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Abstract

We generalize the multiparty communication model of Chandra, Furst, and Lipton
(1983) to functions withb-bit output ¢ = 1 in the CFL model). We allow the
players to receive up tb— 1 bits of information from an all-powerful benevolent
Helper who can see all the input. Extending results of Babai, Nisan, and Szegedy
(1992) to this model, we construct families of explicit functions for whitin /c*)

bits of communication are required to find the “missing bit,” wheiis the length

of each player’s input ankl is the number of players. As a consequence we settle
the problem of separating the one-way vs. multiround communication complexities
(in the CFL sense) fok < (1 — ¢€) logn players, extending a result of Nisan and
Wigderson (1991) who demonstrated this separatiork fer 3 players. As a by-
product we obtairQ2(n/c*) lower bounds for the multiparty complexity (in the
CFL sense) of new families of explicit boolean functions (not derivable from BNS).
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The proofs exploit the interplay between two concepts of multicolor discrepancy;
discrete Fourier analysis is the basic tool. We also include an unpublished lower
bound by A. Wigderson regarding the one-way complexity of the 3-party pointer
jumping function.

1 Introduction

1.1 Brief summary

Communication complexity is an abstract model of computation which focuses on
the cost of inter-processor communication. It has been linked to a number of mod-
els of computation; it appears to be at the heart of complexity questions, especially
in highly parallel models (shallow circuits) [13, 14, 25, 6, 20], space-bounded com-
putation (including the related models of decision trees and branching programs)
[8, 5, 11], and hardness results required for the construction of pseudorandom gen-
erators for shallow circuits [17] and for space-bounded computation [5]. Nisan
applied communication complexity to threshold circuits with no depth restriction
[19].

Lower bounds in communication complexity pose difficult questionspibke
tiparty mode] introduced by Chandra, Furst, and Lipton [8], is notoriously hard.
The strongest known lower bounds in the CFL [8] multiparty model were given
by Babai, Nisan, and Szegedy [5], where two families of explicit functions were
shown to requiré(n/c*) communication. Here is the length of the input; is
the number of players arl< ¢ < 4 is a constant. We note that the value:dbr
one of these functions was subsequently improved by Chung and Tetali [9] from 4
to 2.

The multiparty communication model we consider extends the CFL model in
two ways: the output to be computed Habits (b = 1 in the CFL model); and
the players receive “help:” a message of at ntost1 bits from an all-powerful
benevolent Helper who can see all the input. The help, of course, makes lower
bound proofs more difficult.

Extending results of [5], we find stron§(n/c*)) lower bounds on the com-
munication cost of the “missing bit” for families of explicit functions with long
outputs. Here is the length of the input each player “missésjs the number of
players, and the output is up tobits long.

Our main motivation was an application of these lower bounds to the original
CFL model (boolean output): we extend a result of Nisan and Wigderson [20] on
the separation of one-way vs. multiround communication complexity from three
players to any constant number of players (in fact up o (1 — ¢) log n players).
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As a by-product, we obtaif(n/c*) lower bounds for thé-party communi-
cation complexity of interesting new families of boolean functions, including the
“trace of matrix product mo@” function. The importance of such results lies in
the wide variety of applications of multiparty lower bounds that has been based on
the(n/c*) lower bounds of [5].

The BNS [5] lower bounds were derived from upper bounds on the discrep-
ancy over cylinder intersections of the two-coloring corresponding to the boolean
function in question. We need to extend this technique to multicolor discrepancy.
We consider two separate discrepancy concepts (strong and weak) both of which
reduce to the ordinary discrepancy in the boolean case. Strong discrepancy is the
straightforward combinatorial extension; the conceptreék discrepancis more
subtle and requiresharacters of finite abelian grougthe Discrete Fourier Trans-
form). Our main technique is the interplay between these two concepts of multi-
color discrepancy. A concept closely related to our “weak discrepancy” has previ-
ously been introduced in the context of multiparty communication complexity by
Grolmusz [12].

1.2 Multiparty Communication with Help

Following Chandra, Furst, and Lipton [8], in all models to be considered we adopt
the following basic assumptions and notation.

PlayersAy, ..., A, wish to collaboratively evaluate the functign X; x- - - x
X — Boninput = (x1,...,z;). Note that in [8], the rang® is {0, 1}; here
we shall allow arbitrary finite setB (of variable size.) The functioif is known
to each player, and Playel; sees all pieces of the inpakceptr;. We say that4;
missest; € X;. The players communicate by broadcasting messages to all other
players. LetP(Z) be the string of messages broadcast by the players oningut
is said to computg correctly if f(Z) is fully determined byP (%) (i.e. f(¥) is a
function of P(¥).) The communication complexity of, denoted byC'(f), is the
number of bits to be communicated under the best communication protocol, on the
worst input:C(f) = m};n max|P(Z)|.

Our players will be aidgd by a “Helper” who can see the entire input and broad-
casts a messadé(7) to the players before they begin to communicate. By sending
b := log | B| bits, the Helper could announce the function value; therefore, we re-
strict the Helper to sending< b — 1 bits.

In this model, a protocaP is a collection of protocols in the previous sense
(without help): a protocoP? for each possible help messageThe output of the
protocol on inputz is (j, P/(Z)), wherej = H(&) is the help message for the



given input. As before, we require the output to fully determine the value of the
target function.

Definition 1.1 Let the space of inputs h& = X; x --- x Xj. A protocol with
helpconsists of two functions: thidelp functionH : X — R, whereR is a finite
set, and a functio® : R — P, whereP denotes the set &f-party protocols over
X (without help).

Let f be a function with domaitX . If there is a functiory such that for every
inputZ, f(z) = g(H(Z), P(H(%))(Z)), then we say thatH, P) computesf. In
this case we callH, P) acommunication protocol fof, with help from the seR.

We denote the set of such protocéls, P) by PhelP(R).

Definition 1.2 The cost of a communication protocol with helg,H, P) is the
combined length of the longest message pgis), wherej = H(Z) is the help
message, angl= P(H (Z))(Z) is the communication string sent by the players.

The communication complexity off with help denoted by
chelp(r, £), is the minimum cost of a protocol withbits of help forf.

In most but not all cases we assume= b — 1 and suppress in the notation:
chelp(py .=chelr(p — 1, f). (A notable exception is described in Section 9.3.)

Remark 1.3 Another reasonable definition for the cost of a protocol with help
would be the maximum length of a Help stririgg | R|, plus the maximum cost

of a protocolP’. In fact, this definition was used in a preliminary version of this
paper. However, all our results hold using the stronger Definition 1.2. We are
grateful to one of the referees for suggesting this modification.

1.3 Main Results

Our main result is the followin@(n) lower bound on the complexity of multiparty
communication with help for a family of explicit functions.

Theorem 1.4 There exists an NC-computable class of functipfs, . : n > b >
1,k > 2} wheref, ; is a function oft n-bit arguments withb-bit output such
that CMeP(f,, 1) > Q(n/c*), for some constant > 1.

Remark 1.5 In the statement above, NC denotes, as usual, the class of functions
computable by a uniform family of polynomial-size boolean circuits of polylog-
arithmic depth (this is a subclass of P, the class of polynomial-time computable



functions). In fact, the function GJR, ;, which will be used to establish the the-
orem (see Definition 4.11) is computable with bounded fan-in boolean circuits of
depthO(log nlog k). In particular, it is in NC for constantc. The same remark
applies to Theorem 1.7 below. As we shall see, these lower bounds hold in the ran-
domized and distributional (random input) models as well. We do not know any
AC? family of functions satisfying a similar lower bound.

