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ABSTRACT

Proving the optimality of algorithms for important combinatorial problems and

determining their intrinsic hardness properties requires finding strong lower

bounds for them.

The model of computation we consider is the PRAM without bit operations.

The model eliminates those operations that allow bit-extraction or updates of

the bits of the individual registers, but provides the usual arithmetic, indirect

referencing, conditional and unconditional branch operations at unit cost. We

consider here an unbounded fan-in model, in which the operations {+,min,max}
can have unbounded fan-in at unit cost.

We show that computing the shortest path between two specified vertices

in a weighted graph on n vertices cannot be solved in o(logn) time on an un-

bounded fan-in PRAM without bit operations using nΩ(1) processors, even when

the bit-lengths of the weights on the edges are restricted to be of size O(log3n).

This shows that the matrix repeated-squaring algorithm for the Shortest Path

Problem is optimal in the unbounded fan-in PRAM model without bit operations.

We also show that computing the maximum blocking flow (or equivalently,

the maximum flow in a directed acyclic graph) cannot be computed in time

o(n1/4) using 2Ω(n1/4) processors in the same model, even when the inputs are

restricted to be of length O(n2).

The lower bounds also hold (with slightly weaker parameters) in the case of

randomized algorithms with two-sided error, and even when the running time

of the algorithm is allowed to depend on the total bit-length.

The thesis also provides lower bounds for other restricted cases of these

problems which are useful in practice. We also obtain as a corollary a weak lower

bound on the problem of computing weighted matchings in bipartite graphs

which is not known to have a fast parallel algorithm.

xvii





CHAPTER 1

INTRODUCTION

1.1 The Question of Lower Bounds

The question of lower bounds in computation is essentially a pessimistic one. It

attempts to show what cannot be done computationally if one restricts certain

computational resources.

Attempting to say what is impossible or cannot be done in science is ex-

tremely hazardous. The failures of the imagination are the stories of legend.

August Comte, a philosopher of science, attempted to give an example of some-

thing science could never achieve. He declared in his Cours de Philosophie Positif

(1830-42) that it would be impossible to determine the chemical composition of

the distant stars. Within 20 years, the discovery of spectroscopy by Robert Bun-

sen and Gustav Kirchhoff (published in the Annalen der Physik und der Chemie

(1860)) proved Comte’s prediction wrong.

Mathematics by comparison (not being a science), can get a handle on im-

possibility by giving a proof thereof. Famous impossibility results include the

impossibility of “squaring the circle”, or finding a general solution in radicals to

a quintic equation.

The nature of computation lies somewhere in between these two extremes.

On the one hand, we construct models of computation that allow us to solve

computational problems using mathematical tools. On the other, however, we

have to ensure that our models are “realistic”, i.e., they should be physically

realizable.

The design and analysis of algorithms for combinatorial problems that arise

in practice count among the major contributions of Theoretical Computer Sci-

1
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ence to the discipline of computing. The models developed for sequential com-

puting resemble reality to a very close degree.

Unfortunately, there are exceedingly few lower bounds known for important

computational problems on these standard models. Most of them have been ob-

tained by simplifying the model of computation substantially in order to make

the problem mathematically tractable. However, these models are largely unre-

alistic, not in the sense that they cannot be physically realized, but that no one

would use such simple models to compute when more powerful ones are readily

available.

The advent of parallel computing has had a significant impact on both the

theory and praxis of computing. Once again, there are numerous models that

try to capture the essence of parallelism without worrying about the tiny details

that arise in practice. The success of such an approach in the sequential setting

suggests that the same would be true in parallel.

Once again, many fast parallel algorithms have been designed for many prac-

tical problems. However, there are algorithms that can be computed fast sequen-

tially that we are unable to parallelize efficiently.

The technique developed by Mulmuley [35] (discussed in Chapter 3) is the

first one that gives strong lower bounds on the parallel running time of certain

combinatorial problems. The model is a very slightly restricted version of the

standard PRAM model.

1.2 Contributions of This Dissertation

In this dissertation, we use Mulmuley’s technique to give strong lower bounds

on the parallel complexity of certain combinatorial problems.

