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Abstract

The basin of attraction of a stable equilibrium point is investigated for a
dynamical system (W97) that has been used to model transition to tur-
bulence in shear flows. The basin boundary contains a linearly unstable
equilibrium point Xlb which, in the self-sustaining scenario, plays a role
in mediating the transition in that transition orbits cluster around its un-
stable manifold. However we find – for W97 with canonical parameter
values – that this role is played not by Xlb but rather by a periodic or-
bit also lying on the basin boundary. Moreover, it appears via numerical
computations that all orbits beginning near Xlb relaminarize. We offer nu-
merical evidence that the parameter values of W97 are postcritical in the
following sense: for some, subcritical parameter values, the basin bound-
ary coincides with the stable manifold of Xlb and only a subset of nearby
orbits relaminarize, whereas for supercritical values the basin boundary
is the union of two stable manifolds, one belonging to the periodic orbit
and dominating the basin boundary, and the other belonging to Xlb and
detectable only as an edge separating relaminarizing orbits of different
characters. The periodic orbit appears at the critical parameter value via
a homoclinic connection. This further leads to a proposal for the structure
of the ’edge of chaos’ somewhat different from that which has previously
been proposed.
MSC numbers:76D05, 76F20

1 Introduction

Experimentally, laminar shear flows undergo transition to turbulence when the
relevant parameter, the Reynolds number R, exceeds a critical value Rc. Math-
ematically, when the Navier-Stokes equations are linearized about the laminar
flow, the expected passage from stability to instability at Rc is not found. This
is the familiar conundrum that linear theory fails to predict the critical value
Rc (cf., for example, the introductory remarks in [8] for a fuller discussion). A
resolution of this conundrum is that the stable, laminar point O possesses a
basin of attraction B whose boundary ∂B passes increasingly close to O with
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increasing R, so that perturbations that may be small by laboratory standards
are large enough to transgress ∂B for sufficiently large values of R.

This idea of describing the problem of shear flows in the language of dynamical-
systems theory is an attractive one but has limitations when the model systems
are confined to very low dimensions. The present work is nevertheless confined
to models of very low dimensions. The motivations are (1) the impression that
the nature of the basin of attraction is an important element in the theory, (2)
the observation that very little is known about it and (3) the conviction that
one needs to understand the basin and its boundary in low-dimensional systems
before proceeding to high-dimensional systems. This is not a new idea. For
example, a part of the basin boundary has been calculated and graphed for a
two-dimensional model in [4], and its importance has been further highlighted
in a discrete, dynamical system in [15]. In the present paper we consider the
four-dimension model W97 (as described in [17]) and minor modifications of it.

Some results that may be relevant to higher-dimensional models and to the
Navier-Stokes (NS) equations, discussed in more detail in §5, include the con-
voluted structure of the boundary, which implies that the functional form of
a perturbation may be as important as its size; that the vicinity of Xlb may
not be the only place to seek transition; and that the tendency of the region
complementary to the basin of attraction to extreme narrowness in some parts
of phase space may help to explain the ’edge of chaos’ ([14]) in terms of the
more familiar invariant sets of dynamical-systems theory.

The plan of the paper is as follows. We describe the mathematical setting in
§2. In §3 we present Waleffe’s model together with diagrams of the boundary of
the basin of attraction indicating the periodic orbit that lies on that boundary,
and the relaminarization of orbits starting near Xlb. In §4 we reset the param-
eters in order to conduct a parametric study, finding a critical parameter value
at which the lower-branch equilibrium point is joined on the basin boundary by
a large periodic orbit via a homoclinic bifurcation. The concluding section, §5,
is devoted to drawing from this study a proposed interpretation of the edge of
chaos that is related to but not the same as that of [14], and to brief remarks
on the results of this paper and their implications for further study.

2 Mathematical Setting

The Navier-Stokes (NS) equations possess a number of very simple solutions rep-
resenting laminar shear flows (plane Couette and Poiseuille flow, pipe flow, etc.).
When these partial-differential equations are modeled by a finite-dimensional
system, the laminar flow can modeled by an equilibrium point of that system,
which we’ll take to be the origin of coordinates O. Almost all such finite-
dimensional systems that have been studied take the form

ẋ = Ax+ b(x), x ∈ Rn (1)

satisfying certain conditions:
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1. A is a non-normal, stable matrix.

2. b(x) is quadratic in x and
∑n

j=1
xjbj(x) = 0.

This structure can be inferred by a Galerkin projection of the NS equations onto
n basis vectors, while taking mild liberties with the boundary conditions.