As an application, we generalize a result of Nisan and Wigderson [20].

Definition 1.6 A special case of the standard communication modehis-way
communicationin which each player may speak only once, and they proceed in a
specified order.

Nisan and Wigderson [20] demonstrate an exponential gap between the power of
three-party one-way protocols for boolean functions depending on which player
speaks first. We extend their result¥e £ < (1 — €) log n players.

Theorem 1.7 There exists an NC-computable class of boolean functigng :

n > 1,k > 2} whereg,; is a function ofk n-bit arguments such that the one-
way communication complexity gf » when Playerk speaks first i€2(y/n/ck),
for some constant > 1, and the one-way communication complexity,0f when
any other player speaks first3(log n).

This result resolves a problem which was open everkfer 4, and comple-
ments another separation result (one-way vs. oblivious, [4, 21]).

As a by-product of this work, we obtain a new family of explictioleanfunc-
tions whosek-party communication complexity satisfies the BNS [5] lower bounds

Definition 1.8 The trace of matrix product mo@ function, TMR, ., takesk
squared x d) (0, 1)-matrices as inputs, and returns the trace of their product mod-
ulo 2.

Theorem 1.9 TMP, . hask-party communication complexity(n/k%2F). (n
is the number of bits each player misses.)
1.4 Organization of the Paper

Section 2 introduces two notions dfscrepancyfor multivalued functions, and
derives a basic inequality between them (Lemma 2.9). Theorem 8.2 exhibits an
inequality relating the two notions of discrepancy in the opposite direction.
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In Section 3 we link these discrepancies, considered over the famdlyliof
der intersectionsto communication complexity with hel@he key lemma to our
complexity lower bounds is Lemma 3.3.

Theorem 1.4 and Theorem 1.9 are proved in Section 4, which investigates the
discrepancy ofmultilinear functionsover a finite field, extending the results of [5]
on the “generalized inner product” (GIP) function. The key result of this section
is a rather general upper bound on the discrepancy of multilinear functions over
cylinder intersections (Theorem 4.6).

In Section 5, we obtain similar discrepancy bounds for the “multiplicative coset
of sum” (MCS) function, extending the results of [5] on the “quadratic character of
sum” function. Section 7 shows how to compute a subclass of the MCS functions
in polynomial time.

Following Nisan and Wigderson, in Section 6 we apply our results to one-way
communication complexity, proving Theorem 1.7. A more technical statement
appears as Corollary 6.3.

In Section 9 we reproduce thré€dn) lower bounds fotwo-party communica-
tion with help(yielding in each cas@(,/n) lower bounds on three-player one-way
complexity for functions withO (log n) communication complexity if the order of
players is changed).

The subject of Section 9.1 is the MCS function. In Section 9.2 we reproduce
a result of Nisan and Wigderson [20] trash-functionsn our framework. That
result provided the initial motivation to this paper.

Section 9.3 gives an exposition of an unpublished result of Avi Wigderson: a
lower bound for thepointer-jumpingfunction to which the discrepancy approach
is not applicable.

A preliminary version of this paper appeared in STOC '98 [3].

2 Multicolor Discrepancy

Discrepancy is usually discussed in the context of two-colorings. We need a dis-
crepancy concept for any functigh: X — B (coloring with|B| colors).

Let f be a functionf : X — B, andletS C X. If B = {£1}, then the com-
mon meaning of the discrepancy pfon S'is the sum ¢ f(z)|. Our concept
of strongdiscrepancy generalizes this notion to arbitrary g&t\nother, weaker
generalization of the 2-color discrepancy suggests itself in the case Bliem
finite abelian group.

After defining both types of multicolor discrepancy, we prove that they are
closely related. We will make good use of this relationship in Section 4.



Definition 2.1 For a functionf : X — B, (the “B-coloring of X”), a subset
S C X andy € B, we define thexcessy(y) of colory in S under coloringf by

1(y) = (/7 ) n S| —181/1B]) /1X]. 1)
We define thestrong discrepancy of in S by
I'(f,S5) = max ()] 2

Definition 2.2 (strong discrepancy for set systenig)r a set systenf over the
universeX, we define thestrong discrepancy of over F by

I'(f,F) = max I'(f,S).

For the definitions of weak discrepancy, we require elementary facts about
characters of finite abelian groups (see, for example, [1]).

Definition 2.3 Let GG be a finite abelian group witl elements, with operatios
and identity elemer. A characterof G is a homomorphism fron to the multi-
plicative group of complex roots of unity. The charactergdiorm a finite group
under elementwise multiplication, which is denotecKAbyThe identity element of
Gis theprincipal character x(, defined byy,(g) = 1 forall g € G.

The following Proposition lists some basic facts about characters we will use.
Proposition 2.4 Let G be a finite abelian group.
1. |G| = |G|. (Indeed,G = &, but we will not use this.)

2. Forany0 # g € G, Zx(g) =0.
xe@G

3. Foranyxo # x € G, Y _ x(g) =0.
geG

We define the concept of “weak discrepancy” using characters, for colorings
f: X — G, whereG is a finite abelian group.

Definition 2.5 (weak discrepancyffor a functionf : X — G, a subsetS C X
and a charactey € GG, we define thaveaky-discrepancy off in S by

1
wea e

Zx(f(x))‘ : 3)

€S



We define thaveak discrepancy af in S by

e D R G () @
XEG,X#X0

Remark 2.6 The definition ofl“;’("eak(f, S) generalizes a multicolor discrepancy

concept introduced by V. Grolmusz [12]. In our language, Grolmusz considers the

case wheits is cyclic (which would suffice for our applications as well) and makes

a specific choice of: x(i) = w’, wherew is them-th root of unity minimizing

|1+ w|. Rather than specifying a particular character, we consider the average over

all non-principal character§Veak This allows us to prove the crucial inequality

(5) linking strong and weak discrepancies for arbitrary functions.

Definition 2.7 (weak discrepancy for set systerisy a set systeri over universe
X, we define theveak discrepancy of over F by

wea o wea
PR, F) = max TV, ).

Remark 2.8 It is easy to see that the inequallﬁ‘/@’eak(f, S) < m T'(f,S) holds

(see Proposition 8.1). From this, it is immediate th4€2K £, 5) < m T'(f,5),
justifying the terms “weak” and “strong” discrepancy. Theorem 8.2 will improve
this bound. Here, however, we are interested in a somewhat surprising inequality
in the opposite direction.

Lemma 2.9 Let G be a finite abelian group withn elements,f : X — G a
function, andS C X. Then

L(f,8) < (1-1/m) Ve[, ). (5)

Remark 2.10 This inequality provides the tool for turning upper bounds on weak
discrepancy into the upper bounds on strong discrepancy we need for our commu-
nication complexity lower bounds (see Lemma 3.3 below).