In Chapter 4, we give a strong lower bound on computing the shortest path

between two vertices in a graph. Essentially, we prove that the repeated-squaring

algorithm used to compute the answer to the problem fast in parallel is optimal.

The result holds under fairly stringent restrictions on the input, and can be
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extended to randomized algorithms, and also to the case where the input graph

is sparse.

The proof is a substantial simplification and careful reworking of a proof of

Carstensen [7, 8] which takes into account the size of the coefficients that arise.

The lower bound also extends to a weak lower bound on the problem of

computing the maximum-weight perfect matching in a bipartite graph. This was

the problem that we had originally set out to study because it has no fast parallel

algorithm, yet is not known to be P-complete (which would explain the lack of a

fast parallel algorithm assuming that P ≠NC).

In Chapter 5, we give a lower bound on the parallel running time of the max-

imum blocking flow problem (or equivalently, the maximum flow problem in

directed acyclic graphs).

Our work leaves a whole spectrum of questions unanswered. A detailed dis-

cussion of these can be found in Chapter 6.





CHAPTER 2

PRELIMINARIES

2.1 Computational Problems

Definition 2.1.1 A computational problem is a relation R ⊆ I ×O between a set

of inputs (or instances) I, and a set of outputs (or solutions) O.

The answer to an instance of the problem x is a solution y such that (x,y)

belongs to the relation R. Since the problem is a relation, there may be many dif-

ferent answers corresponding to the same input. Usually in this case, we expect

the algorithm that solves the problem to output any one of these solutions. At

other times, we may be interested in counting the number of such solutions.

Definition 2.1.2 An undirected graph G = (V , E) consists of a collection V of

vertices, and a collection E of unordered pairs of vertices called edges.

A graph is represented diagrammatically by drawing a point for each vertex,

and a line connecting the two vertices of each edge of the graph. An example is

shown in Fig 2.1. A path between two pairs of vertices x and y is a sequence

of vertices (v0 = x,v1, v2, . . . , vk−1, vk = y) such that the graph contains edges

between adjacent pairs of vertices. Pictorially, it is a way to get from vertex x to

vertex y by following edges in the graph.

Example 2.1.3 (Graph Connectivity) The Graph Connectivity Problem is the

following: given an undirected graph G, and two vertices s and t, determine

whether there is a path in G connecting s and t.

For the instance of the problem in Figure 2.1, the answer is “yes” if the two

specified vertices are s and t, but “no” if we are looking for a path between the

vertices s and u.

5
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� �

�

Figure 2.1: Instance of a Graph Connectivity Problem

Definition 2.1.4 A directed graph (or digraph) G = (V ,A) consists of a collection

V of vertices, and a set of collection A of ordered pairs of vertices called edges

or arcs.

A directed graph is represented similarly to an undirected one. The only

difference in this case is that if there is an edge (x,y) between two vertices x

and y in the graph, a directed arrow is drawn from the vertex x to the vertex y .

An example of such a representation is shown in Figure 2.2.

� �

�

Figure 2.2: Instance of a Directed Graph Connectivity Problem

For the instance of the Directed Graph Connectivity Problem in Fig-

ure 2.2, once again the answer is “yes” if the specified vertices are s and t but

“no” when the specified vertices are s and u, because there is no directed path

between them.

A digraph is acyclic if it contains no directed cycle, i.e. a sequence of arcs

forms a path from the vertex to itself. A directed acyclic graph is also referred

to as a DAG.
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2.1.1 Representation

Since we seek to solve problems on a computer, each instance of the problem

must be represented in some way inside the computer. We will assume that

every instance is coded by strings over some alphabet of letters.

An instance of a problem is described as a finite sequence of symbols over

some finite alphabet Σ. Similarly, the solution to the instance of the problem

will be represented in a similar format.

A finite sequence of symbols over an alphabet Σ is called a string over Σ.

