
Identifying Elementary Students’ Pre-Instructional Ability
to Develop Algorithms and Step-By-Step Instructions

Hilary Dwyer‡, Charlotte Hill†, Stacey Carpenter‡, Danielle Harlow‡, and Diana Franklin†
† Department of Computer Science ‡ Gevirtz Graduate School of Education

UC Santa Barbara

ABSTRACT
The desire to expose more students to computer science has led
to the development of a plethora of educational activities[16, 7,
15, 4] and outreach programs to broaden participation in computer
science. Despite extensive resources (time and money), they have
made little impact on the diversity of students pursuing computer
science. To realize large gains, computational thinking must be
integrated into K-12 systems, starting with elementary school. In
order to do so, existing resources need to be adapted for a school
setting.

In order to make a curriculum with lessons that build on each
other over several years, and accountability for student learning, we
need standards, an understanding of how students learn, and iden-
tification of what students know before exposure to the curriculum.

In this paper, we present our detailed findings of what fourth
graders know before encountering a computational thinking cur-
riculum. Groups of students participated in activities modified from
CS Unplugged[4] in order to discover their knowledge (rather than
provide instruction). We identify aspects of the activities students
were able to complete successfully, and where they will need fur-
ther instruction. We then explain how we used these results to mod-
ify our pilot curriculum.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; K.4.m [Computers and Society]: Miscella-
neous—Diversity and Outreach

General Terms
Design, Human Factors

Keywords
diversity, K-12 education, outreach, assessment

1. INTRODUCTION
For decades, computer scientists have been developing computer

science activities for young students in an effort to engage them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’14, March 6–9, 2014, Atlanta, Georgia, USA.
Copyright 2014 ACM 978-1-4503-1775-7/13/03 ...$15.00.

early. Responding to a national need for computer scientists, the
National Science Foundation has funded the Broadening Partici-
pation in Computing program, and later the CE21 program, to in-
crease the diversity, and thus absolute numbers, of students pursu-
ing computer science.

This and other efforts have led to many educational platforms,
activities [16, 7, 15, 4] and outreach programs [3, 2, 12]. Unfortu-
nately, very little progress has been made in broadening computer
science participation. In fact, the percentage of females has been
dropping almost monotonically since the early 1980’s[1], and un-
derrepresented ethnic minorities continue to make up a very small
percentage of students[20, 24].

Outreach programs reach a small percentage of the population,
and they require enormous portions of facilitators’ time. To diver-
sify and increase the computer science population, as well as those
equipped to innovate existing software, computer science must find
a place in K-12 schools. That requires developing standards, cur-
ricula, and assessments.

In 2011, the CSTA released a set of K-12 standards [10] and scaf-
folded charts to illustrate intermediate points. While an important
step, much work remains before computer science catches up to its
STEM counterparts in developing research-based curricula. At a
high level, two large gaps remain - empirical evidence to confirm
and/or refine the information presented in the scaffolding charts,
and lower anchor points to determine the proper starting points for
the curriculum.

In this paper, we analyzed groups of fourth grade students par-
ticipating in two activities modified from CS Unplugged - creating
step-by-step instructions to draw a picture and sorting a small set
of canisters. Our purpose was to identify what students were able
to complete successfully without our help, and with what concepts
students required assistance. We present these findings, as well as
how we have used these to modify our initial curriculum.

The rest of the paper is organized as follows. We provide a back-
ground on theories of learning that guide our work in Section 2
with a brief summary of related work in Section 3. Sections 4 and
5 present our curriculum from a high level and the methodologies
derived from educational research used in our study. We present
our results - what we found in our focus groups and how that in-
formed our learning progressions and curriculum - in Section 6.
Finally, Section 7 contains our conclusions and future work.

2. BACKGROUND
Our work is informed by both constructivist theories of learn-

ing and constructionist perspectives on instruction. Constructivism
is a theory of learning that explains learning as a process of mak-
ing sense of new information through the lens of what one already
knows [11]. This implies that curriculum developers must be cog-

nizant of learners’ prior knowledge and design experiences that al-
low them to build on and challenge their existing ideas. Further, it
places the instructor in the role of guide and designer of educational
experiences rather than someone who simply imparts knowledge.