First we derive an expression for the weak discrepancy in terms of(t)és.
Proposition 2.11 For any.S C X and anyy € @,x # X0, We have

rveakf, ) = |3 x(w)y(y)| - )

yeG



Proof: Consider equation (3). Reindex the summation by the vajuesf(z) €
G:

LS = [ WIS
yeG
5]
- W (W + -2 )|
gxy (’yy mX)
Since)_, ¢ x(y) = 0, the|S[/(m[X]) terms cancel. |

Notation 2.12 The functiond : G — {0, 1} is defined by
1 ifg=0
i(g) = { J

0 otherwise.

Proof of Lemma 2.9: Fix: € G. Theny(z) = 3_, . 7(y)d(y — ). From Propo-
sition 2.4, it follows that, for every € G, §(g) = L Z x(g). (This is theFourier

€@
expansiorof §.) Hence
1
Al = =D wxty—2)

yed xeé

1

= =2 2 vy —2)|,

y€G x#x0

because _, . 7(y) = 0. Now, by the multiplicativity ofy, this is equal to

1
SEZ

by the triangle inequality, observing that(—z)| = 1. By Proposition 2.11, the
above expression equals:

- LY s

XFX0
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_ m—1_\ea
= ——I"19).

(The last step is the definition &"€3K) Sincel'(f, S) is defined (Definition 2.1)
as the maximum ofy(y)|, the proof is complete. |

3 Communication with Help vs.
Multicolor Discrepancy over Cylinder Intersections

Definition 3.1 Let X = X x--- x X;. AsubsetS C X is called acylinder in the
i dimensiorif membership inS does not depend on th® coordinate. A subset
of X is called acylinder intersectionf it is an intersection of cylinders. We shall
useC to denote the set of all cylinder intersectionsXin(with respect to the given
Cartesian decompositiohi = X7 x ... x Xp).

As in the boolean case (cf. [5, Lemma 2.2]), upper bounds on multicolor dis-
crepancy over cylinder intersections yield lower bounds on communication com-
plexity in the “communication with help” model. This remains true even in the
distributional sense:

Definition 3.2 Thee-distributional communication complexiof f/ with help, de-
noted byC’he'pﬁ(f), is the minimum cost of a protocol with help that compufes
correctly on at least &l — ¢)-fraction of X .

Lemma 3.3 Letf : X — B be a function. Fo0 < e < 1/2,

o ()

Proof: Let~y := CMelP(f). Let g be a function that agrees withon at least a
(1 — e)-fraction of X, such thay is computed by a protoc¢, P) of cost~. Let
E = {z € X|f(z) = g(x)}, so that by our choice df, |E| > (1 —¢)|X|. For
each help message and communication string, let X (j, s) denote those inputs
in X which cause help messag@&nd communication stringto be sent. In other
words, X (j,s) = H1(j) N (P?)~1(s). Let E(j,s) = EN X (j, ).

Choose a help messagand a communication stringthat maximize

(P))~(s)
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If we sum this quantity over all pairg, s), the left term contributeg?|, since the
setsE(j, s) form a partition of £, while the right term contributes | X || R|/| B,
since for each choice of, the sets(P’)~!(s) partition X. Since there are at
most2” pairs (j, s), the maximum of the quantity under consideration is at least
(|E| — | X|[R|/|Bl)2.

Since the paifj, s) determineg, g is constant orX (4, s), and sof is constant
on E(j,s). As observed in [5], the séfP7)~!(s) must be a cylinder intersection.
Hence,

1 : (P7)~(s)
M0 = g (1EG1 - EY)
(IEI/IX] = |R[/|B[)2™"

>
> (1—e—1/2)277,

where the last step uses the fact th&t/|B| < 1/2, part of the definition of
communication with help. Taking logarithms,

- (7).

as claimed. ]

Remark 3.4 It would be reasonable to relax the restriction that the Helper can
send at most — 1 bits of information, and merely require thidt| < |B| — 1. In
this case, the proof of Lemma 3.3 implies that

Chelpg(f) > log (1 — (I{%(’f/‘f)’) - e) ’

Remark 3.5 In [5], an upper bound on the maximum volume of a homogeneous
cylinder intersection suffices for the lower bound on deterministic communication
complexity. While a discrepancy bound implies a bound on this volume, the full
power of the discrepancy bounds is only needed in [5] for the distributional result.
In contrast, for the “communication with help” model, we need bounds on the
strong discrepancy even for deterministic complexity.

4 The Discrepancy of Multilinear Functions

In this section, we extend the techniques of [5] to prove upper bounds on the weak
discrepancy for a large class of functions which includes their “generalized inner
product” function, and the “trace of matrix product” function, both of which we
will define later.
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Definition 4.1 Let V be a vector space over a figRd A function f : V¥ — F
is k-linear if whenever we fixk — 1 of the k input vectors, the resulting function
g : V — T is a vector space homomorphism.

Our main tool is the following lemma, which was inspired by Lemma 2.3 of [5].
This result relates the weak discrepancy of a multilinear function over an arbitrary
cylinder intersection to its weak discrepancy over the entire input space.

Lemma 4.2 Let X, Xo, ..., Xy, G be finite abelian groups. Let = X; x --- x X}.
Let f : X — G be a homomorphism in each coordinate, \ebe a character of
G, and foreach € {1,...,k} lety; : X — G be the characteristic function of a
cylinder in thei!" dimension. Then

21—k

B AU o] < EaGE) @

zeX

where the expectation is taken with respect to the uniform distribution ¥ver

Remark 4.3 A direct imitation of the BNS [5] proof does not seem to work for
this result. Instead, we present Lemma 4.4, a rather technical generalization of
Lemma 4.2 to which an extension of the BNS argument is applicable.

Lemma4.4 Let X1, X, ..., Xk, G be finite abelian groups an@ a probability
space. LefX = X; x --- x X},. Foreach\ € Q, let f* : X — G be a homomor-
phism in each coordinate, lgt* be a character of7, and for eachi € {1,...,k}
let qbf‘ : X — G be the characteristic function of a cylinder in ti8 dimension.
Then

217’6

AP < (B CT@) L @

AeQrxeX

where the expectation is taken with respect to the uniform distribution¥emd
the given probability measure over.

Note 4.5 Throughout the proof, we will omit the superscrigtwhich should be
assumed everywhere, whethkris bound or free. The spade of eventsa is
necessary for the inductive step.
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Proof:  First let us see that the expression

B ex x(f(@))

is always real-valued and in the interjal 1]. Fix somel € Q andu € X5 x

.-+ x Xg. By hypothesis, the functiofi* : X; — G defined byf“(x) = f(z,u)

is a homomorphism. Hence the compositjon f“ is a character okX;. Therefore
E x(f(z,u))is eitherl or 0 according to whetheyo f* is or is not the principal

reX

character, which establishes the claim. This shows that the desired inequality is
well-defined.

We proceed by induction ol Fork = 1, the result is trivial.

Letk > 1. For readability, we will omit the arguments to the which are the
same as the argumentsof()). Since¢, does not depend ary, and|¢x| < 1,
we observe that

E x(f(z)¢1... P

E
AeQreX

E x(f(Z,2r))b1... dr—1

T €Xg

< E E
AEQTEX XX X1

Henceforth we will denot&; x - -+ x Xj_q by)?.
Now we make use of the Cauchy-Schwarz inequality in the fafify)|?> <
E(|2]?).