The set of strings of length exactly k is denoted by Σk. The set of all strings is

denoted by Σ∗ = ⋃k≥0 Σk. The length of a string x is denoted by |x|. The symbol

λ denotes the unique string of length 0. When the alphabet is not mentioned

explicitly, it is conventional to assume that Σ = {0,1}.
The input size of an instance of a problem is the size of the string encoding

the problem. The input size depends on the choice of encoding chosen. How-

ever, the measures of complexity that we discuss are very robust under changes

of encoding. We will not dwell excessively on the choice of encoding because our

results hold for any reasonable encoding scheme.

Since we deal extensively with graphs in this thesis, it is worthwhile men-

tioning that there are two standard representations for graphs — the adjacency

matrix representation which is a 0-1 matrix in which the (i, j)th entry is a 1 if

there is an edge between vertex i and j; and the adjacency list representation in

which a list of neighbors is maintained for each vertex.

2.1.2 Decision Problems

Decision problems, problems which have have a “yes/no” answer, are an impor-

tant class of computational problems. Solving these problems is equivalent to

deciding membership in the corresponding subset of Σ∗ that consists of the en-

codings of the positive instances, i.e., the strings for which the answer is “yes”.

A subset of Σ∗ is called a language. The complement of a language L is the

language Σ∗ − L and is denoted by L̄. We are most often interested in a class



8

of languages C. The class of complements of the languages in C is denoted by

co-C.

For example, the language corresponding to the Graph Connectivity Prob-

lem would be the following subset of Σ∗:

L = { (G, s, t) : ∃ a path between s and t in G }.

Another interesting language is that of bipartite graphs that have a perfect

matching. An undirected graph is called bipartite if its vertex set can be divided

into two disjoint sets A and B, such that all edges join some vertex of A to a

vertex of B. An example is shown in Figure 2.3.

Figure 2.3: A Bipartite Graph

A matching is a maximal set of vertex-disjoint edges. A perfect matching is

one in which every vertex is present in some edge of the matching. The edges

that form a perfect matching in the above graph are displayed in Figure 2.4.

Figure 2.4: Perfect Matching in a Bipartite Graph

The notions of a matching and a perfect matching extend to general undi-

rected graphs as well.
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Figure 2.5: Perfect Matching in a General Graph

2.1.3 Weighted Optimization Problems

Another important class of problems is that of weighted optimization problems.

Here the input consists of two parts, the non-numeric part and the numeric

part. For every instance of the problem I, we have to find the optimum solution

depending on some specified constraint.

An objective function is some function that depends only on the numeric part

of the input.

For example, we can consider the Shortest Path Problem in which the

edges are labeled by weights (which can be thought of as lengths or distances).

The objective in the Shortest Path Problem is to find the length of the shortest

path between two designated vertices s and t (Figure 2.6).
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Figure 2.6: Instance of a Shortest Path Problem

The most frequently encountered optimization problems are maximization

(or minimization) problems, in which the algorithm is expected to compute the
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maximum (or minimum) of some objective function. The Shortest Path Prob-

lem is an example of a minimization problem.

For example, the length of the shortest path between s and t in Figure 2.6 is

19. If instead of just the value of the optimum, we ask for the path itself, the

answer is the sequence of vertices that form the shortest path. The optimum

path is shown in Figure 2.7.
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Figure 2.7: Solution to the Instance of a Shortest Path Problem

Another example of a weighted optimization problem that has practical im-

portance is the minimum Weighted Bipartite Graph Matching Problem. The

problem consists of computing the minimum weight among all perfect match-

ings in a given bipartite graph. If we don’t restrict ourselves to bipartite graphs,

we get the more general minimum Weighted Graph Matching Problem.

A weighted optimization problem is said to be homogeneous if scaling all the

weights by k ∈ R scales the optimum value of the objective function by k as well.

Any weighted maximization (resp. minimization) problem can easily be trans-

formed into a decision problem by adding an extra input parameter. The prob-

lem then consists of deciding whether the optimum value is larger (resp. smaller)

than this additional parameter.
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2.1.4 Resources

In order to compare the efficiency of algorithms, we need to talk about how

much of some resource the algorithm consumes.