Constructionism is a theory of learning and teaching proposed
by Papert who, building on constructivist ideas, posited that people
learn best “in a context where the learner is consciously engaged in
constructing a public entity”[18]. That is, people learn by making
something. Constructionism has been embraced by many educa-
tional scholars[14] who argue that a “design mentality” can support
students’ development of ideas.

A constructivist perspective on learning requires us to first iden-
tify the pre-instructional ideas that students develop about com-
putational thinking. These ideas will inform how we develop in-
struction. Our ultimate goal is to construct a learning progression
for computational thinking at the upper elementary school level.
A learning progression [9] is an empirically-determined model of
how students learn a particular set of ideas and skills. Learning pro-
gressions are bounded by lower anchor points which describe ideas
that students are expected to have prior to instruction, and upper
anchor points which describe the expected goals or standards stu-
dents should meet by the end of instruction. Between the upper
and lower points are multiple intermediate levels. Initial hypothet-
ical learning progressions proposed by researchers serve as models
for student learning and are repeatedly tested against evidence and
revised.

3. RELATED WORK
The development and refinement of outreach programs using

curricula based on CS Unplugged, Scratch, and Alice have matured
in their goals and assessments through time. These assessments
have had various time / information-yielded trade-offs. Early as-
sessments used surveys to gauge student attitudes, and later assess-
ments inspected final projects or tests to determine what students
knew at the end. These have been very helpful in giving a glimpse
of what students are capable of at different ages. The next step is to
create a picture of how students learn in order to inform future cur-
ricula. We want to be able to design the curriculum, demonstrate
that it worked and explain how and why it worked.

Researchers have mined the wealth of completed Scratch projects
to determine what concepts were displayed in completed projects.
Over 500 Scratch projects created by urban youth during an af-
terschool program showed that youth learned key programming
concepts without specific instructional interventions or experienced
mentors[17]. Wilson et al[22] adapted a prior coding scheme[8]
to find the most common programming concepts used by children
who created games with Scratch.

Another effort [19] used existing projects across different grade
levels to identify how computational thinking concepts varied by
level in their Progression of Early Computational Thinking (PECT)
Model. Finally, Franklin et al[13] used a combination of field notes,
hand analysis and automated analysis[5] of Scratch projects to de-
termine which concepts students learned initially and were able to
transfer to a culminating project from a 2-week summer camp for
middle school students.

There have also been attempts to seek deeper information through
more detailed assessments, but they still focus on what students
understand at the conclusion of instruction. As part of the effort
to understand variation in computational thinking across students,
Werner et al[21] developed a performance assessment tool to assess
algorithmic thinking and effective use of abstraction and model-
ing among middle school students. Finally, Brennan et al [6] used
portfolio analysis, artifact-based interviews, and design scenarios

Figure 1: The two strands of our hypothetical learning progres-
sion that are the subject of this study. We focus on the lower
anchor points.

to assess children’s computational thinking based on a framework
comprised of computational concepts, practices, and perspectives.

Our work is distinct because it focuses on what students know
before they encounter a formal computational thinking curriculum.
This is just a first step towards the larger goal of understanding how
students learn computational thinking. Once a more detailed model
is developed for students progressing through the curricula, we will
better target and provide appropriate instruction.

4. CURRICULUM
Research on how children learn often depends on the curriculum

that supports that learning. This is true of our work on learning
progressions. We began with a pilot curriculum which we will it-
eratively revise as we adjust our hypothetical learning progression.
Figure 1 shows our hypothetical learning progressions for two as-
pects of computational thinking: algorithms and programming. Be-
cause this study focuses on identifying lower anchor points, we fo-
cus on those elements in Figure 2.