E E
AeQzeX

o\ 1/2
)\EQEG)Z'

Expressing the squared term using complex conjugation, we obtain

<Ag“ ¥ <<EX X m)e 'qf’“) (EX X))t . z—1)>>1/z ,

whereg}! stands fory;(z, u), andg} = ¢;(z,v). Sincex(f(z,v)) = x(f(z, —v)),
and thep} are{0, 1}-valued, this expression may be rewritten as

E x(f(T,zr))é1-.. dr_1

TEEX

E Xx(f(Z 7)1 ... ¢r—1

L €X

1/2
( E E E  x(f(@,u—v))pio]... ¢%1¢Zl> )

XEQ 7 X uwEXy,
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Next we switch the order of summation in the last expression. Délie
be the space of events, u, v), whereqi andv are distributed uniformly inXy,
and \, u,v are independent. For each= (\, u,v) € Q andz € X, define
FMNE) = fANE u—v) andg) (T) = ¢)MT, u)¢)(F,v). Notice that, for fixed\,
f*is a(k — 1)-linear function inz, and thatp? is a{0, 1}-valued function which
does not depend on th® coordinate ofi. This allows us to apply the inductive
hypothesis, using for our new probability space. After re-reindexing, and noting
that the difference — v is uniformly distributed inX}, we obtain the desired result.
Thus

1/2
<E E E x(f(fvu—v))#f@ﬁ’f.--¢>%_1¢Z_1>

AEQ Fe X u,veEX

AEQTEX

~ B N 1/2
_ <E E~XA(fA(5))¢%---¢21>

21—k

IA

<~E~ E x*(fx(i’))>
AeQTEX
217’6
= (E D E~x<f(:f,u—v))>
AEQuweXy 7e X
21716

~ (B, BaU@) .

AeQzxeX

Theorem 4.6 Let ¢ be a prime power and, ..., X} finite dimensional vector
spaces ovelF,, the field ofy elements. LeX = X x...x X}, andletf : X — F,
be ak-linear function. Then

21—k

rveak ¢ oy < (Pg[Vx eX1 f(zyu)= 0]> ) 9)

ueX

whereX := X, x - -- x Xj,. (As beforeC denotes the set of cylinder intersections
overX.)

Proof:  The left hand side of inequality (7) is exactly the normalized weak dis-
crepancyl“‘;"eak( f,S), whereS is a cylinder intersection with characteristic func-
tion ¢ - - - ¢. Lemma 4.2 establishes the inequality

21—k

) < (B ave)) (10)
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Suppose thay # xo; in this case we claim that the right hand sides of Equations
(9) and (10) are equal. To see this, we observe that
E x(f(z))= E_ E x(f(z,u)).
reX ueX reX1
The inner expectation sexcept whery (-, u) is identically zero, in which case it is
1. Hence the right hand side is simd@ly, _;[Vz € X;  f(z,u) = 0]. Averaging
over all non-principal charactefgyields the desired inequality. ]

4.1 Application: Lower bounds for TMP and GIP

Theorem 4.6 shows that, to get a lower bound on communication complexity with
help for a multilinear function, it suffices to give an upper bound on the proba-
bility that a relatedvector-valuedfunction has value zero. The “trace of matrix
product” (TMP) and “generalized inner product” (GIP) functions, which we will
define shortly, have the “typical” property that the associated vector-valued func-
tions are “reasonably uniform.” In the case of TMP, the associated function is
the matrix product function. In the case of GIP, the associated function is-the
fold componentwise product function. Because these vector-valued functions have
large ranges, “reasonable uniformity” is enough to prove good upper bounds on the
probability that the function outputs the zero vector.

Definition 4.7 Let ¢ be a prime power, and letbe a positive integer. Lel/ be
the space ofl x d matrices oveff,. The function TMR 4 : M* — F, is defined

by
TMP(Ld’]{(Al, Ag, . ,Ak> = Tr(A1 . A2 .- Ak>

and is called thérace of matrix productunction. (Thetrace of a matrix(a; ;) is

> ais.)

Corollary 4.8 CPeP(TMP, 41) > Q(n/k?2%), wheren = d? log q is the number
of bits each player misses.

Remark 4.9 Specializing to the casg= 2 we obtain Theorem 1.9.
Proof: We first introduce a notation for the matrix product function.

Notation 4.10 Let ¢ be a prime power, and letbe a positive integer. Let/ =
M (d, q) be the space af x d matrices oveF,. The function MR 4 : M* — M
is defined by

MPq,d,k<A1; AQ, ey Ak) = A1 . A2 ce Ak

and is called thenatrix productfunction.
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The result will follow from the following three claims, each of which is easy
to see.

Consistent with our previous notation, &%, ..., X; each denote a copy of
M = M(d,q). Let X denote the spack, x ... x X}, of inputs visible to Player
1. As before, all probabilities will be taken with respect to the uniform distribution
over the space indicated under thH&™ symbol.

Claim. Letu € X.
((V:L‘ S Xl) TMPq7d7k(x,u) = 0) = (MPq,d,k—l(U) = 0).
Claim.

Pr [MP(u) = 0] < (k—1) - Pr [ranks < d —d/(k— 1)}

Claim. For every integer > 0.

Pr [rankz < r| < <d> g @),
xeM T

Combining Theorem 4.6 and these three claims, we have:

Fweak(TMPq7d7k’c) S ((k, _ 1) <(d/<kd_ 1)_|>q_[d/(k—1)12>
Applying Lemmas 2.9 and 3.3 and simplifying, we obtain
CPeP(TMP, 4 ;) > 2019 ([d/( 1)12log g — log <(k - 1)((d/(kd_ 1)1>>>_1'

Substitutingn = [d*log ¢|, and observing that the negative terms on the right
hand side are negligible when> 2%, we conclude that

n
CPP(TMP, ) > © (557 ) - -

Next we define the “generalized inner product” function a¥grand prove a
lower bound on its communication complexity with help.

Ql—k

Definition 4.11 For a prime powey, positive integers andk, we define thgen-
eralized inner product
GIP, . : (F5)F — F,

forxy,...,z; € Fy by

GIquk Tlyeeey X E 1’11 xgl . 71'.
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Corollary 4.12 C"®WP(GIP, . ) > Q(n/4%), wheren = [slogq] is the number
of bits each player misses. Moreovey, it k'€ for some fixed > 0, then

CMP(GIP, 1) > Q(n/2"),
Proof: First we define the componentwise product function.

Definition 4.13 For a prime poweg, positive integers andk, we define theom-
ponentwise product
CWP, . : (F5)* — F?

forzy,...,z € Fy by
(CWP,LSJg(.Tl, e ,SL‘k)),L = xu . .1:2’7; e l’kﬂ'.

Consistent with our previous notation, I&%, ..., X, each denote the vector
spaceF,. Let X denote the spac¥; x ... x X, of inputs visible to Player 1. As
always, all probabilities will be taken with respect to the uniform distribution over
the space indicated below tlire symbol.

The result will follow from the following two claims, both of which are easy to
see.

Claim. Letu € X.

(Vx € X1) GIP, s k(z,u) =0) & (CWP, s ,—1(u) = 0).
Claim.

Pr[OWR, 1 (u) = 0] = (1 — (1~ 1/a)*~")"

Applying Theorem 4.6 and Lemmas 2.9 and 3.3, we obtain
chelPGIp, , ) > —20-H) (s log (1 —(1- 1/q)k_1>> —1.