The resources used by a solution to a computational problem depend on the

model of computation that we adopt. Typical resources that we are interested

in include the running time of a program, or the space (memory) utilized by the

program. In the case of parallel computation, we will also be interested in the

number of processors that our algorithm uses.

Our emphasis in measuring the amount of resources used is on asymptotic

worst-case complexity. This measures how the worst-case resources used by a

problem grow as a function of the input size.

The size of an instance x is the length |x| of the string that encodes it. The

amount of resources needed for a given input size n is the maximum amount

of resources needed over all instances x of size n (worst-case behavior of the

program on input n). A resource bound is a monotone non-decreasing function

f : N→ R+.

The resource bounds that we consider are very robust with respect to the

details of the particular encoding. Hence, we will often we able to substitute

more natural problem-specific measures for the input size. For example, for

problems on graphs, we will use the number of vertices as a measure of its input

size. When we do that, and we also need to refer to the total bit-length, we use

the symbol N for the latter.

The following notation allows us to capture the asymptotic growth of re-

source bounds while suppressing details like constant factors. Let f , g : N→ R+

be functions.

Definition 2.1.5 f ∈ O(g) if there exists a constant c > 0 such that

f(n) ≤ c · g(n) for all sufficiently large n ∈ N. This means that f grows no

faster than g.
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Definition 2.1.6 f ∈ Ω(g) if there exists a constant c > 0 such that

f(n) ≥ c · g(n) for all sufficiently large n ∈ N. Hence, f grows at least as fast

as g.

Definition 2.1.7 f ∈ Θ(g) if f ∈ O(g) and f ∈ Ω(g), i.e., f and g have the same

growth rate.

Definition 2.1.8 f ∈ o(g) if for any constant c > 0, we have f(n) ≤ c · g(n) for

all sufficiently large n ∈ N (depending on c). This is equivalent to:

lim
n→∞

f(n)
g(n)

= 0.

Hence, f grows strictly slower than g.

Definition 2.1.9 f ∈ω(g) if for any constant c > 0, we have f(n) ≥ c ·g(n) for

all sufficiently large n ∈ N (depending on c). This is the same as:

lim
n→∞

f(n)
g(n)

= ∞.

This means that f grows strictly faster than g.

The most frequently used bounds and their names are listed in Table 2.1.

Resource bound Name

O(1) constant

O(logn) logarithmic

(logn)O(1) polylogarithmic

nO(1) polynomial

2n
O(1)

exponential

Table 2.1: Commonly Used Resource Bounds

As is conventional, we write f = O(g), etc., instead of f ∈ O(g). This abuse

of notation is fine as long as we remember that the right-hand term contains less

information than the left-hand side.
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2.2 Models of Computation

No mathematical model of computation can reflect reality with perfect accuracy.

Mathematical models are abstractions; as such, they have limitations. However,

these simplified abstractions allow us to analyze computational problems with

greater ease.

In the following sections, we introduce a number of models for sequential

and parallel computation. All of the models are robust, in the sense that each of

them can simulate the other with at most a polynomial slow down.

2.2.1 Turing Machines

The standard model of sequential computation is the Turing machine. It consists

of a finite state control, a read-only input tape, several read-write work tapes, and

a write-only output tape. Each tape has a read/write head which can sense the

character written on a tape cell and change it. At any given instant the finite

state control is in one of a finite number of states S, and at each step in time, it

can make a state transition based on the symbols under the heads of the various

tapes, change these symbols, and move any of the heads left or right by one

position.

At the beginning of the computation, the finite control of the machine is in

some designated start state s0 ∈ S. During the computation, the finite state

control keeps making transition depending on the symbols on the various tapes

until it reaches the final state sf ∈ S. The contents of the output tape define the

result of the computation.

An instantaneous description of the Turing machine contains all the informa-

tion about its current configuration (except for the input). In particular, it con-

tains the state of the finite control, the contents of the work and output tapes,

and the positions of the heads on all the various tapes. The sequence of instan-

taneous descriptions starting from the initial configuration forms a transcript of

the computation on a given input.
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Figure 2.8: Turing Machine

2.2.1.1 Resources

The two important resources of a Turing machine are its time and space re-

quirements. The time taken to compute some answer is the number of state

transitions the machine makes before it reaches the final state sf . The space

needed is the number of different cells of the work tapes that are accessed in

the course of the computation. The cells of the input tape do not contribute to

the space requirements.

