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Abstract

We explore two low-dimensional dynamical systems modeling transi-
tion to turbulence in shear flows to try to understand the nature of the
boundary ∂B of the basin of attraction B of the stable, laminar point at
the origin of coordinates. Components of ∂B are found to exist in two
types: one (the ’strong’ type) separating B from a complementary set
where orbits never relaminarize, and a second (the ’weak’ type) separat-
ing B into two parts locally but not globally. For a boundary of weak
type, orbits on each side relaminarize but may be distinguished from one
another by features such as orbital complexity and time to relaminar-
ize. The basin boundary may be of a single type, or may be a union of
components of different types.

The models are parametrized and may transform from one type to
another at a critical parameter value. In the models studied here the
change from purely strong type to a union of the two types occurs via the
collapse of two sheets of a strong boundary into a single sheet. This is
accompanied, at the critical value of the parameter, by the appearance of
a homoclinic orbit and the subsequent occurrence of a periodic orbit on
the strong part of the boundary.

1 Introduction

Transition to turbulence in shear flows occurs as the relevant parameter, the
Reynolds number R, increases beyond a critical value. This transition differs
in important respects from the onset of instability in other familiar problems of
hydrodynamics and indeed of other familiar problems in applied mathematics.
An important difference is that the transition takes place while the unperturbed,
laminar flow remains asymptotically stable ([7],[8]).

Another difference is that the transition may not be permanent, at least for
a range of R values. In these cases an apparently complex motion occurs for a
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while but is then followed by relaminarization. This regime of a return to the
laminar state after a complex motion has been found in numerical calculations
and has been related to the existence of an ’edge’ state ([1],[7]). Sometimes the
complex motion has a chaotic character and one refers to the ’edge of chaos.’
These features have been found both in the behavior of low-dimensional models
of shear flows and in numerical treatments of the Navier-Stokes equations. The
edge seems to be an invariant, codimension-one manifold in phase space separat-
ing relaminarizing orbits of two different types: orbits of one type relaminarize
quickly, whereas those of the other type relaminarize more slowly and follow a
more complicated trajectory than orbits of the first type (cf [10]). The edge
state need not be chaotic (this is parameter-dependent) and we emphasize here
its feature of dividing the basin of attraction into two parts.

The boundary ∂S of a given set S is defined as the set of points whose every
neighborhood contains both points that are in S and points that are not in S.
It is common to think of such a boundary as separating S from some other
set. For example, on the real line the set S = {x : x > 0} has the boundary
consisting of the point x = 0 separating S from the complementary set where
x < 0. On the other hand the set S = {x : |x| > 0} has the same boundary
x = 0, but this now separates S into two parts, each of which belongs to S.
We’ll refer below to the first kind of boundary as a strong boundary, effectively
defining the limits of S, and the second kind as a weak boundary since it does
not.

For shear flows the laminar flow is stable and therefore has a basin of attrac-
tion B, a connected, open set. An important key to transition lies in the nature
of this set, or of its boundary ∂B. As we shall see in simple models below, ∂B
may be of either of the kinds described above, or it may fail to be of a single
kind but instead be the union of strong and weak sets. An ’edge’ set has a
natural explanation as a weak part of ∂B in that on either side of it orbits lie
in B, i.e., relaminarize.

Finite-dimensional systems that mimic shear flows possess the following char-
acteristics: they have only linear and quadratic terms, the linear terms feature
a non-normal, stable matrix and the nonlinear terms conserve energy (cf [9]).
We shall take the stable, laminar solution to be the origin of coordinates. Then
an n-dimensional system of shearflow kind takes the form

ẋ = Ax + b(x), x ∈ Rn. (1)

Here A is a stable, nonnormal matrix and the quadratic function b(x) satisfies
the condition (x, b(x)) = 0, where (, ) represents the usual scalar product in Rn.

In the present paper we present two examples of low-dimensional models of
this kind in which an edge state appears. In these examples the edge state is
formed from a strong basin boundary at a particular parameter value where two
components of the strong boundary collapse onto one another forming a single
weak boundary-component. This metamorphosis of phase space is accompanied
by the appearance of a homoclinic orbit at the same, critical parameter value.
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Figure 1: Norms of equilibrium points against R; ‖x‖ = 0 represents the stable,
laminar point. The singular behavior as R → R∗ (R∗ = 10/3 in this example) can be
inferred analytically when (b1, b3) = (1, 3) in equation 2. Similar behavior is common
to the cases when b1b2 > 0.

