
REU 2012 - Problems
Puzzle Problems Sheet

Instructor: László Babai e-mail: laci@cs.uchicago.edu
Sun, June 24

1. ♥ (Balancing numbers) Suppose we have 13 real numbers with the following property:
if we remove any one of the numbers, the remaining 12 can be split into two sets of 6
numbers each with equal sum. Prove: all the 13 numbers are equal. (Hint: first assume all
the numbers are integers.)

2. ♥ (Dividing a rectangle) A large rectangle is cut up into a finite number of smaller
rectangles. (All edges are either horizontal or vertical.) Suppose each of the smaller
rectangles has at least one side of integer length. Prove that the same holds for the large
rectangle.

3. ♥ (Spreading Infection) Some of the 64 cells of a chessboard are initially infected.
Subsequently the infection spreads according to the following rule: if two neighbors of a
cell are infected then the cell gets infected. (Neighbors share and edge, so each cell has at
most four neighbors.) No cell is ever cured. What is the minimum number of cells that
need to be initially infected to guarantee that the infection spreads all over the chessboard?
It is easy to see that 8 are sufficient in many ways. Prove that 7 are not enough. (This is
an AH-HA problem. The main idea of a clear and convincing solution can be summarized
in a single 9-letter word.)

4. ♥ (Polynomials with prime exponents) Prove: every polynomial f(x) 6= 0 has a
multiple g(x) = f(x)h(x) 6= 0 in which every exponent is prime. (So g(x) has the form∑

p apx
p where the summation is over primes.)

5. ♥ (Dominoes) Prove: if we remove two opposite corners from the chessboard, the board
cannot be covered by dominoes. (Each domino covers two neighboring cells of the chess-
board.) Look for an “AH-HA” proof: brief, convincing, no cases to distinguish.

6. ♥ (Triominoes) Remove a corner cell from a n × n chessboard. We attempt to tile the
rest of the board by triominoes. (A triomino is like a domino except it consists of three
squares in a row; each square can cover one cell on a chessboard. Each triomino can either
“stand” or “lie.”) There is certainly no such tiling when n ≡ 0 (mod 3), and it is easy to
find such a tiling when n ≡ 1 (mod 3). Prove that no tiling exists when n ≡ −1 (mod 3).
Find an “Ah-ha” proof.

7. ♥ (*Band-Aids* - László Surányi) Consider three pairwise adjacent faces of an n×n×n
cube. For what values of n is it possible to tile the three faces with 3× 1 “band-aids”? A
band-aid may wrap around and edge, but cannot bend (see Fig. 1).

8. ♥ (Cleaning the corner - Tom Hayes) We label the cells of the positive quadrant (the
“game board”) by pairs of integers {(i, j) : i, j ≥ 0}. The neighbor to the North of cell
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Figure 1: Two possible positions of a “band-aid” tile.

(i, j) is cell (i + 1, j); the neighbor to the East is cell (i, j + 1). The corner cell is (0, 0).
The Manhattan distance between cells (i1, j1) and (i2, j2) is |i1 − i2|+ |j1 − j2|.
Chips are placed on some of the cells, at most one chip per cell. Cells can be “cleaned” in
the following manner: suppose a chip is on cell (i, j). If both its neighbor to the North and
its neighbor to the East are empty, we can remove the chip from (i, j) and place a chip on
its neighbor to the North and another chip on the neighbor to the East.

Initially we put a chip on cell (0, 0); otherwise the game board is empty. We wish to clean
the corner, i. e., we wish to achieve, by a sequence of cell-cleaning moves, that there be no
chip left within Manhattan distance d from the corner. Prove that this is impossible (a)
for d = 3; (b) for d = 2.

Hint: potential function: assign a real number to every configuration by assigning weights
to each cell; the “potential” of the configuration will be the total weight of occupied cells.
Make this assignment such that the potential never increases when we clean a cell; and the
initial potential (the weight of cell (0, 0) be greater than the total weight of all cells outside
the immediate neighborhood of the origin).