2.2.1.2 Complexity Classes

In order to bound the time or space usage, we use the notion of a constructible

function. A function t : N → R
+ is time-constructible if there exists a Turing

machine that runs in time exactly t(n) on every input of size n. Analogously,

we call s : N → R
+ space-constructible if there exists a Turing machine that

runs in exactly space s(n) on every input of size n. All the resource bounds

used in this thesis are space-constructible, and all super-linear bounds are time-

constructible.
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DT IME[t(n)] is defined to be the class of languages that can be decided

in time O(t(n)) on a Turing machine. The class P denotes the class of lan-

guages solvable in polynomial time. It is considered to be the class of languages

efficiently solvable on a sequential computer [15].

P =
⋃
c>0

DT IME[nc]

DSPACE[s(n)] is defined to be the class of languages that can be decided in

space O(s(n)) on a Turing machine. The class L denotes the class of languages

solvable in logarithmic space.

L = DSPACE[logn]

Whenever we have a machine that runs in time t(n), it cannot use more than

t(n) memory locations, and hence, we have the following corollary:

DT IME[t(n)] ⊆ DSPACE[t(n)].

Similarly, whenever we have a machine that uses space s(n), the total num-

ber of instantaneous descriptions is 2c·s(n), where c depends on the size of the

alphabet Σ. There is a natural directed graph associated with this set of instan-

taneous descriptions, in which an edge is drawn between two descriptions if the

Turing machine makes a transition between them in one step. The task of decid-

ing whether the input is in the language or not, is equivalent to finding whether

there exists a directed path in this graph between the starting instantaneous de-

scription and the final one. This can be achieved in time proportional to the size

of the graph [10, 30]. Hence, we obtain the following inclusion:

DSPACE[s(n)] ⊆
⋃
c>0

DT IME[2c·s(n)].

In particular, we have the following inclusion which is conjectured to be strict.

L ⊆ P.
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2.2.2 The Random Access Machine

The Random Access Machine (RAM for short) is a computational model that is

much closer to the conventional notion of a computer. It consists of a processor

which has access to local memory. The memory locations are numbered sequen-

tially. Each memory location can store one integer which can be interpreted

either as a number, or as the address of another memory location.
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Figure 2.9: Random Access Machine (RAM)

The computation is represented by a sequence of instructions which can be

grouped into different categories as follows:

Arithmetic These instructions are used to perform addition, subtraction, multi-

plication or integer division on the integers stored in two memory locations

and store the result in a third.

Boolean These instructions are used to perform logical operations like AND, OR

and NOT on two operands.

Branch Operations These instructions alter the “flow” of the program either

unconditionally, or depending on the contents of some register.

Indirect Referencing These instructions allow the RAM to use a memory loca-

tion as a pointer to another location.

Bit Operations These operations allow the RAM to modify individual bits of the

integers stored in memory.
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2.3 Parallel Models of Computation

Families of boolean circuits are the standard model of parallel computation just

as the Turing machine is the standard model of sequential computation. The

idea behind parallel computation is that several processors can work simultane-

ously on different parts of a problem, and collectively try to solve the problem

faster than a single processor would.

2.3.1 Uniform Families of Boolean Circuits

A boolean circuit is a combination of AND-, OR-, and NOT-gates built on top of

the inputs in the form of a DAG. Each input gate is labeled with a variable xi,

for i ∈ N. For each truth assignment σ : xi → {True, False}, we can inductively

define a truth-value for each of the gates of the circuit. In order to compute a

function from {0,1}n to {0,1}, we can consider False to be represented as 0,

and True as 1.
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Figure 2.10: Boolean Circuit



18

Since any given boolean circuit only works for a fixed input length, if we

wish to compute the solution for any instance of an infinite problem, we need to

consider an infinite family of circuits. In order to decide a language L, we need a

family of circuits {Cn}, where the circuit Cn computes the language L restricted

to {0,1}n. Since we are allowed to use a different “program” for each input

length, the infinitely many programs may be very different from each other.

