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Abstract

In the past three decades, the ML module system has been the focal point of tremen-
dous interest in the research community. The combination of parameterized modules
and fine-grain data abstraction control have proven to be quite powerful in practice.
Mainstream languages have slowly adopted features inspired by the ML module system.
However, programmers have run into various limitations and complexities in implemen-
tations of the ML module system. In the presence of common extensions such as true
higher-order modules, true separate compilation becomes a problem. This conflict re-
flects a fundamental tension in module system design. Module systems should both
propagate as much type information across module boundaries as is unconstrained by
the programmer and be able to separately typecheck modules.

1 Background

Modularity in programming dates back at least to Parnas and his information hiding criteria
[44]. Linguistic support for program modularity took many forms. There are two main lines
in the development of module systems. First, the Modula [61] and Cedar/Mesa [21] line
emphasized approach based on ad hoc and extralinguistic schemes for modeling linking of
program modules,i.e., such languages used separate tool, an object file format sensitive link-
loader, to compose separately compiled modules. Second, the ML line of modularity [35–37]
described modularity in terms of a small functional programming language where application
is the main form of linkage. Common to both of these approaches is the idea that the
separation of interface and implementation leads to better program structure.

The most basic form of modularity is namespace management. Simple namespace man-
agement only requires a means to declare namespaces at the top-level of program structure
(namespace N), functions that reside inside those namespaces, and a notation for projecting
those functions (N.f). Each namespace is a module in such a system. One can neither ma-
nipulate nor reference a namespace outside of the projection notation. A programmer can
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call functions by projecting out the desired components from these rudimentary modules.
Namespace management, however, is only a convenience for the programmer, providing no
additional expressive flexibility or power in the language. In particular, namespace man-
agement by itself does not support separate compilation, which is crucial for independent
development of components of a large software project and efficient compilation. In fact,
without separate compilation, some programs would have been impossible to compile with
the limited resources on early machines. Even on modern machines, large software compila-
tion can be quite taxing. Many languages did not gain even a rudimentary module system
until the late 1980s and early 1990s. For example, the venerable FORTRAN did not include
a rudimentary module system until FORTRAN 90.

A record of functions and variables can be used as a slightly richer form of modularity. In
functional languages, regular records may also contain functions as fields. Records aggregate
labeled fields that can be projected. Unlike namespaces, records are typically first-class, so
functions on records enable a degree of generic programming especially in conjunction with
row polymorphism [47]. Unfortunately, records normally do not support data abstraction.
Pierce’s model of object-oriented languages leverages records as its core construct [45].

Modula-2 pioneered many of the major ideas behind module systems. It supported
hierarchical composition (i.e., nesting), type components, and an exception handling mech-
anism [61]. The exception handling mechanism consisted of exception declarations as com-
ponents of modules and a module-level exception handler. Compositions of modules were
limited to explicit imports and exports of definite modules (as in a specific concrete module
with all its components filled out) and their components.

Ada is an example of an imperative and object-oriented language that supports mod-
ularity in the form of basic and generic packages [6]. Packages are specified in two parts,
specifications (akin to interfaces or signatures) and bodies that define the implementation of
the package. Generic packages map basic packages to basic packages, thus providing a form
of parameterization. Basic packages can be nested.

Object-oriented languages use the class or object system to provide a degree of modular-
ity for functions and data. Most object-oriented languages do not support type components,
thus limiting their expressiveness. Scala’s object system [42] appears to be the only OO
language that supports type components as members of a class. Beyond simple namespace
management, OO languages support information hiding via private data members. Unfortu-
nately, this is a rather coarse-grain encoding even with multiple levels of privacy, visibility to
an external client is all-or-nothing. Scala’s structured types offer another approach to mod-
ularity. There has also been a considerable amount of interest in Bracha’s mixin approach
to modularity [4, 5, 16] and traits [18, 51].

Type classes [59] can be modeled using a very stylized use of modules coupled with a
dictionary-passing inference [14]. Where type classes apply, this inference scheme makes
code significantly more succinct. However, as the set of instances of classes at any one point
in the program is global, type classes sometimes interfere with modular programming.
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2 The ML Module System

The ML module system consists of structures, signatures, functors (parameterized mod-
ules), and functor signatures. Structures are sequences of type, value, structure, and functor
bindings. In Standard ML, structures can be named or anonymous. Signatures are sets of
specifications for types, the type of values, structure component signatures, and functor com-
ponent signatures. Similar to structures, signatures can be either named and anonymous.
Anonymous signatures are either written inline (i.e., sig ... end) or inferred or extracted
from a structure. There is a many-to-many relationship between structures and signatures.
Ascribing the signature to the structure verifies that that structure satisfies the signature.
Alternatively, one can use a signature SIG to seal a structure M which makes types in M
abstract or transparent as required by SIG and hides omitted components. Type specifica-
tions in signatures can be transparent (type t = unit), abstract types (type u), and relatively
defined in terms of abstract types (type v = u ∗ int), usually considered a kind of transpar-
ent specification. The possibility that a signature contains both transparent and abstract
specification is called translucency.

The distinguishing characteristics of the ML module system are functors and the interac-
tion of the module system and core language type inference. Ada supports type components
in modules (called packages) and “generic” modules parameterized on a single restricted type
and some associated operator definitions. The module system of ML can express much of
System F. Indeed, the SML/NJ compiler compiles source into a System F-like core language.
Although the Definition [40] does not require nor define support for higher-order modules,
they can be found in many implementations of Standard ML including SML/NJ, Moscow
ML, and MLton. Apart from implementations of ML, higher-order module systems are not
found elsewhere. In the ML module system, functors can be typechecked independently from
their uses (i.e., applications) unlike related programming constructs such as C++ templates.
Separate typechecking is necessary for true independent development of large software sys-
tems. It also makes it possible to gain confidence in the type safety of the functor before
even beginning to write functor arguments and applications of functors, thus revealing type
errors earlier in the development process when they can be resolved more easily. The ML
module system also supports type abstraction via opaque ascription. With this feature, pro-
grammers can define abstract data types and data structures with their corresponding suite
of operations.

Another important property of ML module systems is the phase distinction [25]. If a
language respects phase distinction, then the static and dynamic parts of the program can
be separated such that that former does not depend on the latter. Because the ML module
system can be compiled into System Fω, it naturally respects the phase distinction. At
first glance, it may appear that types and values are entangled in type definitions such as
type t = M.u where M is a module contains value as well as type components. Because
type components always only refer to other type components in modules, one can split any
module into one that only contains type components and the other only value components.
The proviso to this argument is that modules cannot be first-class. Because in ML, the
module and core languages are stratified, this proviso holds.
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2.1 Principles for evaluating module system design

Module system designs are often evaluated subjectively and qualitatively. However, one can
define our design goals around more objective criteria. One goal of the module system can
be to achieve as much raw performance as is possible by admitting as many different kinds
of optimizations as is practical. Although it is true that performance attributable module
system design is difficult to isolate, If I consider type-based optimizations, this goal would
mean that I would like to have types propagate across module boundaries after compilation
as far as is possible. True higher-order functors propagate types across transparent higher-
order functor applications. The performance benefit of such type propagation across module
boundaries can be measured at least in terms of synthetic benchmarks.

We can consider the notational convenience of the module system design. Minimizing the
amount of syntactic overhead would help programmers in rapid prototyping and software
maintenance. In some sense, the very principle of module systems runs against the spirit of
rapid prototyping. The popular misconception is that requiring the programmer to confront
interfaces and types stifles prototyping. Type inference mitigates this concern for the core
language somewhat. A new module system design ought to optimize and balance the syntax
for brevity and readability. Syntactic overhead is always tricky to measure accurately. Raw
lines of code for a series of realistic programs give a very rough and potentially misleading idea
of overhead. Verbosity may improve readability and maintainability. Moreover, if automated
tools such as IDEs and preprocessors can produce with little or no programmer intervention
some of the syntax, then the actual significant overhead may be minimal. Alternatively, I
may derive syntactic overhead by comparing the best practice encodings of very common
programming patterns to gain a relative measure of notational convenience. Again, one falls
into the trap of leaving open the possibility of only solving very contrived problems.