Our curriculum helps students develop ideas about computational
thinking with two types of activities: activities done off the com-
puter and programming activities done on the computer. The first,
which we call FiredUp, are loosely modeled after CS Unplugged
activities[4]. During these activities, students encounter compu-
tational thinking concepts in the context of their everyday lives.
FiredUp activities are followed by WiredUp activities - projects
programmed in the Scratch programming language[23]. These re-
late to content included in 3rd or 4th grade, such as planets, geog-
raphy, and erosion both to increase the chances that the curriculum
will be adopted by elementary schools, and to show students how
computational thinking can be integrated into multiple subjects. We
also include bonus projects for students who finish early and would
like to explore more creatively.

Figure 2: The expanded description for the items within and
directly above the lower anchor points.

In this paper, we describe activities conducted in focus inter-
views that were related to FiredUp activities. We focused on fourth
graders who had not been formally taught computational thinking
or computer science. Thus, our results informed our lower anchor
points. From our interviews, we identified what students were al-
ready able to do as well as what they were not able to do. This
helped to better define our lower anchor points and inform our cur-
riculum development.

5. METHODOLOGY
There are several steps to the iterative process of testing and

modifying hypothetical learning progressions. We first present the
methodology that we plan to use for the entire process. We then de-
scribe the methodology used for the particular findings we present
in this paper.

We began by studying the CSTA K-12 Computational Thinking
Standards, attending closely to the K-6 standards. This was done
in two parts - first, reviewing the standards (an end-point or upper
anchor point) and second, examining the scaffolding charts (not
dissimilar to learning progressions, but as yet untested). We chose
a subset of standards to target and designed a detailed learning pro-
gression for those subjects. Figure 1 shows the hypothetical learn-
ing progression relevant to the subjects we address in this paper.

Educational researchers use a combination of methods to dis-
cover details on how students learn. These methods include focus
group discussions, observations of individual and group activities,
talk-alouds in which students describe their thought process as they
work, and analysis of student projects. Typically, pre- and post- as-
sessments are used to evaluate the curriculum itself, whereas more
detailed and frequent methods are used to discover how students
learn - the paths students take in their journey from the lower an-
chor point to the upper anchor point.

In this study, we are identifying lower anchor points, or the start-
ing point, for fourth graders before instruction. We conducted fif-
teen focus group interviews with fourth grade students at four dif-
ferent elementary schools in Southern California during May 2013.
A total of 55 fourth graders participated in these interviews. The
schools were selected to represent a broad range of demographics.
The percentage of English Language Learners (ELL) ranged from
22% at Vista Grande1 to 81% at Cabrillo, and students receiving
free or reduced lunch ranged from 29% at Vista Grande to 100% at
Cabrillo.

Each focus group interview lasted approximately 30 minutes and

1All school and student names changed for confidentiality

was moderated and filmed by two graduate students. The inter-
views focused on three themes (knowledge about computers, com-
plex decisions, and sequential procedures), and ended with one of
four activities that were designed to elicit ideas related to aspects
of computational thinking.

The discussions from the activities were transcribed and ana-
lyzed for discourse that supported or challenged our proposed model.
Text was coded by its connection to the hypothesized learning pro-
gressions in our model of computational thinking. All results were
independently coded by a computer science graduate student and
education graduate student.

6. RESULTS
In our initial focus groups, we identified some aspects of what

students were able to do and what they were not able to do related
to two strands of our learning progression: step-by-step instructions
and algorithmic development. These were used to refine our initial
activities.

For each of the topic areas, we first present the activity, then
what we discovered from the students, and finally how we used
that information to make changes to our initial curriculum.

6.1 Step-by-Step Instructions
Giving step-by-step instructions is a base-line skill that contributes

to two areas of computational thinking: algorithms and program-
ming. The activity we used to elicit this was based on the CS Un-
plugged activity Marching Orders[4], in which students are given a
picture and asked to give instructions to another student, who draws
the picture based on the directions. The purpose of the activity is to
show students the importance of providing precise instructions to
others, and the challenging nature of such a task when one has been
restricted to only written instructions. We adapted this exercise to
discover how well students could a) initially create directions, b)
analyze the strengths and weaknesses of a set of instructions and c)
improve upon the original attempt.