9. ♥ (North versus South) On an infinite square grid with horizontal Equator, the well-
equipped North invades the defenseless South. However, North’s troop movements come
at a heavy cost, partly due to treacherous terrain (swamps, jungles, and such). Initially,
North is permitted to position any number of soldiers above the Equator, at most one
soldier per square. No new soldiers are added later; but soldiers can move as follows. If
soldier X is adjacent to soldier Y , then X may ‘jump over’ to the other side of Y if that
square is unoccupied, but as a consequence Y is removed from the board. Adjacency is
vertical, horizontal, or diagonal (8 directions).

(a) Show that North’s troops cannot get further than 100 squares south of the Equator.

(b) Show that North’s troops cannot get further than 9 squares south of the Equator.
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Hint: potential function.

10. (Rational indepedence) Show that {1,
√

2,
√

3} are linearly independent over Q.

11. (*More rational independence*) Show that {√p | p is prime} are linearly independent
over Q. Show further that {

√
n | n is squarefree} are linearly independent over Q. Recall

that n is squarefree if it is a product of distinct primes.

12. (Points in general position) Find a continuous function f : R → Rn so that for all
α1 < α2 < · · · < αn with αi ∈ R, the vectors {f(α1), . . . , f(αn)} are linearly independent.

13. ♥ (Generalized Fisher Inequality) Let k be a positive integer. Suppose A1, . . . , Am
are distinct subsets of [n] = {1, 2, . . . , n} such that |Ai ∩ Aj| = k for all i 6= j. Show that
m ≤ n. (Hint. (R. C. Bose, 1949) The incidence vectors (“membership vectors”) of
the Ai are linearly independent.)

14. (Erdős-de Bruijn families)

(a) We call a collection of sets A1, . . . , Am ⊆ [n] an Erdős-de Bruijn family if |Ai ∩ Aj| = 1
for all i 6= j. Find an Erdős-de Bruijn family with m = n = 7 and such that |Ai| = 3
for all i.

(b) (Challenge) For each prime p, find an Erdős-de Bruijn family with m = n = p2+p+1
and |Ai| = p+ 1.

15. ♥ (Mod p complex numbers) For which primes p does the set Fp[i] = {a+bi : a, b ∈ Fp}
form a field (where i2 = −1)? (Experiment, notice simple pattern, conjecture, prove.)

16. (Finite commutative ring) Prove that a finite commutative ring R is a field if and only
if |R| ≥ 2 and for all a, b ∈ R, the equality ab = 0 holds if and only if a = 0 or b = 0.

17. (Minimal subfield) If F is a field, a subfield is a subset H ⊆ F so that 1 ∈ H and H
is closed under the four arithmetic operations. Show that every field F contains a unique
minimal subfield H; and show that either H ∼= Q or H ∼= Fp for some prime p. In the
former case we say that F has characteristic zero; in the latter case, characteristic p.

18. (Polynomial gcd) Suppose that f, g ∈ F [x] are polynomials over a field F . Show that
there exist u, v ∈ F [x] so that fu+ gv = gcd(f, g).

19. ♥ (Inscribed polygons) Suppose that a regular n-gon with vertices A0, A1, . . . , An−1 is
inscribed in the unit circle. Prove that

n−1∏
i=1

A0Ai = n.

(Hint: Use polynomials and complex numbers.)
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20. ♥ (Random relative primes) Show that the probability that two random positive inte-
gers are relatively prime is 6/π2. What does this question mean?

To give a meaning to the question, consider the probability pn that two positive integers
less than n are relatively prime. Explicitly, we have

pn =
|{a, b | a, b ∈ [n] and gcd(a, b) = 1}|

n2
.

Let p = limn→∞ pn be the probability that “two random numbers are relatively prime.”
Show that p = 6/π2. (Assume first that the limit exists.)

21. (Real polynomial roots) Show that every real polynomial of odd degree has a real root.

22. (Rational irreducibility) Show that 1 + x + · · · + xp−1 is irreducible over Q for every
prime p.

23. (Gauss lemma) (#1) Note that if f, g ∈ F [x] are non-zero polynomials then f · g is also
non-zero. Use this fact to prove that if f, g ∈ Z[x] are primitive, then f ·g is also primitive.
Recall that an integer polynomial a0+a1x+· · ·+anxn is primitive if gcd(a0, a1, . . . , an) = 1.
(#2) Use (#1) to prove: if f ∈ Z[x] has a nontrivial factorization over the rationals then
it has a nontrivial factorization over the integers.