The software engineering discipline has devised a number of additional metrics for measur-
ing program source complexity including McCabe’s cyclomatic complexity (MCC), coupling,
cohesion, and Martin’s software package metrics. MCC measures complexity of a program’s
control flow graph. Of these, coupling, cohesion, and software package metrics were devised
expressly to measure complexity in the presence of a some modularity mechanism, though
especially in the case of software package metrics, the measures tend to be designed for
class-based object-oriented languages. More fundamentally, most of these metrics were in-
tended to measure code quality for software projects and not the complexity of programming
languages in which they are written.

A related design criterion is the predictability and transparency of module system design.
Because compilers are becoming more sophisticated and complex, it is sometimes difficult
to figure out what a compiler would generate for a given source. Although much of the
complexity resides in the compiler optimization phases, it is important that elaboration
and compilation for the module system are not overly sensitive, producing wildly different
code for otherwise roughly semantically equivalent source. A trained programmer should be
able to easily understand the source of errors and performance bottlenecks. Although this
criterion is somewhat qualitative, one can perhaps measure the complexity of elaboration
and compilation by quantifying how much information must be reconstructed in order to
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predict the general outcome of elaboration or compilation. If one considers programmer
understanding of elaboration as an abstract interpretation of program source, our metric of
predictability might be analogous to how precise such an abstraction interpretation will have
to be to identify the source of elaboration errors.

One goal of module systems is to support extensible software design. Thus the module
system must promote ease of extensibility in multiple dimensions. The Expression Problem
is a particularly well-known instance of this issue [60]. While a good module system de-
sign might not necessarily produce a solution to the expression problem, it will provide a
best practice that permits programmers to extend software without touching parallel cases.
Again, this criterion can be loosely quantified as the number of expressions or statements
that must be changed to extend source in a certain direction. A closely related objective is
to permit programmers to safely compose program modules together in a flexible way.

2.1.1 Garcia et al.

Garcia et al. [20] evaluated how well 8 major programming languages support the imple-
menting type-safe polymorphic containers by generic programming techniques. Their chief
criticisms of the ML module system are three-fold. They argue that the signature language
should permit semantic compositions of signatures beyond the syntactic include inheritance
mechanism similar to Ramsey’s signature language design [46]. The authors also remark that
the module system would be impractical for programming-in-the-small because the syntactic
overhead is excessive even when compared to other languages that require explicit instan-
tiation, another criticism. The lack of “functions with constrained genericity aside from
functions nested within functors” was also cited as a disadvantage. In other words, Garcia
et al. suggests that some bounded polymorphism would be desirable.

3 Principal Research Problems

This dissertation will address three main subjects: the formalization of the true higher-order
module system in SML/NJ, a formal investigation of the relationship between true higher-
order modules and true separate compilation, and the development of a rich foundational
signature calculus that solves some of the shortcomings of the module system without rad-
ically altering it. The implementation of the higher-order module system has evolved since
MacQueen and Tofte’s paper [38]. The proposed dissertation will also formalize, simplify,
extend, and improve the static semantics implicit in the SML/NJ elaborator. I will focus on
changes in module representations and improve elaboration algorithms such as the instanti-
ation algorithm for solving type sharing constraints. This dissertation will study what this
intuition means precisely and formally by giving a modern formal account of true higher-
order modules, possible signature languages, the incompleteness of signature languages, and
the relationship to separate compilation. These results will open the way to exploration of
the design space of full transparency (i.e., exactly what can and should propagate through
higher-order functor applications) and separate compilation.
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module type T = sig type t end
module Id = functor (X:T) −> X

module type FS = functor (X:T) −> T

module Apply =
functor (X: sig

module F : FS
module M:T

end) −>
X.F(X.M)

module M0 = struct type t = uni t end
module M1 = Apply ( struct

module F=Id
module M=M0

end)

l et x : M1. t = ( ) ; ;

Figure 1: Apply functor example in OCaml

3.1 Higher-order module system

Higher-order modules extend the ML module system with higher-order functors, a natural
extension. There are many different applications and three general approaches for higher-
order modules [2, 11, 31, 32, 34, 38, 48, 56, 57] which differ mainly on how they handle type
sharing in the apply functor (fig. 1).

In the apply functor example, the higher-order functor apply simply applies its first
argument, functor F, to its second, a module M. The main problem of interest is how one
types the apply functor and the application of the apply functor on line 14. Tofte [56]
introduced the first cut at the semantics for higher-order modules with non-propagating
functors. Under Tofte’s semantics, the apply functor does not propagate the type M0.t
through the functor application X.F(X.M), thus M1.t 6= M0.t = unit. It assigns the signature
in fig. 2. to the apply functor. Notice that the signature for the body does not say anything
more about type t.

MacQueen-Tofte [38] argues that the type sharing M1.t = M0.t = unit should hold.
The strong sums model of modules also predicts this behavior of full type propagation [37].
The semantics in MacQueen-Tofte, true higher-order functors or fully transparent
generative functors, re-elaborates the functor body of apply given the contents of X.M at
the point of the functor application on line 14. Although this re-elaboration has the desired
effect of propagating types, MacQueen-Tofte assigns exactly the same functor signature as
the Tofte semantics. Leroy [31] offered an alternative approach, applicative functors, that
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functor Apply (X: sig
functor F : (X: T) : T
structure M : T

end) :
sig type t end

Figure 2: Signature assigned to Apply functor under Tofte and MacQueen-Tofte semantics

functor Apply (X : sig
functor F : FS
structure M : T

end) :
sig type t = X.F(X.M) . t end

Figure 3: Signature assigned to Apply functor under applicative functor semantics

enriched the notion of type paths in functor signatures with functor applications such as
F(M).t. Applicative functor semantics assigns the functor signature in fig. 3.

However, applicative functors only solve the type propagation problem under certain cir-
cumstances and loses the generative semantics of functors, i.e., functor applications do not
generate fresh abstract types to enforce abstraction. To address this shortcoming, Moscow
ML and Dreyer’s module system [13] combined applicative and non-propagating generative
higher-order functors in the same language. Fully transparent generative functors both solve
the type propagation problem under all circumstances and do not have to compromise on
generative functor semantics. In the last decade, researchers have gained significant expe-
rience in engineering non-fully transparent generative functors and transparent applicative
functors in compilers such as Moscow ML and OCaml. Although they differ internally, both
SML/NJ and MLton compilers support some variant of true higher-order functors semantics.
I take OCaml and SML/NJ as representatives of the former and latter groups respectively.

Under both OCaml and SML/NJ compilers, the apply functor example typechecks. Fur-
thermore, although applicative functors cannot directly handle applications to nonpaths,
lambda lifting the offending nonpath generally solves that issue. Applicative functor seman-
tics lifts this restriction in the case where m1(m2) such that m1 does not have a dependent
type,i.e., the formal parameter does not occur free in the signature of m2. Together with sig-
nature subtyping, such a technique can remove the restriction on nonpaths for dependently
typed functors in certain cases but only at the cost of principality. However, if I complicate
the apply functor slightly by applying a formal functor F to struct type t = int end as in
fig. 4, then applicative functors fail to propagate enough type information. When the type-
checker gets to line 3 in fig. 4, it does not have enough information about F to give a stronger
signature for ApplyToInt’s functor body. Neither is there a path to struct type t = int end
to construct an applicative functor path. Because the typechecker must give the functor
body a signature immediately in order to give HO functor ApplyToInt a complete signature,
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module ApplyToInt =
functor (F : functor (X:T) −> T)
−> F( struct type t = in t end)

module R = ApplyToInt ( Id )
l et x : R. t = 5 ; ;

Figure 4: ApplyToInt functor example

OCaml functor signature for H

module ApplyToInt :
functor (F : functor (X : T) −> T)
−> sig type t end

OCaml type error:

This expression has type unit but is here used with type R.t = ApplyToInt(Id).t

SML/NJ functor signature for ApplyToInt

functor ApplyToInt ( functor F :
(X: sig type t end)
: sig type t end end)

: sig type t end

SML/NJ types x as R.t

Figure 5: A higher-order ApplyToInt functor fails to properly propagate types under Leroy’s ap-
plicative functor semantics. Consequently, the last line fails to typecheck.

it can only give the weakest signature, sig type t end (fig. 5). A-normalization gets the
program to typecheck but unnecessarily clutters up the code. Thus, in this sense, applica-
tive functors cannot be said to be fully transparent. The SML/NJ compiler has no such
restrictions.