Such a model of computation is referred to as a non-uniform model.

For a family of circuits to be considered an “algorithm” for this problem, we

need to somehow ensure that we can generate the nth program “easily”. The

technical requirement is that there is some program-generating Turing machine

that on input 1n outputs a description of the nth circuit Cn. Such a family of

circuits is called uniform if the Turing machine needed to generate the circuit

runs in logarithmic space.

2.3.1.1 Resources

The two most important resource parameters of a boolean circuit are its depth

and its size. The depth of a circuit is the longest path from the input nodes to

the output gate. It corresponds to the parallel running time it takes to compute

the answer. The size of the circuit is the number of edges in the circuit. This is

at most a factor of 2 of the total number of gates, and hence, is a measure of the

number of processors used in the computation.

2.3.1.2 Complexity Classes

For any k ∈ N,NCk denotes the class of languages that can be decided by a uni-

form family of circuits {Cn} of polynomial size and O(logkn) depth. The union

of the classes NCk forms “Nick’s Class” (after Nicholas Pippenger). The class

NC is considered to be the class of languages that are efficiently computable on

a parallel computer.
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There is a strong connection between parallel computation and computation

on a sequential machine that utilizes space efficiently.

Theorem 2.3.1 (Savitch [42])

NC1 ⊆ L ⊆NC2

For both inclusions, strictness is conjectured.

So far we have concerned ourselves with circuit gates with fixed fan-in (num-

ber of inputs). We can also allow the OR- and AND-gates to have unbounded

fan-in, i.e., they can compute the logical AND, or the logical OR of any number

of inputs in one step. Of course, when we deal with circuits of polynomial size,

this also means that the number of inputs to any gate is also bounded by a

polynomial.

For any k ∈ N, ACk denotes the class of languages that can be decided by

a uniform family of circuits {Cn}, with unbounded fan-in gates, of polynomial

size and O(logkn) depth. Unlike the bounded fan-in case, the class AC0 is

meaningful.

Any NCi circuit is already an ACi circuit. Conversely, we can compute the

logical AND, or the logical OR of a polynomial number of inputs by a circuit of

depth O(logn). Hence, converting an AC circuit into an NC circuit increases

the depth by a factor of O(logn). Thus, the two hierarchies alternate under

inclusion as follows:

AC0 ⊆NC1 ⊆AC1 ⊆NC2 ⊆ · · · ⊆ ACi ⊆NCi+1 ⊆ACi+i ⊆ · · ·

In particular,AC =
⋃
kACk =

⋃
kNCk =NC.

We can simulate a parallel circuit in polynomial time by doing a “breadth-first

search” from the inputs, computing the output of each gate and storing it. This

shows that

NC ⊆ P.

It is widely conjectured that the inclusion is strict. The conjecture P ≠ NC
is one of the major open problems in Theoretical Computer Science.
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2.3.2 The Parallel Random Access Machine

The Parallel Random Access Machine (PRAM for short) is a model of a distributed

computing environment, in which many of the underlying details of the hard-

ware have been abstracted away. It consists of a set of processors, all of which

have access to shared memory. Each processor is a Random Access Machine

and has local memory as discussed in Section 2.2.2. Each processor can access

either its own local memory or the common shared memory at unit cost. The

processors can execute the same set of instructions as a RAM.
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Figure 2.11: Parallel Random Access Machine (PRAM)

Each processor can access the shared memory at unit cost. Depending on

how different processors access the same memory location simultaneously, we

can define different models of the PRAM.

The most restrictive model is the exclusive-read, exclusive-write PRAM (EREW

PRAM), in which exactly one processor is allowed to read or write any given

memory location at a given time.

The most general model is the CRCW PRAM (concurrent-read, concurrent-

write). Any number of processors are allowed to read a memory location at a
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given time. Similarly, any number of processors are allowed to write a given

memory location. Since different processors can write different values to the

given memory location, there are several ways in which we can resolve this con-

flict. We can either insist that all the processors write the same value (or if not,

the PRAM halts with an error), or we can allocate unique priorities to the various

processors, and the write value of the processor with highest priority succeeds.