Applying the inequalityl — 2 < e=* for z = (1 — 1/¢)*~!, we obtain the
lower bound

CMP(GIP, . ) > O (C(Z)k> =4 (M)

wherec(q) := 2q/(q — 1) andn = [slog q]. Note that whemw = 2, ¢(q)*logq =
4% and we are done. When< ¢, we haver(q) < 3, soaslongas < ¢ < 2(4/3)",

17



c(q)*logq < 4*. Sinceq > 2(4/3" impliesq > k*<, it will suffice to prove the
second part of the corollary.
Assumeg > k'T€. In this case, we may apply the inequality

1-1/g)f P >1—(k—1)/q

to obtain
CPePGIP, 1) > 2! Fs(logq —log(k—1)) —1
> 9l=ks © jogq 1
= S 1re 0gq
= Q(n/2%).
This completes the proof of Corollary 4.12. [ ]

5 The Discrepancy of the Multiplicative Coset of Sum

In this section, we prove upper bounds on the multicolor discrepancy of another
class of explicit functions over cylinder intersections. The analysis of these “mul-
tiplicative coset of sum” (MCS) functions depends on A. Weil's character sum
estimates, through a lemma proved by Babai-Nisan-Szegedy [5]. The MCS func-
tions are more difficult to compute than the GIP and TMP functions (cf. Section 7).
Besides their mathematical appeal, the significance of the MCS functions may lie
in their potential to work beyontbg n players.

Notation 5.1 For ¢ a prime power, leff, denote the field oy elements, and let
> denotelF, \ {0}, the multiplicative group off,. Forz = (z1,...,xx) € IF’;,
let S denoted"F | ;.
Definition 5.2 Let ¢ be a prime power, let divideg — 1, and lets := (¢ — 1) /u.
Then the mapping — y° maps the cyclic group; onto its (unique) subgrou@@
of indexs and orden.

We define thenultiplicative coset of surfunction

MCS, .1 : (F))* — G
forz = (x1,...,a5) € F%, by

* if Xx=0
MCS,,uk(z) = { (Xz)* otherwise,

where the %" stands for “undefined.” Our discrepancy bound will hold for any
mapping of the undefined entries@

(11)
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Remark 5.3 Note thatG is in one-to-one correspondence with the cosets by the
(unique) subgrougd of orders of . In fact, we really only care about which
coset ofH containstx. The discrepancy bound we give holds for any encoding of
the cosets.

Lemma 5.4 LetC be the set of cylinder intersectionsﬂi{j. Then
T(MCS,.u4,C) <3¢ 2" +1/q.

Our chief tool in proving this lemma is a special case of Lemma 2.6 of [5], which
involves multiplicative characters.

Definition 5.5 A multiplicative character of I, is a homomorphism df ; to the
group of complex roots of unity. The principal characigris the character that
maps all of; to the value 1. Characters are usually extended to the entire field by
settingy(0) = 0.

Lemma 5.6 (BNS [5], Lemma 2.6) Lef be a prime power, and let : F, — C
be a non-principal multiplicative character. For any positive integeand any
cylinder intersectiort in F%, we have

> (S

€S

<3 qkfzik. [ |

Remark 5.7 Note that the proof of Lemma 5.6 is based on a character sum esti-
mate by A. Weil (cf. [23]).

Proof of Lemma 5.4: Let x be a non-principal character &f. To simplify nota-
tion, setf = MCS, , . We shall estimate the weakdiscrepancy off over any
cylinder intersectiort’ C FX. Let ) be the multiplicative character &, defined
by ¥(y) = x(y°) fory € F; and+(0) = 0. Since the map — y* mapsF; onto
G, it follows that is not the principal character.

LetV = {z € F¥ : 2 = 0}. Note that| V| = ¢"*.

We have

Y f) = 7% 1D x(f (=) ) :

because the two expressions differ only foe V, in which casey((Xz)%) = 0
and|x(f(x))| = 1.

€S

> x(B2))

€S

<q* (!VI +

19



The right hand side can be estimated using Lemma 5.6:

> (S

z€eS

=q* <3.¢%"

3 x(Z2)%)

€S

qfk

Combining the last two inequalities we obtain
_o—k
rweakf) <3.¢72" +1/q.

Since this inequality holds for every # xo and every cylinder intersectia$, it
follows by Lemma 2.9 that the right hand side bounds the strong discrepancy as
well, completing the proof of Lemma 5.4. ]

The lower bound for the communication complexity with help of MCS follows
directly from Lemmas 3.3 and 5.4:

Theorem 5.8 C"ePF(MCS,.,.1) > (logq)/2" +log(1/2 — €) — 2. m

6 Bounds on One-way Communication via Help

In this section, we apply the concept of “communication with help” to derive a
bound on one-way complexity of a special class of functions, when a particular
player speaks first. The basic trick is inspired by Nisan and Wigderson, [20], where
the 3-party case is considered. We extend their result t0 (1 — €) log n players.

In a one-way communication protocol, the players each speak exactly once, in
a prespecified order. For our result, the exact order in which the players speak will
not matter; we will only need that the first player to speak is only allowed to speak
once. With this in mind, we define’(f) to be the communication complexity of
f when Playei speaks first, and only onc&; (f) is the one-way communication
complexity of f when Player speaks first, and the other players speak once in
some order.

Now we define the class of functions for which we will derive one-way com-
munication bounds. Nisan and Wigderson [20] used the following construction to
obtain ak-party boolean function from @ — 1)-party multibit-output function.

Constuction 6.1 Let B = {0,1}", and letf : X5 x ... x X;; — B be any func-
tion. We defingf : {1,...,b} x Xy x ... x X — {0,1} by f(i,22,...,2%) =
f(z2,...,xk);. In other words, Player 1's input specifies a single bit of the output

of f.
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Lemma6.2 Let f, fbe as described above. Then
'o(f) = min {o, C"R(p)/0}.

Proof:  Suppose we are given a communication protocol that compgittsat
begins with Player 1 sending at mdst- 1 bits, but never speaking again. We
use this protocol to construct(@ — 1)-party protocol with help to compute the
function f itself. In this protocol, on inputzs, ..., ), the Helper sends the
same message Player 1 would send in the protocof.fétayers 2 throughk now
computef (i, ze, ..., xx) for each possible value af using the given protocol.
After this, every bit off(z1, . .., 7)) has been found, and at mdst'C(f) bits of
communication have been used. ]

Corollary 6.3 Let f = GIP,yn 5. 4, and let / be defined as above. Then

LC(f) = Q(/n/2%), while for2 < i < k, ‘Ci(f) <logn+1. Also, f can
be computed by bounded fan-in boolean circuits of déjlog n log k).

Proof: The lower bound oﬂC(f)onlows directly from Corollary 4.12 and
Lemma 6.2. The upper bound 6@ (f) for 2 < i < k is achieved by the protocol
in which Playetri first sends all the bits of;, then Playel sends the output.

To obtain a small-depth circuit, observe that two elemenis,pf can be mul-
tiplied in depthO(logn). Therefore a single component of the componentwise
product can be computed in degfil{log n log k). Adding the terms takes only an
additionalO(log n) depth. [ |

Theorem 1.7 is an immediate consequence of Corollary 6.3. ]

A similar result holds for the MCS function:

Corollary 6.4 Let f = MCSqu , and Ietf be defined as above. For all, one

can choose: andq such thatf is polynomial time computablég ¢ = ©(n) and
LC(f) = Q(v/n/2F/2), while for2 < i < k, ‘C1(f) < O(logn) for anyq andu.