2 A two-dimensional model

The following family of two-dimensional systems is of the shear-flow type of
equation (1):

ẋ1 = −δx1 + x2 + b1x1x2 − b2x
2

2
, (2)

ẋ2 = −δx2 − b1x
2

1
+ b2x1x2. (3)

Here δ is a sufficiently small parameter which we relate to the Reynolds number
by the formula δ = 1/R. The real parameters b1, b2 could be chosen arbitrarily,
but in the numerical examples below we have chosen b1 = 1, b2 = 3. The laminar
flow is represented by the equilibrium solution (x1, x2) = (0, 0).

It is a simple matter to investigate the further equilibrium solutions of this
system and their stability, and we shall state the results of this as needed,
leaving details to the reader. We wish, however to point out one feature. We
have chosen specific values for which the product b1b2 > 0 and believe these
choices to be robust, i.e., there would be no qualitative changes on altering b1

and b2 slightly. However, if we were to make the alternative choice b1b2 ≤ 0,
the pattern of bifurcations found below would disappear. In older studies of
two-dimensional systems ([3],[5]) this alternative choice was made.

The origin is the only equilibrium point if R < 2 and is globally, asymp-
totically stable in that case, but two further equilibrium points emerge via a
saddle-node bifurcation at the value R = Rsn = 2. One of these, which we call
Xub (for ’upper branch’), is initially stable and the other, Xlb (’lower branch’)
unstable for all values of R: their norms are shown in Figure (1). The subscripts
ub and lb stand for “upper branch” and “lower branch” respectively. A phase
portrait for R = 2.05, just beyond the saddle-node value is shown in Figure (2).
The basin of attraction of the origin, called B here and below, occupies most
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of phase space. Its boundary ∂B, which coincides with SM(Xlb), the stable
manifold of Xlb, is simultaneously the boundary of the basin of attraction D
of Xub, and is therefore of the strong type: only on one side of it do orbits
relaminarize (i.e., tend to the origin). Note that B becomes extremely thin for
large values of x1.
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Figure 2: The values of the parameters are b1 = 1, b2 = 3. In the left-hand panel R
is just greater than Rsn = 2. On the right, R = Rh ≈ 2.14.

As R increases further the region D increases in size but a new critical value
of R = Rh ≈ 2.14 occurs where a homoclinic bifurcation takes place: the two
branches of SM(Xlb) to the right of Xlb seen in Figure 2 coalesce into a single
orbit, and D is now bounded by a homoclinic loop. This is also depicted in
Figure 2. The part of the stable manifold of Xlb to the right of this point is
now a weak part of the boundary, i.e., an edge: it separates one part of B from
another. ∂B is now the union of strong- and weak-boundary-components; it
continues to coincide with SM(Xlb).

Increasing R beyond Rh we find that the domain D is now bounded by a
periodic orbit, indicated by P in Figure 3. Both arcs of SM(Xlb) now have
the edge character. ∂B is the union of P (a strong boundary-component) with
SM(Xlb) (an edge). The left-hand arc of the latter is both part of SM(Xlb)
and the unstable manifold of the periodic orbit P ; P is the α-limit set of the
orbit consisting of the left-hand arc of SM(Xlb).

As R is increased D shrinks and the stability of Xub weakens, i.e., the (nega-
tive) real parts of the eigenvalues get smaller in absolute value. This culminates
in a further bifurcation point R = Rbh = 2.51 at which the real parts of the
eigenvalues vanish and the domain D evanesces. For R just greater than Rbh

essentially all of the phase space lies in B, i.e., essentially all orbits relaminarize.
The exceptions are those lying on SM(Xlb) which again coincides with ∂B (see
Figure 3). The basin boundary has now made a full transition from a strong to
weak.