24. (Schönemann-Eisenstein irreducibility criterion) (a) If f(x) = a0+a1x+· · ·+anxn ∈
Z[x] and there exists a prime p so that p - an, p2 - a0, and p | ai for i = 0, . . . , n− 1, then
f is irreducible over Q. (b) Use this to prove that (xp − 1)/(x− 1) is irreducible.

25. ♥ (More irreducible polynomials) Let a1, . . . , an be distinct integers. Prove that

f(x) =
n∏
i=1

(x− ai)− 1

is irreducible over Q. Hint: use Gauss Lemma #2.

26. (Yet more irreducible polynomials) Let a1, . . . , an be distinct integers. Prove that

g(x) =

(
n∏
i=1

(x− ai)

)2

+ 1

is irreducible over Q.

27. (Irreducibility over finite fields) Let p be a prime and n a natural number.

(a) Prove that there is an irreducible polynomial over Fp of degree n.

(b) (b) Prove that if pn is large then roughly a 1/n fraction of all monic polynomials of
degree n over Fp are irreducible.

28. (Galois fields) (a) Construct F4. Hint: Consider F2[α], where you pretend that α is a
root of x2 + x + 1 ∈ F2[x]. (b) Let f be an irreducible polynomial of degree n over Fp.
Construct a field of order pn by extending the method of part (a). (Cf. Prob. 15.)
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29. (2-distance sets) We write an = Θ(bn) if there exist c1, c2 > 0 so that c1an ≤ bn ≤ c2an
for all n sufficiently large. Find Θ(n2) points in Rn with just 2 distances.
Challenge: Show that Θ(n2) is optimal for Rn.

30. ♥ (Maximal Eventown systems) In Eventown, each club has an even number of mem-
bers, each pair of clubs shares an even number of members, and no two clubs have identical
membership. Show that there are at most 2bn/2c clubs in Eventown.

31. (Another maximal Eventown) Show that for all sufficiently large n, there exist maxi-
mum Eventown club systems that are not isomorphic to the “married couples” system. (In
the “married couples” system, there are bn/2c couples; the couples join clubs together; if
n is odd, the one unmarried citizen is banned from all clubs.) Hint: use the next exercise.

32. (Maximal implies maximum in Eventown) Show that every maximal Eventown club
system is maximum. In other words, if there are fewer than 2bn/2c clubs in Eventown, one
can add a club. (Note the contrast with Oddtown.)

33. (Oddtown varieties) In Oddtown, there are n citizens and m clubs satisfying the rules
that each club has an odd number of members and each pair of clubs shares an even number
of members. Find c > 0 so that there are more than 2cn

2
collections of n clubs in Oddtown.

34. ♥ (Oddtown Theorem) Prove that there are no more than n clubs in Oddtown. (Hint:
prove that the incidence vectors of the clubs are linearly independent over F2.)

35. (2-distances revisited) Show that there are 2-distance sets of size m =
(
n+1
2

)
in Rn.

36. (Counting monomials) Find a simple closed-form expression for the number of mono-
mials of degree k in n variables.

37. (Multiple roots) Given a polynomial f(x) =
∑n

i=0 aix
i ∈ F [x], define the formal deriva-

tive to be the polynomial f ′(x) =
∑n

i=1 iaix
i−1. (This definition works over any field; note

that we have no concept of limit over fields like Fp, so the usual definition from calculus
is not applicable.) (a) Show that the usual rules of differentiation apply, including the
product rule and the chain rule. (b) Show that α is a multiple root of f ∈ F [x] if and only
if f(α) = 0 and f ′(α) = 0.

38. (Complex polynomials) Prove: f ∈ C[x] has a multiple root if and only if gcd(f, f ′) 6= 1.

39. (Zero to the zero) (a) For each real number r ∈ [0, 1] find a pair {xn}∞n=1 and {yn}∞n=1

of sequences converging to zero from above such that

lim
n→∞

xynn = r.

(b) Find a pair {xn}∞n=1 and {yn}∞n=1 of sequences converging to zero from above such that
every real number r ∈ [0, 1] is the limit of some subsequence of the sequence xynn .