We adapted the activity in the following ways. First, we did the
activity in three rounds, each progressively more difficult than the
former. In the first round, the picture was simple: a circle, square,
and triangle vertically arranged and touching. In the second, the
picture was a square with lines bisecting different sections. In the
final round, the picture included multiple shapes and lines, hap-
hazardly organized. We also adapted the activity so that students
participated in different ways during each round. In the first two
rounds, one student gave directions to the other students. In the
third round, students worked together and created directions for the
interviewer, who would draw a picture based on their description.
Six focus groups (17 students) participated in the drawing activity.
As this was a semi-structured interview, if a student wanted to try
giving alternate directions for the same picture, we allowed it and
considered these included in the same round.

Findings Related to Step-by-step Instructions.
Four distinct ideas related to step-by-step instructions emerged

from our data. The first two describe things that the students were
able to do prior to any instruction and the third is related to what
they could not do. Below we list all four findings for this topic and
then discuss the data that led to these findings.

• Finding 1a: Fourth graders recognized the need for specific
instructions.

• Finding 1b: Fourth graders were able to identify what was
lacking in instructions.

• Finding 1c: Fourth graders described more attributes follow-
ing critique and discussion.

• Finding 1d: Fourth graders struggled to employ precision
and cover all attributes consistently.

From our data, students’ initial attempts lacked many attributes
of specific instructions. In particular, during the drawing activity,
many students identified included shapes to be drawn and explained
roughly their position; however, they did not consistently include
sufficient details (such as absolute position, size, or orientation)
needed so that other students (or the interviewer) could draw the
object.

The subsequent discussion illustrated that students seemed to
recognize the need for specific instructions, identified when oth-
ers’ instructions were vague and provided suggestions about how
to amend the instructions. Our first two findings emerged when the
fourth graders were asked to compare the drawings they created
when following someone else’s directions to the original drawing.
They recognized that the drawings did not match and identified as-
pects of the directions that should have been clarified. For example,
one student provided the instructions, “There’s a circle on the top.”
followed by “There’s a triangle - there’s a square in the middle.
There’s a triangle at the bottom.” Other students recognized that
knowing whether the shapes were organized in such a way that the
shapes were “touching” was a key piece of information that would
have improved their drawings.

This left a gap between what students can identify about oth-
ers’ instructions and what students produce themselves. We then
attempted to narrow down this gap by allowing the students to pro-
duce instructions for a final drawing, with the only new information
being their own discussion about what should have been clarified
about the first attempt. We found that they still struggled to pro-
duce specific instructions themselves even after discussing how to
improve their peers’ instructions. After the discussion, students im-
proved their instructions in one regard - they described additional
attributes (Finding 1c). Table 1 shows how many groups mentioned
an attribute at least once during a round (this was per round, not per
shape). We see that during initial rounds, several groups failed to
mention certain attributes such as orientation and absolute position.
After the discussion, almost every group remembered to mention
all attributes except for orientation.

What the table does not express is how consistently students re-
membered to mention every attribute (once per round vs for every
shape) or to describe precisely each attribute (the line is short vs
the width of my thumb). We found that students struggled on both
accounts. So while there was improvement, their final instructions
were far from complete (Finding 1d).

Implications for Curriculum.
Since students demonstrated difficulty improving their instruc-

tions after analyzing their and others’ first attempt, we greatly ex-
panded the “discussion” portion of the activity. We now have a
complete lesson on procedural writing, including the importance
of sequencing, the concepts that need to be expressed, and vocabu-
lary words one can use.