1This is a ’backward Hopf’ bifurcation (thus Rbh), i.e., it would be a standard Hopf bifur-
cation if we changed t to −t and ran R backwards.
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Figure 3: In the left-hand panel the value of R is just less than Rbh = 2.5, at which
the stability of Xub changes. The basin of attraction of Xub has shrunk but persists
and is now bounded by the periodic orbit P . On the right the value of R is slightly
greater: Xub is now unstable, the periodic orbit has disappeared via Hopf bifurcation,
and the boundary of the basin of attraction of the origin is purely of the weak – or
edge – type.

There is for the system (2,3) a final critical value for R = R∞ = 10/3 at
which a total alteration of phase space takes place. B is restored to finite size,
and ∂B becomes a strong boundary (cf. Figure 4). In this case the points
that lie outside B are carried by the flow to infinite distance as t → ∞. This
unphysical result emphasizes that conformity to the rules of model building
(equation 1 above) is by no means sufficient for a realistic model. We pass on
now to a better motivated choice.

3 A four-dimensional model

We consider in this section a four-dimensional model of a kind described by
Waleffe ([12]) and previously studied from various standpoints (e.g.,[4],[6], [9]).
We write it in a form in which the stable equilibrium point representing the
laminar flow lies at the origin of coordinates The system of equations in question,
which we’ll refer to as W97, is the following:

ẋ1 = −δr1x1 + σ1x
2

4
− σ2x2x3, (4)

ẋ2 = −δr2x2 + σ2x3 + σ2x1x3 − σ4x
2

4, (5)

ẋ3 = −δr3x3 + σ3x
2

4
, (6)

ẋ4 = − (σ1 + δr4)x4 + x4 (σ4x2 − σ1x1 − σ3x3) . (7)

Here δ = 1/R where R is the Reynolds number and the eight constants r1

through σ4 are all positive. This system conforms to the rules of model-building
(see equation 1). It possesses the symmetry S = diag(1, 1, 1,−1) so a solution
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Figure 4: In the region D complementary to B all orbits tend to ∞.

x(t) has a companion solution x̃(t) obtained by reversing the sign of x4(t) and
the plane x4 = 0 is an invariant plane. For these reasons there is no loss of
generality in considering only solutions for which x4(t) ≥ 0. It is not difficult to
show that the invariant plane x4 = 0 lies entirely in B, the basin of attraction
of the origin. There are, for values of R greater than a saddle-node value Rsn,
three equilibrium points: the origin O, Xlb and Xub, the so-called lower-branch
and upper-branch solutions. The origin is stable for all values of R, Xlb is
unstable and has a single unstable direction for all R > Rsn and the stability
properties of Xub depend on R.

There are canonical values for these constants that are often used. They are
(cf. [4])

(σ1, σ2, σ3, σ4) = (0.31, 1.29, 0.22, 0.68)

(r1, r2, r3, r4) = (2.4649, 5.1984, 7.6729, 7.1289).

If these values are used, one finds (see [9]) that, for a moderate value R = 190,
∂B consists partly of a weak boundary component, the edge (containing the
lower-branch equilibrium point Xlb), and partly of a strong boundary component
(containing a periodic orbit). In the two-dimensional model considered in §2
this would correspond to values of the parameter greater than that at which the
homoclinic bifurcation took place (Rh) but less than that of the Hopf bifurcation
(Rbh). If, therefore, a similar homoclinic bifurcation takes place in the current,
four-dimensional model, it must take place in a different parameter regime.

We choose different parameters for which ∂B is purely of the strong type, and
then vary one of the parameters to see whether a phase-space transformation
takes place. The reparametrization we have chosen is the result of a particular
line of numerical experimentation, and there may well be other, perhaps less
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radical, reparametrizations, that would do equally well. We set all the positive
constants in W97 equal to unity with the exception of σ1, which we use as a
bifurcation parameter. The Reynolds number R will be held fixed: R = 15. For
small values of σ1, we find numerically that ∂B is purely of the strong type,
at least that part of ∂B containing Xlb. We note that, as in Figure (2) above,
two sheets of ∂B become very near to each other in some parts of phase space,
leaving only a narrow gap between them that belongs to the complement of B.
This is seen in the left-hand panel of Figure (5), which shows a slice of the basin
boundary passing through Xlb made by the hyperplane x1 = Xlb1, x2 = Xlb2.
The parameter value, σ1 = 0.186, is slightly less than the critical value.