The stability condition on A implies that its eigenvalues lie in the left half-
plane and therefore that the origin O is asymptotically stable. The basin of
attraction B of an asymptotically stable equilibrium point is the set with the
property that any orbit through a point of B tends to the equilibrium point as
t → +∞. It is an open set invariant under the flow, in the sense that any solution
beginning in B remains in B on its maximal interval of existence (a,∞). In some
examples a = −∞, though this is not inevitable. It’s set-theoretic boundary
∂B (if it has one) is likewise invariant in the same sense (it is worth noting here
that other, more restrictive, meanings have been given to ∂B: cf [15] and §5
below). The latter is typically of relative measure zero so orbits that lie on ∂B
are rare but important since they lie just at the transition from the laminar flow
toward something “more interesting.” In particular, the threshold amplitude for
transition, which has been a subject of some interest ([1],[2],[3],[9],[13],[18]), is
the minimum distance from the origin to the basin boundary. We denote such
a threshold point by T .

It plays a role in the self-sustaining process of shear turbulence as outlined
by Waleffe et al ([11],[16],[17]). In this three-part process sustained turbulence is
envisaged as consisting of streamwise rolls (part one) leading toward a streaky
flow (part two) whose instability reinforces the streamwise rolls (part three).
Figure 1 illustrates the first two parts of this process: a phase point starting
near T evolves toward the unstable equilibrium point Xlb, a surrogate for the
streaky flow. If it lies just above the basin boundary – which coincides in
this diagram with the stable manifold of Xlb – it as captured by the unstable
manifold of Xlb and sent toward S, a surrogate for turbulence.

3 The model W97

This is a four-dimensional model which may be written

ẋ1 = −δr1x1 + σ1x
2

4
− σ2x2x3, (2)

ẋ2 = −δr2x2 + σ2x3 + σ2x1x3 − σ4x
2

4, (3)

ẋ3 = −δr3x3 + σ3x
2

4
, (4)

ẋ4 = − (σ1 + δr4)x4 + x4 (σ4x2 − σ1x1 − σ3x3) . (5)

Here δ = 1/R where R is the Reynolds number and the eight constants r1
through σ4 are all positive (In an earlier model, W95, σ1 =0: see [16]). There
are canonical values for these constants that we use (following [2]) in this section:

(σ1, σ2, σ3, σ4) = (0.31, 1.29, 0.22, 0.68)

(r1, r2, r3, r4) = (2.4649, 5.1984, 7.6729, 7.1289).
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Figure 1: This cartoon illustrates Waleffe’s picture: a part of the boundary ∂B of the
basin of attraction of the point O is shown. The orbit shown begins at the threshold
point T and is attracted toward Xlb.

This system conforms to the rules (1) and (2) of model-building. It pos-
sesses the symmetry S = diag(1, 1, 1,−1) so a solution x(t) has a companion
solution x̃(t) obtained by reversing the sign of x4(t) and the plane x4 = 0 is an
invariant plane. For these reasons there is no loss of generality in considering
only solutions for which x4(t) ≥ 0. It is not difficult to show that the invariant
plane x4 = 0 lies entirely in B, the basin of attraction of the origin. It has been
the subject of several studies (in addition to [2], see in particular that of [5]),
with different goals from those emphasized here.

Two additional equilibrium solutions beyond that at the origin are found
provided δ < δsn or R > Rsn. With the choices for the parameters made above,
Rsn = 106.19. The equilibrium solution lying closer in norm to the origin is
called the“lower branch” Xlb, the one lying farther away is called the “upper
branch” Xub (see Figure 2). The lower-branch solution is unstable, with a one-
dimensional unstable manifold and a three dimensional stable manifold; the
upper-branch solution may be stable or unstable, depending on the choices of R
and of the other parameters. For the values of R considered in this paper and
for the canonical values of the other parameters, Xub is asympotically stable.
These equilibrium solutions are illustrated in Figure 2. The one marked Xlb lies
on ∂B. It is important to bear in mind, however, that Xlb is by no means the
closest point on that boundary to the origin. That closest point, denoted by T
in Figure 1, tends to the origin as R → ∞ (cf. [2]) whereas Xlb does not.