The example in figs. 4 and 5 illustrates the fundamental problem with applicative func-
tors. They work well as long as the relationship between functor parameter and body is
simple, i.e., can be captured in the extended notion of a path with functor application or
a lambda lifted path. However, not all possible functors fit into this mold. Having to A-
normalize functor applications in itself is an unnecessary shortcoming. In contrast, true
higher-order functors propagate types across all transparent functor applications with no
change the source. The solution that MacQueen and Tofte [38] advocates is a re-elaboration
of the functor body given the actual argument module.

In instances such as the SymbolTable functor (fig. 6), applicative functors admit too
much sharing as noted by Dreyer [11]. Applicative functors would permit the symbols from
one SymbolTable ST1 to be used to index another ST2 despite the sealing of the functor
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signature SYMBOL TABLE =
sig

type symbol
val s t r ing2symbol : s t r i n g −> symbol
val symbol2st r ing : symbol −> s t r i n g
. . .

end
functor SymbolTable ( ) =
struct

type symbol = in t
val t ab l e : HashTable . t =

(∗ a l l o c a t e i n t e r n a l hash t a b l e ∗)
HashTable . c r e a t e ( i n i t i a l s i z e , NONE)

fun s t r ing2symbol x =
(∗ l ookup ( or i n s e r t ) x ∗) . . .

fun symbol2st r ing n =
( case HashTable . lookup ( tab le , n ) of

SOME x => x
| NONE => raise ( Fa i l ”bad symbol” ) )

. . .
end :> SYMBOL TABLE
structure ST1 = SymbolTable ( )
structure ST2 = SymbolTable ( )

Figure 6: SymbolTable functor example from Dreyer [11]

body to signature SYMBOL TABLE. Both OCaml and SML/NJ elaborators will make the
symbol type abstract, but it is only abstract with respect to external clients and not other
instances of SymbolTable. Because SymbolTable is applied to the same argument for both
ST1 and ST2, the two instances also share the same symbol type according to applicative
functor semantics. This behavior breaks an important abstraction. Generative functors are
more appropriate for enforcing the exact kind of abstraction desired. In contrast, applicative
functor semantics are appropriate for some purposes such as the Set functor in fig. 7 where
the type sharing of Item.item is desirable and it is acceptable to use items in Sets of the same
type interchangeably. However, it is debatable whether the Set functor is a common case.
I will argue that the set of programs for which true higher-order functors propagate types
is exactly those one would want to propagate types. In contrast, one should not propagate
types in the set Applicative functors - True HO functors. Dreyer [11] noted correctly that
applicative functors and non-fully transparent generative functors are incomparable. Neither
applicative nor true higher-order functors can subsume the other. However, there remains
the question whether the programs that propagate types under applicative functors but not
under true higher-order functors ought to have propagated the types in those cases.

The original criticisms of the MacQueen-Tofte semantics are the lack of support for true
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signature COMPARABLE =
sig

type item
val compare : item ∗ item −> order

end
functor Set ( Item : COMPARABLE) =
struct

type s e t = Item . item l i s t
val emptyset : s e t = [ ]
fun i n s e r t ( x : Item . item , S : s e t ) : s e t = x : : S
fun member (x : Item . item , S : s e t ) : bool =

. . . Item . compare (x , y ) . . .
. . .

end

Figure 7: Set functor example from Dreyer [11]

separate compilation and that the stamp-based operational semantics makes it difficult to
extend the module system and to reason about it. Many recent treatments of ML module
systems abandons true higher-order functors completely due to these issues. The claim is
that the type-theoretic presentations of the module system with applicative functors address
these problems. This dissertation will consider the question whether an operational semantics
account must necessarily be more complicated and if so, why. In contrast to recent work, this
dissertation will take true higher-order module behavior and my revised elaboration-based
semantics (figs. 18, 20, and 21) as the starting point for developing a formal semantics while
addressing these criticisms and concerns. My formalism follows the implicit semantics in
SML/NJ compiler which enriches the internal representation of functors and functor signa-
tures to express the static actions of the functor, thus not having to do a full re-elaboration
of the functor body. This approach will also yield some practical benefits. The SML/NJ and
MLton implementations have not kept up with the pace of the progress in module system
design at least partially due to the fact that most of the research has been a radical departure
from true higher-order module semantics. Reframing the state-of-the-art in terms of true
higher-order module semantics will bring recent developments closer a practical extension in
these production-quality compilers.

3.2 Full transparency and true separate compilation

The main issue I will study in this dissertation is the the exact nature of the tension between
true higher-order modules and separate compilation. Since MacQueen and Tofte introduced
true higher-order modules, many researchers [15, 30, 48] have studied how to downgrade
higher-order functors to regain true separate compilation, by which I mean Modula-2-style
separate compilation. Although Standard ML enjoys separate typechecking and compilation
for the most part, the MacQueen-Tofte re-elaboration semantics of true higher-order functors
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necessitates the availability of the functor body source at the point of functor application.
To workaround this limitation, SML/NJ uses cut-off incremental recompilation [1, 23] via a
powerful compilation manager CM [3]. Incremental recompilation, however, does not solve
the true separate compilation problem.

The separate compilation problem can be reframed as a completeness problem for the
signature language, i.e., can the source-level signature language adequately describe all possi-
ble modules including functors. Currently, the SML/NJ compiler elaborates module syntax
into internal semantic objects. These semantic objects are expressive enough to encode
the functor body relationships that eluded the source signature language. The source and
these semantic objects are then compiled to a predicative System Fω-like calculus [52]. This
suggests that an Fω-like calculus should be expressive enough to characterize all the static
semantic actions of functors.

Intuitively, true higher-order modules cannot be fully expressed in the syntactic signature
language because it is limited to definitional specs and type sharing. For example, there is
no way to express a functor signature for the apply functor that accounts for all sharing due
to full transparency. Therefore true higher-order modules cannot in general be separately
compiled. In particular, HO functor applications cannot always be separately compiled from
the functor definition. In the past, various researchers have approached this problem by
incorporating applicative functors into the language to varying degrees [2, 13, 31, 48] some-
times limiting the generative functors in the process. In this dissertation, I will argue that
applicative functors cannot replace true higher-order functors in the general case. Moreover,
if fully transparent generativity is the goal, then applicative functors only serve to support
true separate compilation in a limited number of cases.

Aside from describing the static semantic actions of HO functors, a signature language
supporting separate compilation needs a mechanism to ensure coherence of the abstract
types in imported modules. ML presently solves the coherence problem through a combina-
tion of type sharing constraints, definitional type specs, and where type clauses. In simpler
module systems, the problem of coherence is not as pronounced because compilation units
only import external units using definite references [54]. The current implementation for
type sharing constraints resolution, called instantiation, is a complicated process with a
considerable amount of folklore. Simply put, instantiation constructs the free instantiation
of a functor formal parameter that imposes the required amount of type sharing but no more.
The instantiation phase in SML/NJ imposes a semantics stricter than that of the Definition.
Instantiation guarantees inhabitability of signatures where the Definition does not. Although
Harper and Pierce [26] claim that type sharing constraints can be superseded by definitional
type specs in all cases, my study has identified examples (fig. 8) where this is not the case ab-
sent a mechanism for signature self-reference, e.g., structure M : S0 where type t = self.N.u.