40. (Almost sure limit) Show that
lim

x,y→0+
xy = 1

almost surely. Your main task is to define what this statement means.
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41. (Irreducibility over Fp) If pn is large, roughly a 1
n

fraction of the degree n monic poly-
nomials over Fp are irreducible.

42. ♥ (Most integral polynomials are irreducible) Prove: almost all polynomials of degree
n over Z are irreducible over Q. (Hint: Consider the collection of polynomials Pk =
{
∑n

i=0 aix
i | |ai| ≤ k }. Then, take k to infinity. The value n is fixed in this problem.)

43. (Isotropic vectors over Fp) Recall that for ~a = (α1, . . . , αn) ∈ F n and ~b = (β1, . . . , βn) ∈
F n we define the standard dot product as ~a ·~b =

∑n
i=1 αiβi. We say that ~a ⊥ ~b (“~a and ~b

are perpendicular”) if ~a ·~b = 0. We say that ~a is isotropic if ~a 6= ~0 and ~a ⊥ ~a. (a) For
which primes p does there exist an isotropic vector ~a ∈ F2

p? (b) Prove that for all primes
p there is an isotropic vector in F3

p.

44. (The card game “SET”) Let us call a subset S ⊆ Fn3 SET-free if it does not contain an
affine line. (Verify that affine lines correspond to “sets” in the card-game “SET”.) Denote
by αn the maximum size of a SET-free subset of Fn3 . Prove that:

(a) αn+m ≥ αnαm;

(b) (Fekete’s Lemma) Infer from (a) that α
1/n
n tends to a limit as n → ∞, which is

L := supn α
1/n
n ;

(c) 2n ≤ αn < 3n, and hence 2 ≤ L ≤ 3;

(d) L > 2, and find as good a lower bound on L as you are able. (Check the web about
the card game “SET!”);

(e**) (Meshulam’s Theorem) αn < 2 · 3n/n (but still limn→∞(2 · 3n/n)1/n = 3);

(f***) (Open problem) Is L < 3?

45. (The degenerate projective planes) Recall that the three axioms of a projective plane
are

1. There exists a line through every distinct pair of points.
2. Every distinct pair of lines intersects in a unique point.
3. There exist four points no three of which are collinear (are on a line).

The following is a weaker condition than axiom 3.

3’. There exist three points which are not collinear.

A set system satisfying conditions 1, 2 and 3’ but not 3 is called a “degenerate projective
plane.” Describe all degenerate projective planes; show that for every n ≥ 3 there is exactly
one degenerate projective plane with n points.

46. (Projective plane of order n) For every finite projective plane (P,L) there exists n such
that

|P | = n2 + n+ 1
|L| = n2 + n+ 1
# of points per line = n+ 1.
# of lines per point = n+ 1

where |P | is the number of points and |L| the number of lines.
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47. (Neighbor transpositions) (a) Show that the neighbor transpositions (12), (23), . . . , (n−
1 n) generate the symmetric group Sn. (b) Show that O(n2) neighbor transpositions suffice
to generate Sn and Ω(n2) are necessary to generate Sn. That is, there exist positive
constants c1, c2 such that (b1) each element of Sn can be expressed as the composition of
at most c1n

2 neighbor transpositions; and (b2) there exists a permutation which cannot
be expressed as the composition of fewer than c2n

2 neighbor transpositions. - The “word
length” of a permutation with respect to a set of generators is the smallest length of a word
in the generators that expresses the given permutation. So what you were asked to show
was that the maximum word length with respect to neighbor transpositions is Θ(n2), i.e.,
it is between c2n

2 and c1n
2 for some positive constants c1 and c2.

48. (A set of two generators for Sn) The symmetric group is generated by the n-cycle
ρ = (12 . . . n) and the transposition (12). Show that, as in the previous exercise, the
maximum word length is Θ(n2).

49. (The identity is even) Show that the identity permutation cannot be expressed as the
product of an odd number of transpositions.

50. (Alternating group) The alternating group An is the subgroup of Sn consisting of the
even permutations. Show that |An| = n!

2
for n ≥ 2.

51. ♥ (Sam Lloyd’s 15 Puzzle) Arrange the numbers 1, . . . , 15 on a 4× 4 grid together with
a blank. You may alter the board by transposing the blank with a neighboring square.
Show that a random arrangement has 1/2 chance to be feasible (have a solution).