As we consider successively larger values of σ1 we see this gap closing and
finally disappearing at a critical parameter value at which a loop homoclinic to
Xlb appears. It is possible for this loop to form at the critical parameter value
because the upper sheet of the basin boundary then just touches the lower sheet
allowing stable and unstable eigenvectors of the system linearized around Xlb

to lie simltaneously on the basin boundary. This is depicted in Figure (8) of [9],
where slices of the basin boundary with the hyperplane x2 = Xlb2, x3 = Xlb3

are shown.
In Figure (5) the region marked Complement of B, is itself the basin of

attraction of a stable periodic orbit (call it Q) lying outside B. For σ1 < σ1c,
∂B is the common boundary of the basin of attraction of the origin and of
the basin of attraction of Q. For σ1 > σ1c (right-hand panel of Figure 5), ∂B
consists of two pieces: the edge, which contains Xlb and forms a weak component
of ∂B, and the boundary of the basin of attraction of Q. The latter boundary
now contains a further periodic orbit P which has come into existence via the
homoclinic loop at σ1 = σ1c. Indeed, the boundary of the basin of attraction of
Q appears to be SM(P ), the stable manifold of P , and the edge appears to be
SM(Xlb), the stable manifold of the lower-branch equilibrium point.
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Figure 5: Closeup views of the part of phase space near Xlb, which is represented by
a large dot. The left-hand diagram shows a slice of the basin boundary for σ1 < σ1c.
The boundary is purely ’strong.’ In the right-hand panel (post-critical) the sheet
containing Xlb divides long-time relaminarizations from short-time relaminarizations.
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4 Conclusions

Certain features of transition in shear flows can be captured by low-dimensional
– even two-dimensional – models ([2],[3],[5],[11]). The present study adds to
previously studied features a picture of an edge state. It confirms the view
([10]) that the edge is a codimension-one invariant set embedded in the basin
of attraction of the laminar state. In the present paper the edge state is in
fact the stable manifold of the unstable equilibrium point Xlb, or a subset of
the latter. It emerges in the models studied here via the collapse of a strong-
boundary component simultaneously with the emergence of a periodic orbit via
a homoclinic bifurcation at a critical parameter value.

In the two-dimensional example studied in §2, this periodic orbit forms the
boundary of the basin of attraction of a further stable equilibrium point Xub,
and the boundary ∂B of the basin of attraction of the origin consists of the
union of this periodic orbit with the edge in the interval Rh < R < Rbh.

A similar result appears in a four-dimensional model studied in ([9]) and §3,
wherein an edge state likewise makes an appearance via a homoclinic bifurca-
tion. Whereas the equilibrium point Xub is unstable for the parameter values
considered, there is a stable periodic orbit Q with its own basin of attraction,
and the boundary of the latter is the strong component of ∂B. In both this and
the two-dimensional case the periodic orbit P that accompanies the appearance
of the edge lies on that part of the basin boundary that remains of the strong
type.

The evidence presented here is that the edge is formed in the collapse of
two sheets into a single sheet. An alternative interpretation (wherein the pair
of sheets becomes exquisitely close together – within computational precision –
but remains separate even for σ1 > σ1c) was offered in ([9]) as being consistent
with the numerical data. This alternative interpretation now seems implausible
and the collapse of the two sheets into one seems far more likely. The evidence
is particularly clear for the two-dimensional model where the two ’sheets’ are
curves.

Nevertheless the sudden reduction of an extensive, n-dimensional region of
phase space to an (equally extensive) (n−1)-dimensional subspace (apparently,
a manifold), seems quite remarkable. In higher-dimensional models, one might
imagine a ’piecemeal’ description wherein the two sheets touch, at least at first,
(at σ1 = σ1c) along some curve. The nature of the diagrams is not favorable
to such an hypothesis, however. In particular, in ([9]) the diagrams shown were
slices of the basin boundary with x2 and x3 held fixed, whereas in Figure (5)
we show a slice with x1 and x2 held fixed. One would not expect to see collapse
simultaneously in both slices – as we do – if the ’piecemeal’ explanation held.

In the two-dimensional model of §2 there is a final critical value R∞ of the
parameter beyond which the edge state has disappeared and the geometrical
structure of phase space is consistent with the interpretation of a permanent,
subcritical transition away from the laminar state. This of course may be a
peculiarity of this model.
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