In between these two extremes is the CREW PRAM (concurrent-read, exclusive-

write). Many processors can read the same location, but only one of them can

write to any particular location at a given time.

The difference between the various models do not turn out to be significant

for theoretical purposes, and hence, we can pick any of the above models. For the

purposes of lower bounds, we pick the strongest of the above models because

that enables us to prove the strongest possible lower bound for the problem.

2.4 Randomness

One of the most important questions in Theoretical Computer Science has been

the role of randomization in computation. Does the introduction of random

coin-flips introduce any efficiency into the algorithmic process? Researchers are

currently divided on the subject. There are a number of results which suggest

both possibilities — places where randomization seems to be indispensable, as

well as other results which suggest that it might be possible to do away with

randomization completely (with at most a polynomial loss of efficiency).

Randomized algorithms are similar to the usual algorithms except they pos-

sess the ability to flip coins. They are also allowed to have a small probability

of error, and depending on the type of error they are allowed to make, we can

distinguish between several types of algorithms:

Two-sided error These are the most general type of algorithms which are al-

lowed to make small errors (with probability at most 1/3), both on inputs

in the language, as well as those not in it.
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One-sided error These are algorithms that can err only on one side. If the input

does not belong to the language, the algorithm always says so. However, if

the input does belong to the language, the algorithm is allowed to give the

wrong answer with a small probability (at most 1/2).

Zero-sided error These algorithms never give the wrong answer. However, with

a small probability (at most 1/2), they are allowed to say “I don’t know”.

Whenever, the algorithm gives an answer, it is always correct.

2.4.1 Randomized Turing Machines

We can allow a Turing machine the ability to flip coins by giving it access to

a sequence of “random bits”. Thus, a randomized Turing machine is a Turing

machine that has an additional input tape (called the random tape) that contains

the outcomes of a sequence of independent, unbiased coin tosses. The tape is

read-only and the tape head can only move to the right. Reading a bit from this

tape is thus equivalent to flipping a fair coin.

2.4.1.1 Resources

The definitions of the time and space usage of a randomized Turing machine are

identical to that of a conventional Turing machine.

There is one more additional resource of randomized Turing machines that

is frequently considered, namely the number of random bits used in the process

of the computation. However, we will not be concerned with this in this thesis.

2.4.1.2 Complexity Classes

RP denotes the class of languages that can be decided with one-sided error by a

randomized Turing machine that runs in polynomial time. Similarly,RL denotes

the class of languages that can be decided with one-sided error by a randomized

Turing machine running in logarithmic space.
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The problem of deciding the Graph Connectivity Problem can be solved

in RL by taking a random walk on the graph starting from the vertex s. At each

step, we pick one of the neighbors of the current vertex uniformly at random

and move to it. If s and t are not connected, we will never reach t. If they are

connected, then with high probability, we will surely hit t in O(n3) steps [1]. All

we have to do is keep track of the current vertex, and the number of steps taken

so far, both of which can be accomplished in logarithmic space.

BPP (resp. ZPP) denotes the class of languages that can be decided with

two-sided (zero-sided) error by a randomized Turing machine that runs in poly-

nomial time. Also we have the following relationship:

ZPP = RP ∩ co-RP

2.4.2 Randomized Circuits

A circuit can be given the ability to flip coins by giving it additional input gates

that are fed the outcomes of independent fair coin tosses. Thus, a randomized

circuit has two types of input gates: those corresponding to the actual input bits,

and those corresponding to the random bits.

2.4.2.1 Resources

We can define the size and depth of these randomized circuits in the same fash-

ion as that of ordinary circuits. Since we are interested in circuits of polynomial

size, we may assume that the number of input random bits is polynomial in the

length of the input.
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2.4.2.2 Complexity Classes

For any k ∈ N, we define RNCk as the class of languages for which there exists

a uniform family of randomized Boolean circuits {Cn} of polynomial size and

depth O(logkn) that decide the language with one-sided error.