Figure (1) suggests that orbits starting on ∂B tend toward Xlb, which me-
diates the transition. This will be so if the the stable manifold of Xlb coincides
with ∂B. This seems plausible (and has been found to be the case for some
other models) but is by no means inevitable: the basin boundary and the stable
manifold of Xlb are both invariant sets for the system (2-5) but they are defined
in different manners and need not be identical. In fact, we find that they are
not identical for the model W97. The stable manifold of Xlb is a proper subset
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Figure 2: This is the diagram for equilibrium figures in Waleffe’s model. The lower
edge, where the norm ‖X‖ = 0, represents the laminar solution. The “lower branch”
of further equilibrium solutions does not approach the laminar solution as R → ∞ but
instead tends to the indicated asymptote.

of ∂B, so a point on ∂B lying far enough from Xlb has a different evolution.
For W97 the threshold point T has been located by Cossu ([2]). We find, by

following orbits starting near T , that they are attracted not toward Xlb but to
a periodic orbit P also lying on ∂B. We have thus far carried out calculations
for R = 145 and R = 190 and we display only those for R = 190 (those for
R = 145 are similar). We exploit Cossu’s calculations to find refinements of the
threshold values T : by repeated bisection we obtain a pair of values, xo and
xi lying respectively just outside and just inside the basin of attraction B and
within a short distance ǫ of one another. It follows that there is a point T on
∂B within ǫ of either of them. We then find the structure of the basin boundary
by calculating slices of it by two-dimensional hyperplanes (Figures 3, 4 and 5).
T lies close to the origin on the scales of these diagrams. That it does not lie at
the origin is most easily seen in Figure 5.

We also obtain the orbit through T = (T1, T2, T3, T4), finding the following.
On taking xo as initial data, we find that after a transient of a few hundred
units of time, the orbit is essentially periodic for many thousands of units of
time, eventually spiraling into the stable, outside point Xub; if xi is taken as
the initial point a similar evolution is found except that at the end, the orbit
tends to the laminar point O. Neither of these orbits comes close to Xlb.

In Figures (3), (4) and (5) two different kinds of objects are shown: slices
of the basin boundary by two-dimensional hyperplanes on the one hand, and
projections onto these hyperplanes of other features in the four-dimensional
space (like the periodic orbit) on the other hand. The latter are indicated by
single quotation marks.

While the self-sustaining process may be only slightly modified by replacing
the equilibrium point Xlb with the periodic orbit P as the mediator of transition,
the question of what role Xlb plays in the dynamics now arises. We next turn
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Figure 3: A region of the hyperplane x2 = T2, x3 = T3, which slices ∂B in the
indicated curves. The parts of this region lying in B are so marked; the remainder lies
outside. An orbit starting very near T hovers near the periodic orbit, (the transient
leading from T to this orbit is not shown). The complementary region to the basin
becomes very narrow near T but is resolvable numerically.

to this.

The three-dimensional stable manifold of Xlb coincides locally with ∂B. De-
note by ξt a unit vector transverse to ∂B (for example, ξt could have the unstable
direction at Xlb). Then if for a scalar v we choose initial data

x(0) = Xlb + vξt (6)

for a small value of |v|, we expect the orbit to depart from Xlb along its unstable
manifold. We anticipate that for one sign of v the orbit will lie inside B and
for the other outside, and therefore that for one sign the orbit will tend to the
origin and for the other will remain permanently outside the basin boundary,
presumably tending for large t to the stable equilibrium point at Xub.

Instead, we find that all orbits tend to O, apparently echoing the persistent
relaminarization found in other models ([7]). This is illustrated in Figure (6).

This violation of expectations could be explained by the following conjecture:
Xlb indeed lies on ∂B but, near the part of ∂B on which it lies, there is a second
leaf of ∂B exquisitely close to the first, and it’s only for initial data in the
narrow gap between the two leaves that orbits remain bounded away from the
origin. That such narrow gaps are plausible for these systems may be seen by
examining Figure (3) near the point T . In that case the gap, while narrow, is
still easily detectable numerically. If this “gap conjecture” is correct for W97
with the canonical choice of parameters, the space between the two leaves is too
small to be detected in the usual double precision arithmetic.
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Figure 4: A global view of the preceding figure, showing more of the nature of the
basin boundary, in the same slice as in Figure (3).
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Figure 5: Like Figure (3), but a different slice.

4 A march toward relaminarization

We adopt a familiar strategy for testing this conjecture. We choose different
parameters for which the problem simplifies and there is no violation of expec-
tions, and make gradual changes in these parameters to see whether the more
complicated situation encountered above unfolds. There is always some degree
of arbitrariness in reparametrizing. The one we have chosen below is extreme
and it is likely that a more modest reparametrization would suffice, although
we have not explored this.

