included multiple events, but no input was
required from either the user or the programmer after the initial
event. Finally, interactive programs prompted the user to trigger
multiple events and provided clear instructions to do so.

The second construct, sophistication of programming, related to
the types of programs that students created: Level 1: Simple,
Level 2: When key pressed/sprite clicked, Level 3: Timing, and
Level 4: Message Passing. Level 1 programs had two attributes:
students used only one event (controlled by clicking on green
flag) and the scripts contained less than two blocks. These
projects were all non-interactive; events were triggered on the
green flag and required no further input from the user or

programmer. Level 2 programs included multiple sprites that were
controlled completely independently either by pressing keys or by
clicking on sprites. Level 3 programs included multiple sprites
that appeared to be coordinated because the timing had been
manipulated. These programs hard-coded the timing through wait
blocks. Lastly, in Level 4 programs sprites interacted by passing
messages using the broadcast and receive blocks. This mechanism
guaranteed the order in which sprites would run, representing the
highest sophistication of programming coordination.

4. FINDINGS
In this section, we describe the ways that students combined user-
centered design and programming sophistication to create their
digital stories. All combinations are shown in Table 1, with
percentages of student projects that fit each category.

4.1 Mechanisms of Control in Digital Stories
Although there were three user-centered design categories and
four programming sophistication levels in our construct map, we
could not distinguish all twelve possible combinations in this
study (these are marked with “n/a” in Table 1). Simple projects
(Level 1) ran when the green flag was clicked, the default in
LaPlaya. A user could click the green flag without the
programmer being present, but we could not determine if this was
intended with so few blocks present. Thus, we could not classify a
Level 1 project as programmer-controlled though this may have
been possible. Students who started their programs on a pressed
key or clicked sprite (Level 2) already engaged the user through
their event choices so we could not identify non-interactive
attributes. Lastly, students who implemented timing and
broadcast/receive blocks (Level 3 and 4) used coordinated action
without the input of the programmer. By definition, these
programs could not be programmer-controlled.

4.1.1 Level 1B: Simple, Non-Interactive
In this level, action among multiple sprites occurred when the
green flag was clicked. This was the standard way that programs
were run in LaPlaya, but our curriculum focused on teaching a
variety of ways that students could start programs. Level 1
projects used only one or two sprites with few completed scripts.
All observed Level 1 projects were characterized as Level 1B
(12%) because the projects had a clear mechanism for running the
program (the green flag), but no additional input was required
from either the user or programmer after the initial event.

4.1.2 Level 2A: Multiple Independent, Programmer-
controlled Events
In this level, the digital story was programmed so that actions
occurred when specific keys or sprites were clicked, but such
actions were not made explicit to the user. For example when the
letter “A” was pressed, the first character said “Hello”, and when
“B” was pressed, a second character responded. Unless explicit
instruction was provided, the user would not know to press “A”
and “B” on the keyboard. We found 50% of projects fell into this

category.

4.1.3 Level 2C: Multiple Independent, User-
controlled Events
In this level, the digital story was programmed so that actions
occurred when specific keys or sprites were clicked, and
instructions or other visual cues were provided to the user so s/he
could control the program. For example, a student could program
a car to move each direction when the corresponding arrow keys
are pressed, and provide instruction to the user about how to
control the car. We did not see any student projects that fit this
description (0%).

4.1.4 Level 3B: Non-Interactive with Timed
Coordination
In this level, the story was triggered by a single event (such as
clicking the green flag, a sprite, or a key), but, unlike Level 1B,
multiple sprites performed actions. They were coordinated with a
set of “wait” blocks or “say __ for __ seconds” blocks. Students
may have programmed two characters to converse by creating
scripts for each character’s talk using say blocks and wait blocks
to control the timing of when words appeared. This level of
control required the student to pre-plan what would be said, but
the actual timing was a process of guess and check to see if the
story played correctly. Other than the initial command to start the
program, this level was non-interactive for the user. We found 5%
of projects fell into this category.

A program could be categorized as Level 3C if direction was
provided to the user about which sprites or keys to press to
progress through the story, but we did not observe any student
projects that did this (0%).

4.1.5 Level 4B: Non-Interactive with Message
Coordination
In this level, the story was controlled by sprites sending and
receiving messages. The visual effect of Level 3B and Level 4B
was the same; only the programming distinguished them.
Messages replaced the hard-coded timing blocks. When sprites
completed a designated action, they broadcasted an invisible
message, which triggered actions in other sprites. This required
the student to plan and coordinate actions among multiple sprites.
The story may have started by clicking the green flag, key, or
sprite. Other than beginning the story, this mode was non-
interactive for the user. We found 32% of projects fell into this
category.