6.2 Algorithm Development
Our second set of findings relates to algorithm development. We

consider an algorithm to be broader than what can be solved by a
computer; it refers to the ability to develop a sequence of steps or
other problem-solving operations. As such, we were interested in
identifying how well students could develop a sequence of steps
to most efficiently solve a problem. To elicit this, we used an ac-

tivity that was based on the CS Unplugged activity Lightest and
Heaviest[4], in which students were given eight canisters and a
scale. They were asked to perform a series of order-based tasks,
starting with finding the lightest and ending with sorting all eight
canisters. The initial tasks of the original CS Unplugged activity
were intended to build the knowledge students will need to solve
the sorting problem efficiently. We adapted this activity to discover
how well students could a) create an algorithm for a small problem
without initial instruction, b) extrapolate how their algorithm would
work on a larger number of canisters, and c) analyze how their al-
gorithm could be sped up. Below we describe how we adapted
the activity for our purposes and the findings we inferred from the
data.

In our modified version of this activity, we asked fourth graders
to sort 6 film canisters from lightest to heaviest (each film canister
contained different weights). The students worked as a group, and
could only lift two canisters off the table at a time. Students were
not provided a scale - instead, they compared the weights with their
hands.

When they finished, the interviewer led a discussion about how
to make the sorting faster, especially if they had more canisters to
sort. Four focus groups (20 students) participated in this activity.

Findings Related to Algorithm Development.
From the focus group interviews, we identified five ideas that

helped refine our learning progression for algorithm development.
These findings describe what students can do as well as limitations
in what they cannot do. Below we list the five findings. Following
this, we discuss each one in more detail.

• Finding 2a. Fourth graders developed an algorithm that would
successfully sort 6 canisters.
• Finding 2b. Fourth graders suggested many ways for speed-

ing up the implementation of their algorithm.
• Finding 2c. Some fourth graders identified the limitations of

their algorithms when scaled to a larger number of items.
• Finding 2d. Some fourth graders recognized that breaking a

large problem into parts made solving it easier.
• Finding 2e. Fourth graders often bypassed necessary com-

parisons because they remembered canister weights from ear-
lier trials.

In our first finding, fourth graders developed an algorithm to
solve the task. Across several schools, all focus groups developed
the same general algorithm. They first paired the canisters and per-
formed an independent comparison of each pair of canisters, split-
ting them into two groups of three canisters. They then performed
sorts within each group of three to sort them locally. They had two
lines of three canisters, each sorted from left to right, lightest to
heaviest. In order to merge the two groups, they placed the "light"
line on the left and the "heavy" line on the right. They then per-
formed local bubbling left and right to adjust the middle canisters.

While all students correctly sorted their set of 6 canisters, the ini-
tial algorithm chosen was not scalable (Finding 2c). Moreover, the
merges were inefficient. Students assumed that placing the groups
next to each other was close to the sorted order, because they had
performed the initial splits into groups of heaviest and lightest.
They then “cleaned up” the ordering with some final check passes.
When scaling the problem, they would need to resolve this merge
issue because the number of steps to fix the merge would increase
substantially.

We inferred our other findings in this area from discussions fol-
lowing the initial sort about how to scale their algorithm. When we

Attribute Example Round 1 Round 2 Discussion Round 3
Shape circle, square 6 5 4 6

Orientation facing upwards, horizontal, up and down 1 3 2 2
Relative Position Touching, on top of 5 4 4 5
Absolute Position middle of paper 3 3 0 5

Size units, big/small 1 5 1 5

Table 1: The attributes necessary to give precise drawing directions, and the number of groups that used that attribute at least once
in their directions. The groups improved after the discussion.

Type Name Description Groups
Algorithmic Split Split into smaller piles to sort 2

Split and Merge Both split and proper merge suggested 1
Insert Sort Compare next one to existing sorted line of them until you find place 1

Organization Put them into a line 1
Implementation Shake Shake canisters by listening and feeling 2

Scale A scale would be faster than using their hands 2
2+ If you can touch more than two, weighing is faster 1

Fast Pick-up Pick them up really fast 1
Practice It will be faster second time around due to familiarity 1

Less Repetition Only one person compares, not all 1

Table 2: Student suggestion, the type (Algorithmic or Implementation) and how many groups had this suggestion

asked students to suggest improvements if they were given many
canisters, we did not specify what kind of improvements. Students
provided two kinds of suggestions - implementation and algorith-
mic.