52. (Rubik’s cube) Suppose we pull Rubik’s cube apart and reassemble it at random. This
leads to 8! · 38 · 12! · 212 configurations. Show that exactly 1

12
of these are feasible (solvable

by legal moves).

53. Of the following statements, show that (a)⇔ (b)⇔ (c) ⇐ (d).

(a) Fp[
√
−1] is not a field.

(b) ∃ an isotropic vector in F2
p.

(c) (∃x) (x2 ≡ −1 mod p).

(d) (∃a, b > 0) (p = a2 + b2).

54. * Show that in fact (d) is equivalent to the rest of the statements.

55. (a) (Experiment) Observe a very simple characterization of the primes for which the
statements in Problem 53 are true.

(b) Show: there exist infinitely many primes for which all the statements in problem 53
are false. (Hint: Fermat’s little Theorem)

(c*) Show: there exist infinitely many primes for which all the statements in problem 53
are true. (Hint: use the theorem that there exists a primitive root modulo p.)
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56. (Miklós Abért) Let A1, . . . , Am, B1, . . . , Bm ∈ Mn(F ) be n × n matrices. Suppose that
AiBj = BjAi if and only if i 6= j. Prove: m ≤ n2.

(Open: m is much less than n2.)

57. (Latin squares) Prove that every Latin rectangle can be extended to a Latin square.

58. (a) Show that if n is odd then there exists a pair of orthogonal Latin squares.

(b) Show that if n = 4, then there exist 3 pairwise orthogonal Latin squares.

(c) Show that the 4× 4 circulant C(1, 2, 3, 4), which is a Latin square, has no orthogonal
mate.

(d) Prove that the number of pairwise orthogonal n× n Latin squares is at most n− 1.

(e) There exists n − 1 pairwise orthogonal n × n Latin squares ⇐⇒ there exists a
projective plane of order n.

59. (Graphs) A graph G has a closed Eulerian trail ⇐⇒ G is connected and every vertex
has even degree.

60. What is the maximum number of edges in a triangle-free graph on n vertices?

61. Planar graphs are 6-colorable.

62. K5 and K3,3 are not planar.

63. Is the Petersen’s graph isomorphic to the other graph drawn on the board?

64. Find a graph that is not 3-colorable but does not contain K3. (Hint: find such a graph with
n = 11 vertices; your graph should have a drawing with 5-fold symmetry. These properties
determine the graph uniquely. The graph is called the Grötzsch’s graph.)

65. Let G be a regular graph of degree r and girth ≥ 5. (The girth is the length of the shortest
cycle in G.) Prove n ≥ r2 + 1.

66. (Algebraic numbers) We say that α ∈ C is an algebraic number if there is a nonzero
polynomial f ∈ Z[x] so that f(α) = 0.

(a) The algebraic numbers form a (number-)field.

(b) The field of algebraic numbers is algebraically closed.

(c) As a hint for the previous: If F ⊂ G ⊂ H are field extensions, then dimF H =
dimGH · dimF G.

67. (Symmetric polynomials) The kth elementary symmetric polynomial is defined as

σk(x1, . . . , xn) =
∑

i1<···<ik

xi1 · · ·xik .

(a) Express
∑n

i=1 x
2
i in terms of σ1 and σ2.
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(b) Show that every symmetric polynomial of x1, . . . , xn is a polynomial of σ1, . . . , σn.

68. ♥ (Polynomial hidden treasure) You land on a deserted island, looking for pirate
treasure. Sure enough, there is an old, weathered treasure map with fiendishly complicated
instructions written by a pirate who was a mathematician before following the lure of filthy
lucre at sea. You realize that the information of the treasure’s location is encoded in the
roots of some polynomial which starts “x100− 5x99 + 13x98 + . . . .” Unfortunately, the rest
of the polynomial is lost to the sands of time. Show that not every root of this polynomial
is real.

69. ♥ Let Rn denote the set of fixed-point-free permutations of [n], i. e.,
Rn = {σ ∈ Sn | (∀i)(σ(i) 6= i)}.
(a) Decide whether there are more even permutations or more odd permutations in Rn.
(b) Prove that ∑

σ∈Rn

sgn(σ) = (−1)n−1(n− 1).