Both Russo [48] and Swasey et al. [54] have suggested that the separate compilation
problem can be solved by identifying an alternate form of compilation unit, one that is not
a module. OCaml, in fact, already implements such a regime. However, in the presence of
true higher-order functors, these approaches merely punt on the real problem by compelling
the programmer to put otherwise independent modules together in a single compilation unit
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signature S0 = sig datatype s = A type t end
signature S1 = sig datatype u = B type v end

signature S3 =
sig

structure M : S0
structure N : S1
sharing type M. t = N. u and N. v = M. s

end

Figure 8: Criss-crossing type sharing constraints cannot be reduced to definitional type specifica-
tions or uses of where type.

and then abstracting over that unit. This dissertation will either prove definitely that true
higher-order functors and true separate compilation are incompatible or develop a module
system integrating these two features.

3.3 Signature calculus

Since the study of the true separate compilation problem points in the direction of the sig-
nature calculus, it will be fruitful to take this opportunity to reconsider the design of ML’s
signature language. After Harper-Lillibridge and Leroy, despite the continuing pace of the
development of ML module systems, the signature language generally did not see much at-
tention except for Ramsey et al.’s paper [46]. Ramsey et al. [46] describe a signature language
that includes operations for post hoc manipulation such as adding, removing, rebinding com-
ponents, and merging signatures. SML/NJ’s semantics for include is richer than the simple
syntactic inclusion found in the Definition [40]. In particular, certain kinds of compatible
signatures can be merged. In the SML/NJ 110.68 compiler, two signatures are compatible
when their overlapping specifications (i.e., specifications with the same name) have the same
arity and follow the rules summarized in table 1. However, the current compatibility rules
are inconsistent and incomplete. For example, merging an eqtype and a type specification
results in an eqtype in one direction and a type in the other as shown in fig. 9.

Despite its present incomplete state, SML/NJ can do the appropriate consistent merge
for Garcia et al.’s example (fig. 10). In the case of Garcia et al.’s example, the typechecker
needed to do is to note that the repeated components t and u due to inclusion are identical
specifications.

The SML/NJ semantics goes further and merges consistent yet unequal specifications
such as abstract types and datatypes. The merging semantics can be substantially improved
by making the table more symmetrical and adjusting some of the precedences to something
more sensible. Both Ramsey [46] and Dreyer and Rossberg [15] offer language support
for a signature calculus that can safely compose signatures, effectively permitting a kind
of multiple signature inheritance. Both accounts only model signature merging for a small
language without support to features such as eqtype and generative datatypes. In particular,
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signature S0 = sig eqtype t end
signature S1 = sig type t end
signature S2 = sig include S0 include S2 end

S2 : sig eqtype t end

signature S0 = sig type t end
signature S1 = sig eqtype t end
signature S2 = sig include S0 include S2 end

S2 : sig type t end

Figure 9: Unsound behavior of SML/NJ signature merging by include

type eqtype datatype deftype
type 3 eqtype 7 7

eqtype type 3 7 7

datatype 3 datatype 7 7

deftype 7 7 7 7

datatype withtype 3 datatype withtype 7 7

Table 1: SML/NJ 110.68 Signature elaboration consistent signature merging: 3 can be merged,
7 cannot be merged, otherwise indicates specs mergable but indicated spec takes precedence

a fine-grain merging of eqtype can be nontrivial. For example, it is safe to merge eqtype t
and datatype t = K where K is a data constructor. In contrast, merging eqtype t and
datatype t = K of int −> int is unsafe. Consistent merge rules of this flavor can already
be found elsewhere in the compiler, namely in signature matching. This dissertation will
develop a formal semantics for a safe but flexible consistent signature merging that covers
these features of ML.

The signature merging semantics found in Ramsey et al. is quite aggressive. In one
example (fig. 11), the merging semantics creates a new definitional type spec type u = t in
order to merge two signatures that disagree on an entangled value specification val x : t list
and val x : u list . This kind of aggressiveness likely goes beyond the intention or expectation
of the programmer. The programmer may have difficulty deciphering typechecking errors
relating to S2.u and S2.x after this point because of this aggressive induced type sharing. It
would be more sensible to have the typechecker complain that S0.x and S1.x are incompatible
value specifications because as far as the typechecker and programmer are concerned, S0.t
and S1.u are simply flexible type specifications.

Inspired by Ramsey et al., my study of signature calculi will go beyond the semantics of
consistent signature merging to consider the design implications of adding parameterized sig-
natures [27], signature variables, and related features to the ML signature language. The ML
signature language permits type definitions that may refer to general type expressions. Type
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signature S0 =
sig

type t
eqtype u

end

signature S1 =
sig

include S0
val x : i n t

end

signature S2 =
sig

include S0
val y : un i t

end

signature S3 =
sig

include S1
include S2

end

Figure 10: The naive macro expansion semantics of the Definition rejects S3. SML/NJ accepts
it. This example was derived from Garcia et al.’s GraphSig, IncidenceGraphSig, and VertexList-
GraphSig [20].

expressions may involve both primitive type constructors such as → and programmer-defined
type operators. It is the inclusion of type operators that gives the signature language much
of its expressiveness. The semantics of type sharing constraints differs significantly between
SML90 and SML97. Type sharing constraints could be imposed on two type constructors
without restriction in SML90. In SML97, the designers partitioned the semantics of type
sharing into type definitions which expressed sharing between an abstract type and an ar-
bitrary type expression, and regular type sharing constraints which can only be imposed
between two flexible (or primary) types whose names must be in scope.

A module system that permits both type definitions and type sharing constraints in signa-
tures introduces significant new complexity. For example, whereas in Leroy’s [32] TypModl
language, which only permits SML90-style definitional type sharing constraints and no type
definitions, type sharing constraints can be “normalized” by pushing them up the signature
and eliminated by turning them into type definitions, type sharing constraints cannot be
eliminated in a language that permits both type definitions and type sharing constraints.

In ML modules, structures can be arranged in a hierarchy. This feature enables flexible
namespace management. In contrast, signatures cannot be arranged in such a hierarchy.
Signatures must be defined at the top-level and can never be enclosed in any other signature
or module. For complex hierarchies such the SML/NJ’s Control module that contains layers
of submodules, the corresponding signature CONTROL and the signatures of the submodules
PRINT and ELAB are related only incidentally by occurrence in structure specifications in
CONTROL. This shortcoming in the signature language unnecessarily pollutes the signature
namespace and complicates browsing through and working with highly nested hierarchies.
It would be desirable to permit (transparent) signature specifications within signatures. For
added flexibility and perhaps increased expressiveness, it may be useful permit signature
definitions within structures and functors. Furthermore, in order for modules to match
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signature S0 =
sig

type t
type u
val x : t l i s t

end

signature S1 =
sig

type t
type u
val x : u l i s t

end

signature S2 =
sig

type t
type u = t
val x : t l i s t

end

Figure 11: This is an example from Ramsey et al. [46]. S2 is the merge (greatest lower bound) of
S0 and S1 according to their semantics.

structure M =
struct

type t = in t
type u = bool ∗ s t r i n g
val a : u ∗ t

end
signature S = s ign (M) removing u adding val b : t ∗ t

Figure 12: Accessing and modifying (via Ramsey et al. signature operations) an inferred signature

these signatures enriched with signature specifications, modules must permit corresponding
signature definitions.