4.1.6 Level 4C: Interactive and Coordinated
In this level, the student included explicit instruction to the user
about how to interact with the program. The story could be
initiated in a variety of ways, such as clicking the green flag,
sprite, or key. Additional instruction was provided to the user
about how to progress through the story. The program may have

User-Centered Design

Sophistication of Programming Programmer
Controlled User: Non-Interactive User: Interactive

Simple N/A Level 1B (12%) Level 1C (0%)

When Key Pressed or Sprite Clicked Level 2A (50%) N/A Level 2C (0%)

Timing Blocks N/A Level 3B (5%) Level 3C (0%)

Broadcast/Receive Messages N/A Level 4B (32%) Level 4C (1%)

Table 1. Interactive Design Control Construct Map for Programming

provided instructions such as “Click on the sprites 1, 2, and 3 to
move on,” or “Press keys 1, 2 and 3 to see each scene of the
story.” Without explicit instruction, only 1% of students fell into
this category (n=1). Figure 1 shows an example of a digital story
that involved the user. None of the other student projects analyzed
included explicit instructions to the user.

5. DISCUSSION
Our analysis demonstrates that students used a variety of events
and coordination techniques to create their stories. However, we
also found that, perhaps not surprisingly, when not specifically
prompted, students tended to view their project from their own
perspective, omitting interactive features that could be understood
by an outside user. Very few employed user-centered design in
the absence of instruction.
We propose several possible explanations to explore in further
research. Fourth grade students were not prompted to choose a
particular user as their audience. Perhaps an abstract user was too
difficult to design for, but the prompt of thinking about a
particular person could have improved the designs. A second
explanation relates to the programming environment. In LaPlaya,
the development environment is exposed at the same time as the
runtime environment. The scripts were visible when students ran
their program. Students could have viewed the user as someone
with access to the scripts, making explicit instructions
unnecessary. This could further confuse students about the
relationship between development and deployment if/when they
transition to more traditional text-based languages.

Our categorization presented here suggests a preliminary learning
progression for user-centered design that can be further articulated
and tested. We chose to focus on fourth grade students to identify
the lower anchor point of the learning progression. This analysis
led to concrete revisions to our curriculum for the 2014-2015
school year. We added engineering design lessons to teach
students the process of design, including thinking about the user
in the program they are creating. We also created demonstrations
that showed students examples of projects that did and did not
include instructions to the user.

6. ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation CE21
Award CNS-1240985. We are grateful to the teachers and
children who participated in this project.

7. REFERENCES
[1] Richtel, M. 2014. Reading, writing, arithmetic, and lately,

coding. The NY Times.
[2] Alvarado, C. 2014. CS Ed Week 2013: The hour of code.

ACM SIGCSE Bull, 46,1, 2-4.
[3] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., Kafai, Y. 2009. Scratch:
Programming for all. Commun ACM, 52, 11, 60-67.

[4] Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin,
D. 2015. Floors and flexibility: Designing a programming
environment for 4th – 6th grade classrooms. In SIGCSE ’15.
ACM.

[5] Robin, B. 2008. Digital storytelling. Theor Pract, 47, 220-
228.

[6] Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwig, M. & Wiedenbeck, S. 2011. The state of
the art in end-user software engineering. ACM Comput Surv,
43, 3, 21.

[7] Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U.,
Bontá, P, & Resnick, M. 2013. Designing ScratchJr: Support
for early childhood learning through computer programming.
In IDC ’13. ACM.

[8] Cooper, S. 2010. The design of Alice. ACM T Computing
Education, 10, 4, 15.

[9] Papert, S. & Harel, I. 1991. Situating constructionsim.
Constructionism, 36, 1-11.

[10] Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P.
1994. Constructing scientific knowledge in the classroom.
Edu Researcher, 23, 7, 5-12.

[11] Duncan, C., Bell, T., & Tanimoto, S. 2014. Should your 8-
year-old learn coding? In WiPSCE ‘14. ACM.

[12] Donker, A., & Reitsma, P. 2007. Young children’s ability to
use a computer mouse. Comput & Edu, 48, 4, 602-617.

[13] Siegler, R. & Alibali, M.W. 2005. Children’s thinking.
Pearson Prentice Hall, New Jersey.

[14] Kouprie, M. & Visser, F.S. 2009. A framework for empathy
in design: Stepping into and out of the user’s life. J Eng
Design, 20, 5, 437-448.

[15] Mead, G.H., 1934. Mind, self and society. Chicago, IL:
University of Chicago Press.

[16] Franklin, D., Harlow, D., Dwyer, H., Henken, J., Hill, C.,
Iveland, A., Killian, A., & Development Staff. 2014. Kids
Enjoying Learning Programming (KELP-CS)- Module 1
Digital Storytelling. Available at
https://discover.cs.ucsb.edu/kelpcs/educators/KELPCSIntro.p
df

[17] Barab, S. & Squire, K. 2004. Design-based research: Putting
a stake in the ground. J Learn Sci, 13, 1, 1–14.

[18] Brown, A.L. 1992. Design experiments: Theoretical and
methodological challenges in creating complex interventions
in classroom settings. J Learn Sci, 2, 2, 141–178.

[19] Bryce B., Hill, C., Len, M., Dreschler, G., Franklin, D.,
Conrad, P. 2013. Hairball: Lint-inspired static analysis of
scratch projects. In SICSCE ’13. ACM.

Figure 1. A Level 4C student project.