If we set all the positive constants in W97 equal to unity we find qualitative
similarity to the case with canonical values for these constants. In particular,
on choosing (say) R = 100, we find that all perturbations of Xlb appear to
relaminarize, as in Figure 6. The strategy will be to take all coefficients equal
to unity with the exception of σ1. An asymptotic analysis like that of [17] shows
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Figure 6: The model is W97 with the canonical values for the constants r1 through σ4

and R = 190. The norms of orbits are shown on the interval [0,1200] and v = ±10−14.
The two cases differ in the nature of the orbits and in the time for relaminarization to
occur.

that, for small δ = 1/R, the lower and upper branch equilibrium points are

Xlb ≈ (−
σ2
1

1 + σ2

1

,
σ1

1 + σ2

1

, σ1δ, σ
1/2
1

δ)

and
Xub ≈ (−1 + 2δ, δ1/2, δ1/2, δ3/4).

For small values of σ1, we find numerically that there is a large and easily de-
tectable gap near Xlb, i.e., in a description like that of Figure 6, orbits for which
v < 0 relaminarize whereas those for which v > 0 do not. We then consider
successively larger values of σ1 to see if this gap gets successively narrower and
ultimately becomes undetectable. In Figures 7 and 8, we show only slices of the
basin boundary with the hyperplane x2 = Xlb2, x3 = Xlb3 since these seem to
reveal the gap most clearly. The value of R is held fixed at 15.

In these diagrams the region marked C, or Complement of B, is itself the
basin of attraction of a stable periodic orbit lying outside B. The diagrams con-
firm the existence of a narrowing gap but reveal a further, unexpected feature:
there appears to be a topological change in the nature of the basin boundary at
precisely the parameter value at which the gap becomes suddenly undetectable,
and is replaced by an ’edge’, determined numerically by differences in time to
relaminarize, as in Figure 6 above.

Simultaneous with the appearance of the edge is the appearance of a homo-
clinic loop, as indicated in Figure 8. This presages the appearance of a periodic
orbit (P, say) lying on the basin boundary. This orbit is shown for a slightly
post-critical value of σ1 in Figure 9 in which it continues to have the appearance
of a homoclinic loop. It is to be distinguished from the separate, stable periodic
orbit attracting all orbits inside the complement of B. P has been detected in
a numerical program designed to identify periodic orbits, which also confirms
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Figure 7: The ordinate is x4. For each value of σ1 shown, there is a progressively
narrower gap to the right of Xlb. Orbits starting above the narrower gap require longer
to relaminarize than those starting below. It looks on this scale as if the gap closes
when σ1 = 0.185, with Xlb falling on a critical point. A close up of the region near
Xlb would show that this has not yet occurred for σ1 = 0.185, but see Figure 8.

that it has one Floquet multiplier exceeding one in absolute value (i.e., of unsta-
ble type), and two less than one (the remaining multiplier equals one). This is
consistent with the interpretation that its stable manifold now forms part of the
basin boundary. That part of the basin boundary is robustly detectable as the
borderline between orbits that tend to the origin and those that are captured by
a stable periodic orbit. Similarly, in the case of canonical parameters depicted
in Figures 3, 4 and 5, the part of the basin boundary consisting of the stable
manifold of the periodic orbit is robust, and near-transition orbits are attracted
to this.

5 Discussion

We have studied the modified system W97 in which all the constants except
σ1 have been set equal to one. The following sequence of statements is inferred
from this study. Since the study is numerical, these statements are made subject
to the usual caveats.

• When σ1 is small enough, the boundary ∂B of the basin of attraction B
of the origin coincides with the stable manifold SM(Xlb) of the unstable
equilibrium point Xlb.

• When σ1 exceeds a critical value, ∂B is the union of two stable mani-
folds, SM(Xlb) and SM(P ), where P is a periodic orbit that comes into
existence via a homoclinic connection at the critical value of σ1.

• Postcritically, SM(Xlb) is no longer detectable as the boundary between
initial data whose orbits tend to the origin and those whose orbits are
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Figure 8: These are closeup views of the part of phase space near Xlb, which is
represented by a large dot. The first and third of these diagrams are calculated but
the central diagram is conjectural. The arrow marked UM(Xlb) in the left-hand
diagram is the projection onto this hyperplane of the unstable direction at Xlb. It is
tending toward tangency with the upper leaf of the stable manifold of Xlb, and thus
forming the homoclinic connection (central diagram). The curve marked ’edge’ in the
third diagram divides long-time relaminarizations from short-time relaminarizations:
no points of the complementary region C are detectable in the region of phase space
immediately adjacent to this edge.

permanently bounded away from the origin, because all nearby orbits
tend to the origin (relaminarize). It continues to be detectable as the
dividing line between qualitatively different kinds of orbits, whose times
to relaminarize are sharply different.

• Orbits through points on that part of ∂B separating orbits that relami-
narize from those that do not are all attracted to P , i.e., this part of ∂B
coincides with SM(P ).