Proof: We chooseu to be a prime power, ang to be an integer power of,
such thatr = [logq] ~ 2¥(logu)?. The lower bound on‘C;(f) follows from
Theorem 5.8 and Lemma 6.2.

To establish the claim tha}f is polynomial-time computable, we first need
to address the issue of how the input and output of MCS should be represented
by binary strings. We defer the discussion of this to Section 7. Our choice of
parameters makes the groGpthe multiplicative subgroup of a subfield Bf; it
will follow by Theorem 7.3 thaﬁ”vis polynomial-time computable. ]
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7 MCS: How Explicit?

The function MCS ,, ;. given in Definition 5.2 is clearly computable in polynomial
time ((k—1) additions and)(log ¢/u) multiplications inF,), assuming, is given
explicitly as alog ¢-bit part of the input.

What is not reasonable about this view of the function, however, is, that the
output is encoded bjog ¢ bits while its information content is onlipg u bits.
Optimal encoding of the output (hashing) makes no difference in the context of
communication complexity where the players have unlimited computational power.
However, it does make a difference when talking about Turing-complexity such as
polynomial time.

In this section we show how to accomplish the optimal encoding in polynomial
time for the MCS function under certain restrictions on the parameters.

The special case we consider is wiigis the multiplicative group of a subfield
F,+1 of F, and the output is optimally encoded as an element of the subfield.

We shall say thalf, is explicitly representedf we are given an irreducible
polynomialf € F,[z] of degreew overF, wherep is the characteristic ang= p®.

In this case, we tredf, as the fieldF,[x]/(f). In this case the elememtof F,
corresponding to the polynomialis a generator of, i.e.,F, = F,[¢] and f is
the minimal polynomial of) overF,,. The powerd., v, 92, ..., 9~ ! form a basis
of F, overFF,,.

We make the polynomiaf part of the input, thereby increasing the length of
the input by at most a factor of 2.

An optimal encoding of the elements of a subfi&ldc [, is an encoding by
binary strings of lengthlog | K|].

Lemma 7.1 LetF, be explicitly represented, whete= p". Letr | w and let
K be the (unique) subfield df, of orderp”. Then an optimal encoding of the
elements of¢ can be computed in polynomial tinigog ¢)°").

Proof: Letv := |K| = p". Thetracefunction, Tr: F, — K is defined by
Tr(g) = g+¢° + ¢ +...+¢" ", wheret = w/r. The trace function is
K-linear and it is easily seen to be onto (cf. Ireland and Rosen [15, p. 145]).
Consequently, the elements(T}, Tr(9), Tr(9?), ..., Tr(9*~!) spank as a linear
space ovei,. Take the first- of these that are linearly independent o¥grto
be the “canonical” basis foK overF,, and represent every elementgfby its
coordinates with respect to this basis. This can be converted to a binary string of
length[wlog q| = [log|K]|]. ]

We now define the “explicit MCS function” (EMCS):
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Definition 7.2 Let ¢ be a prime power, let, r, t be positive integers, laet = rt,
letqg = p¥, letu = p" — 1, and lets = (¢ — 1)/u. We define the function
EMCS, .z : {0, 1}FFDIwlesrl £ 11[mleer] a5 follows. The firsfwlog p]
bits define a degree polynomialf € F,[z]. If this polynomial is reducible, output
1. Otherwise, we represef} asF, = F,[x]/(f), and interpret the next[w log p|
bits asz1,...,z, € Fy, in the usual way. Compute MGS x(x1,...,z;) and
output its canonical representation as a string of lefgtlog p| in accordance
with Lemma 7.1.

Theorem 7.3 Let ¢, u, k be as in Definition 7.2. TheBMCS, , ;; is polynomial-
time computable.

Proof: Berlekamp’s algorithm [7] decides whether a polynomial of degreeer
I, is irreducible, in timeD(d? log? dloglog dlog p) (cf. Rabin [22]).

The other computations require only a polynomial number of arithmetic op-
erations oveil,, since we can use repeated squaring when evaluating the trace
function. [ ]

This completes the justification of Corollary 6.4.

To make our output a bit more appealing, we might wish to represent the sub-
field by an irreducible polynomial. This, too, can be done in polynomial time, as
shown in [2].

8 Appendix A: Strong versus Weak Discrepancies

We now prove the inequality that justifies the terms “strong” and “weak” for the
two kinds of discrepancies (see Remark 2.8).
We use the notation introduced in Definition 2.3.

Proposition 8.1 For any S C X and anyy € G, x # xo, We havd“‘)’("eak(f, S) <
m-T'(f,S), wherem = |G|.

Proof: Follows from Definition 2.1 and Proposition 2.11. [ ]

From Proposition 8.1, it follows by averaging that- I'( f, S) is also an upper
bound on'™eaK f, §). However, we can improve this upper bound by/a; — 1
factor.

Theorem 8.2TWeaK r §) < (m/v/m —1) -D(f,S).
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Proof: By Proposition 2.11, we have

Fwealg(f’ S) — ; Z

—1
(m ) XF#X0

> X))

yeG

I

where the outer sum is taken over all nonprincipal charagtesG, and the ex-
cess,y(y) is defined in Definition 2.1. By the Cauchy-Schwarz inequality we

obtain
2

(rweak g2 < -3

—1
(m ) XFX0

We rewrite this inequality, and proceed to simplify it.

> X))

yeG

2
(m = D)IT"K£,9)” < 3 |D xwy)
X#xo |yEG
= 3 3 xy-2)r(2)
X#X0 Y,2€G
= > | 2 xy—2nwnE+ ) w?* |
XFX0 y,yz;ZG yeG

Reversing the order of summation and simplifying, we have

= Y )+ -1 > )

y,2€G yel
y#£2
1
= 5 2 (W) —2)* <m’L(£,9)%,
y,2€G
y#z
where the last inequality follows by Proposition 2.11 and by choosirg 2 and
a; = v(yi)/T(f,S) in Proposition 8.3 below. |
Proposition 8.3 Let A = {ay,...,a,} be a multiset of real numbers such that,

for all 4, |a;| < 1. Then fora > 1, we have

h(A) = Y ag—ai|* < [mP/4]-2%

1<i<j<m
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Proof: For such a multiseti, let N*(A) denote the multiplicity of+-1 in A, and
let N~ (A) denote the multiplicity of-1 in A. The claimed upper bound faér( A)
is achieved if N~ (A), N*(A)} = {|m/2], [m/2]}. Otherwise, suppose without
loss of generality thalv—(A) < N*(A). Letb = min{a € A | a > —1}. Then
replacingb by —1 yields a new multisetl’ of sizem, such that,(A’) > h(A). This
shows thaf:(A) is maximal if and only iff N~ (A), NT(A)} = {|m/2], [m/2]},
proving the Proposition. ]

9 Appendix B: Two Players with Help

For the case of two players, cylinder intersections correspond to cartesian products
(“rectangles”) which are much easier to handle. This fact allows us to derive a
strong upper bound on the discrepancy of MCS with two players without requiring
mathematics as deep as Weil's character sum estimates. We need only some basic
facts about the Fourier transform over finite abelian groups (cf. [1]).