When asked how they could speed up their sorting, students eas-
ily provided suggestions to improve the implementation of the al-
gorithm (Finding 2b). Table 2 shows the suggestions. We define
an implementation suggestion as one that would involve speeding
up the execution of the algorithm, but without changes to the order
or number of comparisons. Implementation suggestions included
picking up the canisters very quickly, using a scale, shaking canis-
ters, and practicing the process. Students were much less likely to
think of algorithmic suggestions.

Related to this is finding 2c. Two groups figured out that their
original algorithm would not scale well. One group observed that
it was wasteful to compare two new canisters each time, rather than
a new canister and a previously sorted canister. They adjusted their
algorithm to be a form of insertion sort. The second group noted
the inefficiency in making two piles initially, and thus placed them
in a line, also performing an insertion sort.

Also, students suggested ways to simplify a larger problem. Two
different groups suggested that if they received more canisters, they
would break them up into more than 2 groups (Finding 2d). One
group even suggested a better merge algorithm - taking the lightest
ones from each group and comparing those.

Our final finding is not directly related to items in our existing
learning progression for algorithm development but is important
nonetheless. In finding 2e, children remembered weights of the
original canisters and thus bypassed steps that a computer would
be required to complete to solve the algorithm. In this exercise, it
is useful for students to sort the canisters multiple times. We found
that, while they still "weighed" the canisters, they were not "com-
paring" them directly the second time. Instead, they remembered
approximate weights. While this is a valid algorithm if you know
you will get the same weights each time, and is somewhat analo-

gous to having some hash table with the weight mapped to the final
location, this is not what we were hoping for.

Implications for Curriculum.
Our findings have led us to modify this activity for our curricu-

lum in three ways, and we will consider more major changes de-
pending on whether the first two are sufficient during field testing.

First, we need to explicitly distinguish between the speed of the
algorithm and the speed of implementing the algorithm. Like the
original CS Unplugged activity, we will focus on counting the num-
ber of comparisons.

Second, developing and describing algorithms takes more time
and depth, and this is perhaps why students would either only de-
scribe a way to speed up execution, would develop incomplete al-
gorithms, or would start describing an algorithm but then get side-
tracked by more execution speed suggestions. We need to give the
students more time to develop algorithms and encourage they test
new algorithms as they arise. In addition, we need to give the stu-
dents new canisters each time with different weights so they cannot
use their prior knowledge. Finally, when asking about solving with
more canisters, we should be ready with a large number of canisters
so the exercise can be less theoretical.

Third, we need to provide students with techniques for analyz-
ing algorithms, including examples and vocabulary. This is similar
to the expanded lesson we will provide for the Marching Orders
activity to teach students how to give precise instructions.

6.3 Changes to Learning Progression
Figure 3 reflects the changes, additions, and confirmations to the

lower items in the learning progression, including the lower anchor
points. For Algorithms, we split “Develop a solution for a gen-
eral instance of a problem” into two parts - develop a solution for a
specific instance of a problem and develop a solution for a general
instance of the problem (i.e. N canisters rather than 6). In addi-
tion, we identified an important concept - distinguishing between
efficiency of the implementation and the algorithm. In Program-

Figure 3: Final learning progression. Al-1 was split into Al-0
and Al-1. New items are starred. Al-2 was not tested in this
study, so its position is still hypothetical.

ming, we identified several precursors to creating step-by-step in-
structions for someone with limited knowledge and/or vocabulary.
Students were not yet able to create precise step-by-step instruc-
tions for a peer, but they did recognize the need for precise instruc-
tions and were able to critique another’s instructions.

7. CONCLUSIONS AND FUTURE WORK
We have shown initial results from in-depth focus groups. These

focus groups informed three lower anchor points for the learning
progressions of two CSTA K-12 strands and how that knowledge
informed our pilot curriculum. We found that students could an-
alyze existing directions for deficiencies, and their analysis led to
incrementally better directions, but they were unable to produce
thorough, precise instructions themselves. Finally, students were
able to solve a small instance of a problem, but they had difficulty
describing a working algorithm when the problem was scaled. In
addition, they often focused on accelerating the mechanics of the
operation rather than the algorithm itself.