Accepting these results from the modified version of W97, we can understand
the results obtained in §3 for the canonical version of this model: the latter is
postcritical in the sense that the homoclinic bifurcation has occurred along some
path in parameter space leading from the modified parameters to their canonical
values.

The sudden collapse of a part of the set complementary to the basin of attrac-
tion, as depicted in the right-hand diagram of Figure (8), is reminiscent of the
’edge of chaos’ as described in [14] in that the line marked ’edge’ is determined in
a similar manner, namely, there is a sharp difference in relaminarization time for
points just above and just below this line. A plausible interpretation of this edge
is offerred in [14] along the following lines. In addition to the stable, laminar
point at the origin of coordinates, there are two other invariant sets controlling
the dynamics: a periodic orbit P on the basin boundary and a chaotic saddle
farther out in phase space (see their FIG. 3). Orbits beginning below SM(P )
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Figure 9: Two projections of the periodic orbit on ∂B for a value of σ1 = 0.1865, just
post-critical. The dot represents Xlb, which appears on this scale to lie on the orbit,
but in fact lies a small distance away from it.

tend directly to the origin, whereas those beginning above it first participate
in the dynamics of the chaotic saddle before finally relaminarizing. This basic
building block is then enhanced by intricate convolutions of SM(P ) to explain
the repeated, sudden alterations in relaminarization times with distance along
a line (see their FIG. 2).

In the model currently under consideration, the analog of their periodic orbit
is the equilibrium point Xlb and the analog of the chaotic saddle is a stable,
periodic orbit lying farther out in phase space. Their basic building block is
not plausible for the current model because of the stability of the invariant set
farther out in phase space: orbits beginning above SM(Xlb) and visiting this
orbit would be captured by it and not relaminarize. This suggests a picture of
relaminarization like that of Figure (10), wherein the ’edge’ consists of two leaves
of SM(Xlb) so close together as to be numerically indistinguishable. This is close
to the conjecture proposed in §3. It explains the longer relaminarization time of
orbits beginning above SM(Xlb) by the need of such orbits to circumnavigate
the basin of attraction of the stable, periodic orbit before relaminarizing. This
set presents an obstacle to rapid relaminarization and is referred to as Obstacle
in Figure 10. A diagram like FIG. 2 of [14] can then easily be envisaged as the
result of intricate convolutions of SM(Xlb).

A number of issues for further study come to mind in view of the outcomes of
the work reported here:

• A topological transition takes place in the structure of the basin boundary
at the critical parameter value at which the periodic orbit P appears.
What is the nature of that transition? If the postcritical basin boundary
is the union of the two stable manifolds SM(P ) and SM(Xlb), do these
meet?
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Figure 10: A conjecture regarding the ’edge.’ The distance ǫ separating the top and
bottom leaves of the basin boundary is so small as to escape numerical detection. If
a point could be located between these leaves, it would ultimately be captured by
a stable invariant set lying farther out in phase space and therefore be permanently
bounded away from the origin. Attempts to locate such a point are frustrated by
the narrowness of the gap, and will result instead in initial points indicated by the
asterisks above and below. The orbit starting above is complicated but, since it is in
B, ultimately decays to O. The orbit starting below decays more directly, and more
quickly, to O.

• The structure of the basin boundaries makes it clear that whether a per-
turbation lies in B or its complement depends not only on the amplitude
of the perturbation but also – sensitively – on its direction in phase space
(see for example Figure 3). Moreover, even for perturbations in the right
direction to leave B, a large amplitude is not necessarily more effective
than a smaller one. This must influence the experimental determination
of the threshold for transition ([3]).

• In [15] the term ’basin boundary’ is reserved for the set separating the
basins of attraction of two, asymptotically stable invariant sets. This
distinguishes the basin boundary from an ’edge set,’ which may apply
to a case when all invariant sets other than the origin are unstable. In
the present paper we use the term ’basin boundary’ to mean the set-
theoretic boundary of the basin of attraction of the origin, irrespective of
the stability character of any other invariant set. For all the parameter
values considered in this paper, it turns out that there is indeed a second,
asymptotically stable invariant set, but we nevertheless also find what
appears to be an edge set. It seems important to clarify this fundamental
distinction.

It is tempting to draw parallels with studies of numerical solutions of the
Navier-Stokes equations, especially those for which periodic solutions emerge
through a parametric study (e.g. [6], [10], [12]). However, given the range of
models and of parameters employed in these studies on the one hand and the
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obvious limitations of the model studied here on the other, such parallels would
be highly speculative.

I wish to thank Carlo Cossu for generously sharing his data with me.
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