70. Let Fn denote the n-th Fibonacci number (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2). Prove:
(a) If d | n then Fd | Fn.
(b) If d = gcd(k, `) then Fd = gcd(Fk, F`.

71. ♥ (Secret Sharing) There is a committee of n members, the president (which is not part
of the committee) chooses a secret random number x ∈ {0, . . . , p − 1}, where p is some
fixed prime number. The president then gives each member a number in {0, . . . , p− 1} in
such a way that if k members get together, they can compute x exactly but if only k − 1
get together, they have no information about x. How can the president do that? Hint:
Polynomials over Fp.

72. (Automorphisms of graphs) Count the automorphisms of

(a) Kn: the complete graph with n vertices.

(b) Cn: the cycle with n-vertices.

(c) The cube. You should get 48; then show that the subgroup of orientation preserving
congruences, which has 24 elements, is isomorphic to S4.

(d) The dodecahedron. You should get 120; then show that the group of orientation
preserving congruences is isomorphic to A5.

(e) The other platonic solids: tetrahedron, octahedron, icosahedron.

(f) The Petersen Graph. You should get 120; show that this group is isomorphic to S5.
(Hint: (1) use the isomorphism of the two drawings of the Petersen graph shown in
class to show that any directed path of length 3 can be sent to any other directed
path of length 3 by an automorphism. (2) Ignore (1). Find a simple connection of the
Petersen graph to K5 that will make it obvious that their automorphism groups are
isomorphic.)
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73. All congruences of R3 that fix the origin are one of the following types: rotation about an
axis, reflection with respect to a plane, rotational reflection with axis perpendicular to the
plane (so the rotation and the reflection commute).

74. Find the rotational reflection that permutes the vertices of the tetrahedron in a 4-cycle.

75. (Adjacency matrix of a graph) Let fG be the characteristic polynomial of the adjacency
matrix of a graph G. Prove: if fG is irreducible over Q, then |Aut(G)| = 1.

76. (Primitive roots of unity) Recall that the complex number z is a primitive n-th root of
unity if zn = 1 but zk 6= 1 for any 1 ≤ k < n. Note that the number ω = cos(2π

n
)+ i sin(2π

n
)

is a primitive nth root of unity. Recall further that Euler’s ϕ function is defined as ϕ(n) =
|{k | 1 ≤ k ≤ n, gcd(k, n) = 1 }| . Now, prove:

(a) ωj is a primitive nth root of unity iff gcd(n, j) = 1.
(b) The number of primitive nth roots of unity equals ϕ(n)
(c) The ϕ function is “multiplicative,” i. e., if gcd(a, b) = 1 then ϕ(ab) = ϕ(a)ϕ(b).
(d) If n = p1

k1 . . . pn
kn then ϕ(n) = n ·

∏n
i=1(1−

1
pi

).

(e) Prove that infn
ϕ(n)
n

= 0.
(f) Prove that

∑
d|n ϕ(d) = n.

77. (Moebius function) Define

µ(n) =

{
0 n is not square free
(−1)k n = p1 . . . pk is a product of k distinct primes.

Prove the following.

(a)
∑

d|n µ(d) =

{
1 n = 1
0 otherwise

(b) If f : {1, 2, . . .} → C define g(n) =
∑

d|n f(d). Show that f(n) =
∑

d|n µ(n
d
)g(d).

(c) Show that f is multiplicative iff g is multiplicative.
(d) Let sn denote the sum of all primitive nth roots of unity. Show that sn = µ(n).
(e) Define Φn(x) =

∏
(x− ωi) where the product is taken over all primitive nth

roots of unity ωi. Then, deg(Φn) = ϕ(n). Prove: Φn ∈ Z[x].
(f*) Prove that Φn is irreducible. The case n prime was handled in class via the

Schönemann-Eisenstein criterion.

78. (GCD matrix) Let D = (dij)n×n where dij = gcd(i, j). Then,

det(D) = ϕ(1)ϕ(2) . . . ϕ(n)

where ϕ is Euler’s ϕ function: ϕ(m) = | { k | 1 ≤ k ≤ m, gcd(k,m) = 1 } |.
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