In the future, we will study multiple classrooms and their progress
through our pilot curriculum. Our goal is to produce more complete
learning progressions and refine our curriculum with the informa-
tion we gather through interviews, videos, and assessments. Our
end goal is a three-year curriculum for computational thinking.

8. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation BPC

Award CNS-0940491 and and CE21 Award CNS-1240985.

9. REFERENCES
[1] Percent female bachelor’s degrees.
[2] S. Alliance. The stars alliance: A southeastern partnership

for diverse participation in computing. NSF STARS Alliance
Proposal. http://www.itstars.org/.

[3] I. Arroyo et al. Effects of web-based tutoring software on
students’ math achievement. In AERA, 2004.

[4] T. Bell, I. H. Witten, and M. Fellows. Computer Science
Unplugged. 2006.

[5] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and
D. Franklin. Hairball: Lint-inspired static analysis of scratch
projects. In SIGCSE ’13, March 2013.

[6] K. Brennan and M. Resnick. New frameworks for studying
and assessing the development of computational thinking. In
AERA, 2012.

[7] W. Dann, S. Cooper, and R. Pausch. Making the connection:
programming with animated small world. ITiCSE, 2000.

[8] J. Denner, L. Werner, and E. Ortiz. Computer games created
by middle school girls: Can they be used to measure
understanding of computer science concepts? Computers
and Education, 58:240–249, January 2011.

[9] R. A. Duschl, H. A. Schweingruber, and A. W. Shouse.
Taking science to school: Learning and teaching science in
grades K-8. 2007.

[10] C. S. T. Force. CSTA K-12 Computer Science Standards.
Association for Computing Machinery, 2011.

[11] C. Fosnot. Constructivism: A psychological theory of
learning. Teachers College Press, 1997.

[12] D. Franklin, P. Conrad, G. Aldana, and S. Hough. Animal
tlatoque: attracting middle school students to computing
through culturally-relevant themes. In SIGCSE ’11, 2011.

[13] D. Franklin, P. Conrad, B. Boe, K. Nilsen, and C. H. et al.
Assessment of computer science learning in a scratch-based
outreach program. In SIGCSE ’13.

[14] J. Gee. What video games have to teach us about learning
and literacy. Computers in Entertainment (CIE), 1(1):20–20,
2003.

[15] C. S. Hood and D. J. Hood. Teaching programming and
language concepts using legos. In ITiCSE, June 2005.

[16] J. Maloney et al. The scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1–16:15, Nov.
2010.

[17] J. Maloney, K. Peppler, Y. B. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth learning
programming with scratch. In SIGCSE ’08. ACM Press,
2008.

[18] S. Papert. Constructionism: research reports and essays
1985-1990. Ablex Publishing Corporation, 1991.

[19] Seiter and Forman. Modeling the learning progressions of
computational thinking of primary grade students. In
International Computing Education Research (ICER). ACM,
2013.

[20] J. Vegso. Cra taulbee trends: Ph.d. programs and ethnicity.
Computing Research News, 2007.

[21] L. Werner, J. Denner, S. Campe, and D. C. Kawamoto. The
fairy performance assessment: Measuring computational
thinking in middle school. In SIGCSE12. ACMPress, 2012.

[22] A. Wilson, T. Hainey, and T. M. Connolly. Evaluation of
computer games developed by primary school children to
gauge understanding of programming concepts. In 6th
European Conference on Games-based Learning (ECGBL),
2012.

[23] G. C. Y B Kafai, K A Peppler. High tech programmers in
low income communities: Creating a computer culture in a
community technology center. Proceedings of the Third
International Conference on Communities and Technology,
pages 545–562, 2007.

[24] S. Zweben. Computing degree and enrollment trends.
Computing Research News, 2011.