Since the semantics of ML already supports the extraction or inference of module signa-
tures from the implementation, perhaps it makes sense to permit the programmer to operate
directly on the inferred signatures of implementations (modules) or generate/synchronize
module implementation based on the signature. Programmers often skip the step of writing
proper signatures for modules because the necessary notation is cumbersome and potentially
repetitive with respect to the module implementations of signatures. Some programming en-
vironments can help programmers automatically generate interfaces, but changes usually are
not propagated bidirectionally. Synchronization of modules and signatures is ill-defined in
the ML module system which supports a many-to-many relationship between modules and
signatures. However, this is exactly where the existence of a principal signature or of a
full signature might be useful. If programmers can leverage the structure of existing module
structure when writing signatures, this might lower the barrier of entry for programmers with
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existing non-modularized source thus providing a path to “gradual modularization”. For ex-
ample, in fig. 12 an inferred signature can be modified after the fact to serve as a template
for future structures without having to explicitly write out any signature. This signature
language will enable programmers to quickly integrate modular and non-modular code by
facilitating rapid construction of variations on inferred signatures. Admittedly, this feature
may run against the very spirit of splitting out explicit interfaces from implementations.

4 Related work

Module systems have generally followed either in the extralinguistic style of Modula and
Mesa or the functional style of ML. Dreyer and Rossberg’s recent module system leans
towards the extralinguistic style with the subtle mixin merge linking construct that serves
many roles including encoding functor application. Cardelli [7] brought some amount of
formalization to this ad hoc approach to modularity, but module systems in this style still
vary considerably in terms of semantics. Moreover, the extralinguistic semantics of linking
are typically fairly involved and delicate.

The ML module system has inspired a bevy of formalisms describing its semantics and
common extensions. These formalisms run the gamut from Leroy’s presentation based on
syntactic mechanisms alone, to Harper-Lillibridge [24] and Dreyer, Crary, and Harper’s [13]
type-theoretic approach, to the elaboration semantics approach as represented by the Defi-
nition [40]. As I have discussed at length in sec. 3.1, full transparency is a desirable property
for module system designs. Designs range from no support for transparency (type prop-
agation) such as non-propagating functors and complete support for MacQueen-Tofte full
transparency. In between are the various gradations,i.e., different combinations of applica-
tive and generative functors. Another important quality of the account of module system
design is the formalism used for expressing the semantics. In the early days, module sys-
tem semantics were quite ad hoc, each relying on their own peculiar notation and collection
of semantic objects [21, 56, 61]. Since then, there has been a strong move toward more
standardized logical frameworks that are more amenable to encoding in a theorem proving
system such as Isabelle/HOL and Coq [13, 24]. Curiously, the most recent accounts have
been moving back towards a semantic objects-based approach [12, 15]. Fig. 13 shows very
roughly where the major families of module system designs fall in relationship to each other
in terms of support for full transparency and adherence to some formal logic framework. In
the figure, it appears that the left-hand side has been well-explored. I will study the right-
hand side, and perhaps the upper-right-hand quadrant which represents a fully transparent
semantics in something close to a mechanized metatheory for Coq. This study will ideally
result in a module system design that reconciles a current understanding of fully transparent
functors with a simpler and more accessible semantics, a clear evolutionary step from the
state-of-the-art.

Besides the main module system features described earlier in this proposal, there are a
number of other useful properties developed in the different module languages. The phase
distinction [25] plays a fundamental role in ensuring that module systems can be type-
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A semantics is more standard in the sense that it uses more formal logic frameworks. It may
potentially be easier to mechanize the metatheory of such semantics.

Figure 13: The spectrum of major module system families

checked fully at compile-time. This property is desirable, being consistent with our goal of
static type safety. It says that a language, in this case a module, can be split into static and
dynamic parts such that the static part does not depend on the dynamic. Some accounts
of module systems respect phase distinction at the surface language level [31, 48]. Others
respect the phase distinction in an internal language but not the surface language [38].

The other key property in a module system design is the existence of a principal signa-
ture for modules. The term principal signature has been overloaded in meaning. Because
of the many-to-many relationship between signatures and modules and the signature sub-
typing relationship, many signatures may be safely ascribed to a single structure. I will call
the most precise signature for a structure (i.e., one that constrains all components of the
structure with exact, most constraining types) the full signature. A related concept is the
free instantiation of a functor formal parameter. The free instantiation is an instance of
the functor formal parameter signature S that admits exactly enough type sharing to satisfy
S and no more. In particular, it avoids any extraneous type sharing that would constrain
the free instantiation more than is necessary. What Dreyer [11] calls the principal signature
is the full signature in this terminology. Tofte defines principal signature of a signature ex-
pression sigexp as one whose flexible components (i.e., abstract types) can be instantiated
to obtain all instantiations of sigexp [40, 56]. I will adopt Tofte’s terminology.
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4.1 Type-theoretic approach

Beginning with Harper-Lillibridge’s translucent sums module calculus [24], this large, prolific
family of module systems pushed the state-of-the-art in terms of the type theoretic approach
to module system design. Although Harper-Lillibridge originally explored first-class modules,
the bulk of the research in this family was directed towards an applicative higher-order
module semantics for type-directed compilers TIL/TILT and adding recursion.

Crary et al. [8] and later Dreyer [10, 12] have explored adding support for recursion.
Harper-Lillibridge [24] and then Russo [49] studied mechanisms for making modules first-
class entities in the core language. With first-class modules, programmers can leverage
the familiar module system to take advantage of the System F-like power of the module
system for programming-in-the-small. Unfortunately, as Garcia [20] remarks, the syntactic
overhead of the ML module system makes this undesirable and impractical. When used in a
similar context, Garcia suggests that the type inference used for type classes makes modular
programming-in-the-small more succinct. This observation holds only in specialized use case
of type classes.

4.2 Syntactic paths approach

One of the first formal accounts of an ML-like module system is Leroy’s manifest types
calculus [30] where manifest types are definitional type specifications. The surface language
for the manifest types calculus is equivalent to that of the translucent sums calculus described
by Harper-Lillibridge. The key observation in the manifest types calculus is that one can
typecheck manifest types by comparing the rooted syntactic paths to those types which
uniquely determine type identity. Thus, type equivalence is syntactic path equivalence.
Leroy introduced the notion of applicative functors which held types in the result of a functor
application to be equivalent to corresponding types in all other results of applications of that
functor to the “same” argument [31]. There is a design space for module equivalence, from
static equivalence to full observational equivalence. Several designs [13, 48, 53] have tried
to incorporate both applicative and generative functors in a single calculus. Cregut [9]
enriched signatures with structure equalities to obtain complete syntactic signatures for
separate compilation.

Leroy introduces a relatively simple approach to module system semantics that precludes
shadowing of core and module bindings [32, 33]. The semantics supports type generativity
and SML90-style definitional sharing by reducing them to solving path equivalence by way
of A-normalization (for functor applications) and S-normalization (a consolidation of sharing
constraints by reordering). In his module system, Leroy claims that all type sharing can be
rewritten in his calculus with generative datatypes and manifest types. However, Leroy’s
simplified module system does not include value specifications and datatype constructors
both of which can constrain the order in which specifications must be written and therefore
result in situations where sharing constraints cannot be in general reduced to manifest types.

For full transparency, Leroy proved that there is a type-preserving encoding of a stratified
calculus with strong sums without generativity using applicative functors [31], claiming that
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f is a fresh higher-order dependency variable

Γ,W ` type t ⇒ ((t 7→ f(W), ∅), {f})

Figure 14: Biswas’s elaboration rule for abstract type specifications: Γ is the type environment
mapping program variables to types. W is a list of formal parameters variables the specification
may depend on.

the existence of such an encoding is a strong hint that applicative functors support full
transparency. My HO apply functor example in fig. 4 casts some doubt to this claim. As
Leroy pointed out, under the strong sums model, first-class modules is at odds with phase
distinction because of the typechecker would have to do arbitrary reductions [30]. In contrast,
because the weak sum model of the manifest types calculus does not require any reductions
at typecheck time regardless of the presence of first-class modules, it does not violate the
phase distinction [30]. In the most recent paper in the manifest types series [33], Leroy
abstracts away most of the core language details from the manifest calculus to obtain a
mostly core language independent module system.