We also reproduce the three-player boolean function one-way lower bound of
Nisan and Wigderson using the two-player model with help. Finally, with the
author’s permission, we include a lower bound for the one-way complexity of the
three-player pointer jumping function due to A. Wigderson.

9.1 MCS for Two Players with Help

Let f = MCS, 2 Whereq is a prime power and|q — 1 (cf. Section 5). Let
s = (¢ — 1) /u. Recall the definition of this function:

f(xv y) T { (.Z' + y)s otherwise,

where the %” stands for “undefined.” As before, the discrepancy bound will hold
for any mapping of the undefined entries to the ra6ge- {2° | z € F}.

To obtain an upper bound on the discrepancyf afie will use the following
result about Fourier transforms over finite abelian groups (see [1, Thms. 4.1 and
6.8]).

Theorem 9.1 Let ¢ be a prime powers | ¢ — 1, and 5,52 C F,. For each
z € Fy, let N, be the number of solutiors,, y) € 51 x S» to the equation

(x+y)" == (12)
Then, for each € F,
[N, — [S1][S2ls/ql < v/]51]]S2lq. u (13)
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LetC be the set of cylinder intersections (rectanglesjjnx F,.
Lemma 9.2 T'(f,C) < 2¢~ /2.

Proof: LetV = {(z,y) € F, x Fy : « +y = 0}. Let S be arectangle iif, x I,
i.e., S =51 xSy, whereS;, S, CF,. Letz € G.
From Definition 2.1 and Theorem 9.1, we have

|f1(z) N S| = |S|/u 1 S|

1 S|(qg—1 S

< 2<‘Nz_| | (¢ )‘+H+q>
q uq uq
1 S|

< (Vi g +)

< ¢ VP4 (ug) gt

< 2q_1/2.

Thus, by definition['(f,C) < 2¢—1/2. n

Plugging this into Lemma 3.3 and choosiggo be ann-bit prime yields the
following theorem:

Theorem 9.3 CMeIP(f) > n/2 — 2. m
Applying Lemma 6.2 tof, we find

Corollary 9.4 1C(f) > /n/2 — 1, while wheni = 2 ori = 3, iCy(f) <
logn + 1.

This resultis analogous to the three-player one-way bound of Nisan and Wigder-
son [20] for their “bits of hash value” function (see Section 9.2).

9.2 Universal Hash Functions and the Nisan—Wigderson One-way Bound

Nisan and Wigderson [20] prove &¥i(,/n) lower bound for the 3-party one-way
complexity of the “bits of hash value” (BHV) function derived from universal fami-
lies of hash functions. Our limited understanding of their proof served as the initial
motivation for this paper. In this section we present a version of their proof in
the formal framework of “communication with help.” We replace their somewhat
cryptic handling of certain conditional probabilities with the analysis via multi-
color discrepancy. Nisan and Wigderson invoke the “Leftover Hash Lemma” by
Y. Mansour, N. Nisan, and P. Tiwari [18] to estimate a conditional probability; we
rephrase this idea in terms of a multicolor discrepancy bound.
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Definition 9.5 Let X = {0,1}*",Y = Z = {0,1}". We may think ofX as a
2-universal family of hash functions,: Y — Z (see Carter and Wegman [10]).
Letl </ <n. Let
fr: X xY —{0,1}*

be defined byf,(z,y) = the first¢ bits of z(y). We shall also use the notation
HV,, ¢ = f¢ (for £-truncated-bit hash value).

Recall that Construction 6.1 creates a functjon {1,..., 0} x X XY —
10,1} defined byf, (i, =, y) := fo(x,y); = (x(y));- We shall also use the notation
BHV,,, = f; (“bits of hash value”). The main result explained in this section is
the following 3-player one-way lower bound.

Theorem 9.6 (Nisan, Wigderson [20])1C(BHVHW)2 n/2.

Following Nisan and Wigderson [20] we employ the “Leftover Hash Lemma”
[18]. In our framework, this lemma implies an upper bound on the discrepancy of
fe over the set of cylinder intersections (rectanglesXirx Y.

Lemma 9.7 (“Leftover Hash Lemma,” Mansour, Nisan, Tiwari [18]) LetYy C
KZO - Za XO - Xa andp = |ZO|/|Z| Then

|Prlz(y) € Zo | = € Xo, y € Yo] —pl < /p|X|/(|Xol|Yo]).
Lemma 9.8 T'(f,,C) < 1/2(n+0/2,

Proof: Let S be a cylinder intersection iX x Y. For two dimensions, observe that
cylinder intersections correspond to cartesian products of subsets, so there exist
Xs C X andYs C Y such thatS = Xg x Yg.

In the notation of Definition 2.1, let € {0, 1}* maximize|~(«)| for the func-
tion f, and the sef. Then

C(7e:8) = ()l = gy |1 @0 ) - 21

Let Zp := {z € {0,1}" | the first bits of z area} sop = 27¢. With this
notation,

9] < >
= — Pr |z € Zol —
7] s ®W) € 20l =P
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(Here fn(z,y) = xz(y), untruncated.) Sinc& = Xg x Yg, we infer from
Lemma 9.7 that

X IS) oIS
I'(fe,S) <
(fe, 5) ST XY\ XIPE

p/|Y —9- €+n)/2

IN

This bound and Lemma 3.3 imply tl§&n) lower bound for the 2-party com-
munication complexity with help of the HV function:

Theorem 9.9 CMP(HV,, ;) > (n+0)/2 — 1. n

Now an application of Lemma 6.2 tf = BHV,, ¢, with ¢ = [/n/2], together
with Theorem 9.9, yield Theorem 9.6. [ ]

9.3 One-way separation for pointer jumping

In this section we present an unpublished result of A. Wigderson, analyzing the
one-way complexity of th8-party “pointer jumping” function via two-party com-
munication with help.

Definition 9.10 For a positive integet, we setn] := {1,...,n}. Letmg,mq,..., my
be positive integers. Thi-party composition functiomakes as input &-tuple
(f1,-.., fx) of functions, wheref; : [mg] — [m1], fo : [m1] — [mal,..., fr :

[mg—1] — [mg], and returns their compositioffi, o fx—1 o ... o f1. In the special
case whenmy = 1,m; = 2, this function is boolean, and is called theparty
pointer jumping function

We consider thé-party pointer jumping function, where = my = m?. In
this case, the inputf, f2, f3 can be represented by stringd@f n/2, v/nlogn/2,n
bits, respectively (for convenience, we assume all quantities are integral).

Theorem 9.11 (Wigderson) For the 3-party pointer jumping function, where =
my = m?, the one-way communication complexityi§,/n) when the players
speak in the ordet, 2, 3, but isO(log n) for any other order.

Proof: We follow Wigderson’s outline [24]. For thé-party pointer jumping
function, if the communication order is nbt2, . . ., k, then there exist < j such
that Playerj speaks before PlayérLet Playerj’s message encode the valfie o

..o f1(1). This takes at modbg m;_; bits. Since Playeris givenf;, ..., fi, she
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can compute the output without further communication. This shows that the one-
way communication complexity for pointer jumping logn) except possibly
for the ascending communication order, wherés the bit-length of the longest
input.