Shao [53] offers a signature language based on gathering (and internally factoring out) all
flexible components (i.e., abstract type components unconstrained by sharing) in a higher-
order type constructor that can be applied to obtain a signature that expresses functor body
semantic actions at a later point. The resultant signature language superficially resembles
applicative functors. However, type constructor applications in the signature language must
be on paths. Consequently, it does not support full transparency in the general case.

Although the syntactic paths approach may very well provide the simplest account of
module systems, this is at the cost of some very fundamental shortcomings such as the
inability to support shadowing and full transparency. Because the account’s support for
type sharing is incomplete, there may also be limits to how the semantics deals with the
coherency issue. The proposed dissertation will address these issues which are fundamental
to the power of the ML module system.

4.3 Moscow ML

Biswas gave a static semantics for a simpler form of higher-order modules [2]. The account
relies on semantic objects and a stamp-based semantics similar to the Definition. The type
propagation in higher-order functors is captured by a “higher-order” dependency variable
that abstracted possible dependencies on the argument. These variables are only present
in the internal language produced during elaboration. Consequently, Biswas’s semantics
does not support true separate compilation and neither does it enrich the surface syntax for
signatures. Biswas’s elaboration rule in fig. 14 maps an abstract type name t to the fresh
higher-order abstract dependency variable f applied to the list of all abstract dependency
variables W it could possibly depend upon. For example, the functor parameter of the Apply
functor, functor F(X:sig type t end): sig type t end, is given the semantic representation
∀f0({t 7→ f0} ⇒ {t 7→ f1(f0)}).

Biswas’s formal account was extended in a somewhat more type-theoretic style to the full
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SML language and implemented by Russo in the Moscow ML compiler. Moscow ML also
adds support for first-class modules [49] and a form of recursion [50]. This family of semantics
attempts to incorporate both non-propagating generative functors and applicative functors.
The main limitation, as pointed out of Dreyer [11], is that Moscow ML’s combination of
generative and applicative functors is unsound. In particular, any generative functor can
be η-expanded into an applicative functor thereby circumventing the generative functor
abstraction.

4.4 Units and other extralinguistic linking system

Flatt-Felleisen [19] and Owens-Flatt [43] develop a module system semantics based on a
calculus with stratified distinct hierarchically composable modules and recursively linkable
units. Because both accounts appeal to extralinguistic linking semantics, they fall under
the Module/Mesa line of module systems. As pointed out of Dreyer [15], the fundamental
limitation in this semantics is that the stratification of units and modules makes precludes
using unit linking and hierarchical composition together. One strength of their module
system design is that it is one of the few accounts that includes an operational dynamic
semantics, unlike all the other accounts discussed in this section. All other accounts of
module systems merely give a static semantics and perhaps a typechecking algorithm which
they prove is sound with respect to the static semantics. Owens and Flatt prove type
soundness of their semantics.

Swasey et al. [54] described a calculus SMLSC that is modeled after Cardelli’s linkset
approach to separate compilation. SMLSC introduces a compilation unit that sits on top of
the module system that can be separately compiled from unimplemented dependencies by
means of a handoff units whose role resembles that of header files in C.

4.5 The Definition and MacQueen-Tofte

The Definition of Standard ML [39,40] semantics for the module system evolved throughout
the late 1980s and early 1990s. Early on, Harper et al. gave a fairly complete account of
the static semantics of the first-order ML module system in terms of an operational stamp-
based semantics [22]. Tofte proves that signature expressions in the first-order, generative
semantics have principal signatures in his thesis [55]. He also extended this proof to cover
non-propagating higher-order generative functors [57]. Then MacQueen and Tofte introduced
true higher-order functor semantics [38].

Apart from type propagation transparency issues, the evolution of the Definition also
addressed other key issues type sharing issues. The role of type sharing constraints has
evolved through the development of the Standard ML semantics and SML/NJ implementa-
tion. Type sharing constraints solve two problems in ML, type specification refinement and
coherence. Originally, type specifications only declared the name of an expected type. It is
quite useful to be able to refine type specifications to restrict it to particular definite types.
The coherence problem is the challenge of constraining type components of two structures
which may or may not be identical to be equivalent regardless of the actual identity of that
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type. In SML90 [39], explicit sharing equations among visible abstract types and generative
structure sharing served as the sole means for constraining type specifications. Under gener-
ative structure sharing semantics, each structure had a unique identity. Thus, two structures
shared only when they were identical in the sense that they were defined at the same point
in the program and are merely aliases (fig. 15). Structures that shared in this sense were
equivalent both statically and dynamically. This kind of rich sharing semantics turned out
to be quite complicated and was soon abandoned in favor of a structure sharing that simply
reduced to type sharing constraints on the type specifications inside the signature.

SML93 introduced definitional type specifications, giving programmers two ways for con-
straining types to definite ones. SML97 added where type and definitional type specifica-
tions completely replaced the definitional type sharing found in SML90. Definitional type
specifications and type sharing were finally disentangled. Generative structure sharing was
eliminated in favor of the simpler semantics of a structural sharing that amounted to a type
sharing equation for each common type specification, no matter how deeply nested. The
semantics of type sharing and related mechanisms such as where type are still somewhat
problematical and unsettled [41, 46]. Type sharing as it stands gives rise to a delicate and
non-obvious resolution algorithm, instantiation. Ramsey et al. has argued that the scoping
of where type definitions should be more symmetric thereby permitting more flexible type
specification refinements.

Shao [52] (in a paper unrelated to the one on applicative functor-like module system [53])
extends MacQueen-Tofte fully transparent modules with support for type definitions, type
sharing (normalized into type definitions), and hidden module components. This treatment
of higher-order modules is a more recent form of what is currently in the SML/NJ compiler.
Elsman presents a module system compilation technique used in the ML Kit compiler [17].
The semantics follows the style of the Definition. The compilation technique is comparable
to Shao’s FLINT compilation scheme.

The SML/NJ compiler implements a version of the module system that departs from
the Definition in a number of aspects. Some of these extensions have not been formalized
as of yet. In particular, the compiler has a richer semantics for include and the elaborator
now compiles a functor body to a static lambda calculus which is what is used in place of
the actual functor body during the re-elaboration at application. The scoping of sharing
constraints has also changed. In the current implementation, SML/NJ no longer permits
nonlocal forms of sharing of the flavor illustrated in the example in MT (fig. 16). Instead,
structure definitions express the same kind of sharing. The module system also has some
significant limitations such as recursion, the tension between separate compilation and fully
transparent generative functors, and the limited signature language.

4.6 Alice ML

Alice ML provides a number of the features mentioned in this proposal especially in the
area of signature language enrichments. The language supports nested signatures of both
varieties: those that must be repeated in the signature for the enveloping structure and those
that are abstract. The abstract signatures do not, however, appear to be complemented with
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signature S0 =
sig

type t
val f : t −> t
val s t a t e : t r e f

end

functor F(X: sig
structure A : S0
structure B : S0
sharing A = B

end) = . . .

functor G() =
struct

type t = uni t
val f = . . .
val s t a t e = r e f 0

end

structure M0 = G()
structure M1 = G()
structure M2 = M0

structure M3 = F( struct
structure A=M0
structure B=M2

end)

structure M4 = F( struct
structure A=M0
structure B=M1

end)

Figure 15: Under SML90 identity-based structure sharing, A and B have to be aliases, so the
functor application at M4 fails to typecheck. Under SML97, the sharing constraint merely rewrites
to sharing type A.t = B.t, thus both functor applications typecheck.
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structure S = struct end ;
signature SIG =
sig

structure A : sig end
structure B : sig end
structure C : sig end
sharing A = S
sharing B = C

end

Figure 16: In the current implementation of SML/NJ, the first kind of sharing constraint is no
longer permitted. Both sides of the constraint must be in local scope as is in the second sharing
constraint.

any bounded polymorphism features.

4.7 MixML

Dreyer and Rossberg [15] show how to encode ML signatures, structures, and functors in a
mixin module calculus that appeals to something similar to Bracha’s merge [4] as its only
linking mechanism. When linking a module A and B, the semantics tries to satisfy the
imports of A using the exports of B and vice versa. The mixin merging syntax is link x=M0
with M1 in the surface language. It binds the name x to a module M0 and concatenates
it with M1 merging components where appropriate. The scope of x is the body of M1.
This mixin merging semantics supports recursion and separate compilation. Modules in this
language consist of atomic modules that only contain values, types, type constructors, etc.,
labeled modules ({` = M}), and the merging form link ... with ....

The peculiarity in this language is that modules and indeed anything that can be encoded
in these modules are stateful. For example, signatures in MixML are fundamentally stateful.
Linking against a signature S mutates it. Consequently, the typechecker rejects the following
program.

module U = l i n k x={module S = {type t }}
with {module A=( l i n k x=x . S with {type t = in t } ) ,

module b=( l i n k x=x . S with {type t = bool } )} ;

Signatures must be suspended and then new’ed in order to be matched multiple times. This
suspension is called a unit in Dreyer and Rossberg’s terminology. Functors are also repre-
sented by suspending modules with unsatisfied imports. Although units have full support
for hierarchical composition, MixML’s design still retains the problem of stratifying modules
and units, a problem inherited from the Flatt-Felleisen units that inspired it.

As it stands, the part of the MixML language that encodes the ML module system is
but a small fraction of the whole. The question remains what implications the rest of the
language has. Part of the language is obviously semantically meaningless such as link X =
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[int] with [3], which is a well-formed program. The approach that the proposed dissertation’s
semantics will take is to extricate the part of MixML that encodes the ML module system
and hopefully simplify the semantics by omitting the rest of features. One feature I think is
worth pursuing is the fact that in MixML signatures can be composed together. In ML, one
can only project on modules. MixML [15] loosens this restriction by conflating signatures
and modules. Signatures can be projected out of an enclosing signature.

4.8 First-class polymorphism inference and type classes

Jones [28] motivated first-class polymorphism (FCP) by appealing to the constructive logic
tautologies for existentials, universals, and implication [28]. I observed that the constructive
logic rule 〈w, τw〉 → τ ′ ↔ w ⇒ τw → τ ′ corresponds to the FLINT transformation (currying)
in the forward direction and an uncurrying operation, perhaps a kind of module inference.
At any rate, I would like to investigate the use cases for FCP where modules would be
sufficient. More recent first-class polymorphic calculi such MLF [29] and FPH [58] add some
limited type inference. Although inference in general may be undecidable, these limited
inferencers still go a long way to make programming in these first-class polymorphic calculi
more practical. If some of the ideas for inference for FCP calculi can be transferred over to
a module calculus, one might also address the syntactic overhead of ML module systems.
Adding FCP to the core introduces a certain amount of redundancy with respect to the FCP
afforded by the module system. It would be useful to consider what exactly is redundant
and whether that can be minimized.

Another language construct related to module systems that enjoys type inference is the
type class. Type classes are a special case of modular programming where a kind of automatic
deduction would be useful. Unfortunately, the scope of class instances are global. In Modular
Type Classes, Dreyer et al. [14] develop semantics and a translation from type classes to a
stylized use of the ML module system. I hypothesize that the type inference features of type
classes might be able to be “back-ported” to module systems.

4.9 Summary

Not all module system designs enjoy the principal signature and phase distinction properties.
Fig. 17 summarizes the key features of the main ML-like module system families. Note that
many module systems have various combinations of these features, but none are complete.
Ideally, a module system would have true higher-order semantics and all the other features
except for applicative functors which would be redundant.

5 Methodology

Informed by MixML, MacQueen-Tofte semantics, and FLINT semantics as the main sources
of inspiration, my dissertation research will define a new formal semantics (including a dy-
namic semantics) and type system for true higher-order module system based on the current
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System higher-order first-class sep comp rec app gen phase
HL [24] 7 3 3 7 7 7 3

Leroy [31] 7 7 3 7 3 7 3

Russo [50] 7 3 3 3 3 3 3

DCH [13] 7 3 7 7 3 3 3

RMC [12] 7 7 7 3 7 3 3

MT [38] 3 7 7 7 7 3 3

MixML [15] 7 3 3 3 7 3 7

Ideal 3 3 3 3 7 3 3
higher-order = true higher-order
rec = recursive modules
app = applicative functors
gen = non-propagating generative functors
phase = respects the phase distinction

Figure 17: A comparison of major ML-like module systems

module system design in the SML/NJ compiler. The semantics will clarify and extend the
implicit compiler semantics. Part of this study will include experimental prototypes eval-
uated according to the design criteria outlined above. This prototype module system will
validate the practicality of the formal design. The prototype will include a module language
elaborator including typechecker and basic compilation into a suitable typed intermediate
language.

Through the course of formalizing the module system, the dissertation will establish type
soundness of the module language for the dynamic semantics and type system in the style
of Owens-Flatt but for the more powerful ML module system. Moreover, it will precisely
define full transparency, separate compilation, and the relationship between the two. The
hypothesis is that these two features are mutually exclusive because I conjecture that type-
checking a signature language powerful enough to encode all possible relationships between
functor parameter and body would be undecidable. If the hypothesis turns out to be false,
then the dissertation should develop a signature calculus powerful enough to represent all
possible static semantic actions of higher-order functor application. The final component of
the dissertation will be the decidability and soundness of the signature calculus typechecking.

5.1 Primary and secondary components

SML/NJ’s implementation of elaboration and translation into the FLINT language offers
some unique insight into the semantics of the module system. These insights are not merely
implementation choices or details. They reflect novel fundamental issues in the design and
understanding of module systems. In studying translation, it has become clear that not
all abstract type components are equal. The form of a functor argument is constrained
by the functor parameter signature possibly modified by a where type definition. In the
parameter signature, there can be structure specifications, formal functor specifications,
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structure/type sharing constraints, and two classes of type specifications. Type specifications
may be abstract or definitional. Abstract type specifications that remain abstract after the
elaborator resolves all sharing and where type constraints are called flexible or primary
components. These primary type components are those essential components that must be
kept to maintain the semantics of functor application (i.e., the type application associated
with the functor application). The specific function of primary type components is to capture
a canonical representative of an equivalence class of abstract types induced by type sharing
constraints. Each equivalence class has exactly one primary type component that serves as
a representative element. References to all other members of the equivalence class should
be redirected to the associated primary type component. The remaining type components
are secondary and therefore should be fully derivable from the primary components and
externally defined types. Secondary types do not have to be explicitly represented in the
parameter signature because all occurrences of these secondary types can be expanded out
according to their definitions.

functor F( type s
type t
type u = s ∗ t
sharing type t = s ) = . . .

In the above example, s can be primary, representative for the equivalence class containing
both s and t, and u is secondary.