Now consider the-party pointer jumping function witln; = /n andms =
n. As in Section 6, we relate the one-way communication complexity df-jerty
pointer jumping function to a restricted version of communication complexity with
help for a2-party composition function. Specifically, we consider the communica-
tion game where Player 2 sees ingyt Player 3 sees inpyt, and Player 1 sees
both functions. (There is no longer an inpfyt) The goal is to compute the com-
position f3 o f5. Communication occurs as in the two-way “communication with
help” model, with Player 1 acting as Helper, except that after the help message,
communication is one-way, with Player 2 speaking before Player 3. Additionally,
we will restrict Player 1's help message to have length less {haf.

Suppose there were a one-way communication protocol of cost lesg/théh
for the 3-party pointer jumping function (computinfg o f2 o f1). From this, we
construct a protocol of cost less thari6 for the 2-party composition function
(computing f3 o f2): Player 1's message is used as the help message. For each
1 <7 < my, Player 2 sends the message he would have s¢itlij werei. The
total cost is less than/6, and Player 3 can compufg o f»(i) for everyi, and so
can output the answer.

We now develop the machinery that will allow us to deduce lower bounds for
the two-party problem described above.

Definition 9.12 LetY be a set and let be a positive integer. For amytupley €

Y™ and non-negative integet we define theHamming ball of radius- centered
aty, B,(y), to be the set of all points € Y whose Hamming distance frogis

less than or equal ta. We say thafS is anear-Hamming baltentered af if there
exists an- such thatB,(y) € S C B,41(y).

Notation 9.13 For the rest of this Appendix, we adopt the following notational
conventionsmi, ma, mg are arbitrary positive integerg,is an element ofin.] [ma)|
9,9, go are elements diins)l™2], S, Sy, T are subsets dins]™?!, b is a function

b : [mg]™) — [ms]™]. Moreover, whenf andg are selected at randonf, is
always assumed to be uniformly distributed oyer,]™! and ¢ uniformly dis-
tributed overs.

Definition 9.14 We say thaib, S) form astandard pairif there exists a function
go such that for every, b(f) = go o f, and such thaf' is a near-Hamming ball
centered agy.
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Definition 9.15 We set
p(b. S, f) == Prlb(f) = g f],

and

The following combinatorial lemma is our main technical tool.

Lemma 9.16 Let k£ be a positive integer. Themax{p(b,S) | |S| = k}is
attained by the standard paif$, S) such thafS| = k.

Proof:

Claim 1:  Fix b and suppose there exisjs such that for allf, b(f) = go o f.
Thenp(b, S) is maximized, subject to the constrajsy = &, whensS is any near-
Hamming ball centered gt.

To see this, fixg and consideiPr;[b(f) = g o f]. This probability is(1 —
d(g,g0)/m2)™, whered(g, go) denotes the Hamming distance betwegeamndg.
Since this function is decreasing, the result is clear.

Claim 2:  For all pairs(b, S), for all g, there existsSy such thatSy| = |S| and
forall f, p(b, S, f) < p(bo, So, f), whereby denotes the functioby(f) = go o f.

The proof is by a shifting argument. The following construction incrementally
modifies the paitb, S) in mq rounds, to produce the outpilp, Sp). At the end of
each iteration, for every, p(b, S, f) has increased or remained the same, |&td
also remains the same. From this, the claim follows. Here is the construction:

for j:=1 to mo
T:=0
for g€ S

Let ¢’ be defined by (i) = { go(j) if i =3

g(i) otherwise.
if ¢ ¢ Sthenaddg’ to T
elseaddgtoT
endfor
S =T
- b(f)(@) = go(j) whenfa(i) = j
Redefine) so that, for allf, { b(f)(i) is unchanged otherwise.
endfor
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Itis clear that the outpuby, Sp) produced by this algorithm satisfigs) | = | S|
and for everyf, bo(f) = goo f. To see that, for any, p(b, S, f) does not decrease
at stepj, we observe that after round the number of functiong € .S such that
9(j) = go(j) is at least as great as the number of instances of any previous value
of g(4); in particular, for anyf, i such thatf(i) = j, it is at least as great as the
number of instances that;j) = b(f)(¢). This proves Claim 2.

Now, suppose we are given a pébr .S) maximizingp(b, S). By Claim 2, we
can replace this by a palbg, Sy), where there existg, such that is defined by
b(f) = go o f, without decreasing(b, S, f) for any f. In particular,p(b, S) must
still be maximal. Now, by Claim 1, we know th&t must be a near-Hamming ball,
and so(bo, So) is a regular pair. |

Remark 9.17 One can show that, under the conditions of Lemma 9.160tihe
pairs(b, S) attaining the maximum value are the standard pairs.

Corollary 9.18 For all b, S such that.S| = &, we have
plb,S) < e/ 4 25y — 1)/

Proof: By Lemma 9.16, we may assume tldas defined byb(f) = go o f for
somegg. Supposeg € S has Hamming distancefrom gg. Then

It follows that

b.S) < 1 S —im1/ma
p( ) ) = E Z‘ i|€ )
=0

whereS; denotes the set of elements®fat Hamming distancéfrom go. Those
terms for whichi > my/4 contribute at moste~"1/4 total to the sum. On the
other hand, there are exactf{;*) (ms — 1)’ functionsg at Hamming distance
from go. It follows, since the value of the binary entropy functiéh(1/4) =
0.8113... < 5/6, that the number of functiong with Hamming distance at most
my /4 from gq is less thare®2/6(ms — 1)™2/%, Adding these estimates completes
the proof. [ ]

We now complete the proof of Theorem 9.11. Recall that, on ifutfs),
Player 1 sends help messaléfs, f3). Let M (h)(f3) denote the message Player
2 would send on inpufs under help messagde
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For any input pair( f2, f3), leth = H( f2, f3) denote the message sent by the
Helper, Player 1, and let= M (h)( f3) denote the message sent by Player 2. For
such a pair of messagéhb, s), we define sets

Xh,s = {(fQ)f?)) | h:H(f27f3)55:M(h)(f3)}

Sns = M(h)7Hs)={fs | s=MN)(f3)}.
In the one-way communication protocol with help, after the messagé/pair has
been sent, Player 3 computes the outfiud f>. Hence the communication pro-
tocol defines, for each message pairs), a functionby, ¢ : [ma] M) — [mg]ml,
defined byby, 5(f2) := Player 3's output given inpyf,, when message is sent by
the Helper, and messages sent by Playe2. (We may assume that the protocol
specifies an output for Player 3, even given communication strings which could not
be sent for an actual input pair.) Observe that

Xns C{(f2, f3) | bus(f2) = fzo fo, f3 € Shst

and thus
| Xhn,s| < Prlbps(f2) = fzo fo] - m5™ - [Shsl,

where fo € [mq]l™l and f; € S), ; are chosen uniformly. It follows, by Corol-
Iary 9.18, withm; = \/ﬁ, mo =n,mgz=2,5= Sh,s; b= bh7s, that

| Xns] < (€Y Sy 5] + 26V
The setsX;, , partition the input spack] V™ x [2](". Hence,

2"V = )X
h,s

< D (e VS ] + 25OV
h,s

Now, since for fixedh, the setsS), ; partition 2]}, we have

om < Ze—\/ﬁ/42n + 22571/6‘
h h,s

It follows that either the number of help messageis at least2v™(loge/4)—1 or
the number of message paifs, s) is at least2”/5~1. As discussed earlier, this
proves that the origina-party protocol had cost at leagt:/6. This proves The-
orem 9.11. ]
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