6 Conclusion

ML module systems have evolved throughout the last decade by avoiding the implications of
true higher-order functors and adopting a combination of applicative and opaque generative
functors. At the cost of the complexity of two coexisting kinds of functors and the loss
of some abstraction power, recent module systems gained true separate compilation. This
dissertation will revisit true higher-order functors, motivated by the search for the exact
nature of the relationship between true higher-order functors and true separate compilation.
Because the problem of true separate compilation concerns the expressiveness of the signature
calculus, I will also take this opportunity to revisit the ML signature calculus and extend it
to support more flexible modular software composition.
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A Initial progress on formal semantics

The following is a summary of an initial progress on the formalization of the true higher-order
module semantics found in SML/NJ 110.60+. It is a work-in-progress. Fig. 18 summarizes
the surface module calculus. It supports higher-order functors, sharing constraints, eqtype,
and exception specifications. Figs. 19, 22, and 23 give the first few rules of the elaboration

31



d ::= signature s = sig{spec}
| local d in d end
| ld

ld ::= structure X = m

| functor F (X : sigexp) cnstr = m

| val x = e | type α t = τ

| local ld in ld end
| open q

m ::= q | struct{ld} | q arg | let d in m end
| m : sigexp | m :> sigexp

arg ::= (d) arg | (m) arg | (m) | (d)
cnstr ::= : sigexp | :> sigexp

sigexp ::= s | sig{spec} | sigexp where type α q = τ

spec ::= structure q : sigexp[= q]
| functor q (X : sigexp) : sigexp
| type α t[= τ ] | val x : τ | sharing type p = p

| sharing p = p | exception exn

| eqtype α t[= τ ]
τ ::= τ → τ | int | t

Figure 18: Module surface language: Design caveat – In SML/NJ the AST permits signature
declarations within structures. The parser, however, does not support this. The surface language
follows the parser. The implementation AST has an Abstract Structure form, but the parser does
not seem to ever produce it.

semantics. More importantly, fig. 20 gives the internal module representation including for
higher-order functors and the static lambda calculus of entities. Fig. 21 describe how entities
are evaluated.
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Γ ` d1 ⇒ (d1, entdec1,Γ1,∆1)
Γ⊕ Γ1 ` d2 ⇒ (d2, entdec2,Γ2,∆2)

Γ ` local d1 in d2 end
⇒ (local d1 in d2 end, entdec,Γ2,∆)

(local)

Γ ` type α t = τ ⇒ (, entdec,Γ,∆)
(type)

Γ ` sig{spec} ⇒ (sig{spec}, •,Γ′, ∅)
(sig)

Γ ` struct{ld} ⇒ struct{ld}
(structure)

Figure 19: Static Semantics
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Realization expression
ϕ ::= ρ entity path

| χ structure entity
| (µ, η) stamping
| θ(ϕ) functor application
| ϕ ↓ Σ abstraction matching
| let η in ϕ local definition
| Ξ formal functor body
| ρ.ϕ . ϕ constraint

η ::= ρ, t | ρ, strid = ϕ | ρ, θ entity declarations
θ ::= λρ.ϕ | ρ | let η in θ | ψ functor expression
Σ ::= 〈m,x, x = spec, typs, strs〉

spec ::= ρ : Σ str no def
| ρ : Ξ functor
| τ semantic tycon
| datacon

| ρ : Σ =ρ Σ str const def
| ρ : Σ = Σ;ϕ str relative def

υ ::= ψ | χ entity
ψ ::= Jλρ.ϕ; ΥK functor entity
χ ::= JΥK structure entity

| JΣ; ρK strsig
Ξ ::= 〈Σp, ρ, x,Σr〉 functor signature
Θ ::= • | (Ψ, ρ, ρ,Θ) entity path context
t ::= ρ | Const τ | Formal τ tyc expression
µ ::= new | get ϕ stamp expression

Θ⊕ ρ , (Ψ, ρ1ρ, ρ2,Θ) Ψ : → ρ

σ : sp→ µ Entity Env Υ : ρ→ υ

Figure 20: Module Representation
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Υ;Θ ` ϕ ⇓ (ϕ,∆Υ)
ψ = Jm,λρ.ϕ,Υ, rpK Υ[ρ : χ]; Θ `• ϕ ⇓ (ϕ′,∆Υ)

Θ ` ψ(χ) ⇓ ϕ′ (evalapp)

Υ;Θ ` ρ ⇓ (Υ(ρ),Υ)
(fctvar)

Υ;Θ ` ψ ⇓ (ψ,Υ)
(fctconst)

(m new)
Υ;Θ ` λρ.ϕ ⇓ (Jm,λρ.ϕ, rpK,Υ)

(fctλ)

Υ;Θ ` η ⇓ Υ′ Υ′; Θ ` θ ⇓ (ψ,Υ′′)
Υ;Θ ` let η in θ ⇓ (ψ,Υ′′)

(fctlet)

Υ;Θ `ρ ϕ ⇓ (χ,Υ′)
Υ;Θ ` ρ, strid = ϕ ⇓ Υ′[ρ : χ]

(decstr)

Υ;Θ `tyc ρ, t ⇓ τ
Υ;Θ ` ρ, t ⇓ Υ[ρ : τ ]

(dectyc)
Υ;Θ ` θ ⇓ (ψ,Υ′)

Υ;Θ ` ρ, θ ⇓ Υ′[ρ : ψ]
(decfct)

Υ;Θ `ι ρ ⇓ (Υ(ρ),Υ))
(strvar)

Υ;Θ `ι χ ⇓ (χ,Υ)
(strconst)

Θ′ = Θ⊕ ι Υ;Θ′ ` µ ⇓ m Υ;Θ′ ` η ⇓ Υ′

Υ;Θ `ι (µ, η) ⇓ (Jm,Υ′, rpK,Υ)
(strstp)

Υ;Θ ` θ ⇓ (ψ,Υ′)
Υ′; Θ `ι ϕ ⇓ (χ,Υ′′) Θ′ ` ψ(χ) ⇓ ϕ′

Υ;Θ `ι θ(ϕ) ⇓ ϕ′ (strapp)

Υ;Θ ` η ⇓ Υ′ Υ′; Θ `ι ϕ ⇓ (χ,Υ′′)
Υ;Θ `ι let η in ϕ ⇓ (χ,Υ′′)

(strlet)

Υ;Θ `ι ϕ ⇓ (χ,Υ′) . . .

Υ;Θ `ι ϕ ↓ Σ ⇓ (χ′,Υ′)
(strabs)

Υ;Θ `ρ ϕ ⇓ (χ,Υ′) Υ;Θ′ ⊕ ρ : χ ` ϕ′ ⇓ (χ′,Υ′′)
Υ;Θ `ι ρ.ϕ . ϕ′ ⇓ (χ,Υ′′)

(strcstr)

ι ::= • | ρ

Figure 21: Entity semantics
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ρ fresh
Γ;Θ `spc X : Σ ⇒ (Γ[X : Σ; ρ], ρ : Σ)

(strspec)

ρ fresh

Γ;Θ `spc X : Σ = spath

⇒ (Γ[X : Σ; ρ], ρ : Σ = Θ(Γ(spath)))

(strspec-def)

Γ;Θ `sig sigexpp ⇒ Σp ρp fresh
Γ[X : Σp; [ρp]]; Θ `sig sigexpr ⇒ Σr

Γ;Θ `spc (X : sigexpp) : sigexpr
(fctspec)

Γ;Θ `spc spec⇒ Σ X = SpecNames(spec)

Γ;Θ `sig sig{spec} ⇒ 〈X : Σ, typs, strs〉
(sig)

Figure 22: Signature elaboration

Θ′ = Θ⊕ ι Γ;Υ; Θ′ `dcl ld⇒ (td, entdcl,Γ′,Υ′)
Σ = 〈m, elems, [], []〉

Γ;Υ; Θ `ι
str struct{ld}

⇒ (Σ = let Σ;ϕ in locs,Σ, (new, η))

(strdec)

ρ fresh ψ = Γ(sp)
Γ;Υ; Θ `ρ strexp⇒ (argDec, argStr, argExp,∆Υ)

Γ;Υ; Θ `ι sp(strexp)
(strapp)

Figure 23: Module elaboration
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