For example, the problem of deciding whether a graph has a perfect matching

or not can be decided in RNC2 [36].

2.5 Non-determinism

A non-deterministic Turing machine does not represent a physically realizable

model of computation. In this model, the machine has the ability to make

“guesses” about possible choices in the computation. Even though the model

is physically unrealizable, it is so useful in capturing the computational com-

plexity of many important problems that it is conventionally included in the

standard models of computation.

It is widely believed that non-determinism plays a very powerful role in com-

putation. There seems to be a wide array of problems that can be solved fast

using non-determinism but seem to require exponential time to compute deter-

ministically.

We will not be considering non-deterministic computation in any detail in

this thesis but we state the definitions and some basic results here for the sake

of completeness.

2.5.1 Non-deterministic Turing Machines

The model for a non-deterministic Turing machine is the same as that of a de-

terministic one except that there may be several possible transitions from the

current configuration of the Turing machine. Each time that this happens, the

machine makes a “choice” on what configuration to go to next.
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A non-deterministic Turing machine decides a language L if on every input,

there is some sequence of choices that allow the machine to get from the initial

state to an accepting final state.

It is not too hard to see that we can move all the non-determinism to the be-

ginning of the computation, i.e., we can guess the sequence of choices first, and

then the computation that follows has to verify that the choices were “correct”.

2.5.1.1 Resources

The definitions of the time and space usage of a non-deterministic Turing ma-

chine are identical to those of a conventional Turing machine.

2.5.1.2 Complexity Classes

NT IME[t(n)] is defined to be the class of languages that can be decided in

time O(t(n)) on a non-deterministic Turing machine. The class NP denotes

the set of languages that are computable on a non-deterministic Turing machine

in polynomial time.

NP =
⋃
c>0

NT IME[nc]

Since every deterministic Turing machine is also a non-deterministic one, the

following inclusion is obvious.

P ⊆NP

The famous P ≠NP conjecture asserts that this inclusion is strict.

Similarly, we may define NSPACE[s(n)] to be the class of languages that

can be decided in space O(s(n)) on a non-deterministic Turing machine. The

classNL denotes the class of languages solvable on a non-deterministic Turing

machine in logarithmic space.

L ⊆NL

Once again, strictness is conjectured.
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2.6 Reductions and Completeness

A reduction of a computational problem A to a computational problem B is a

way of classifying the relative hardness of the two problems. If we somehow

have a “magic box” that allows us to solve the problem B, then the reduction is

a computational way of solving the problem A using this box as an oracle.

The precise difference in computational difficulty depends on the different

kinds of reductions that we allow between the two problems. Various types

of reductions can be distinguished based on the model of computation, the re-

source bounds, and the kind of oracle access allowed. Notationally, we write

A ≤ B, which indicates that A is computationally no harder than B.

2.6.1 Oracle Turing Machines

An oracle Turing machine makes precise the notion of querying a black-box for

the computational problem B. An oracle Turing machine is a Turing machine

with an additional read/write tape (called the oracle tape), and two distinguished

states: the query state sq, and the answer state sa. The computation of the

machine is the same as that of the Turing machine, except for when it is in the

query state sq. At that point, the content of the oracle tape is interpreted as

an instance of B, and is replaced in one step by the solution to that instance

with the finite state of the machine moving into state sq. In effect, we obtain a

solution to an instance of B in a single computational step.

The time and space requirements of an oracle Turing machine with a given

oracle B are defined in the same way as that of an ordinary Turing machine. The

size of the oracle tape is not taken into account when considering space bounds

for technical reasons.
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2.6.2 Oracle Circuits

The notion of an oracle circuit is analogous to that of an oracle Turing machine.

We introduce a new type of gate (called the oracle gate), whose inputs will be

instances of the problem B, and whose outputs are the solution to the problem.

The size is the number of edges in the circuit. For an oracle gate, it equals the

size of the input and output wires. The depth is the size of the largest weighted

path from the output to the input. Input gates have weight zero, and all other

gates have a weight equal to the logarithm of the total number of edges.

2.6.3 Reductions

Reductions can be used in several different ways. If we have a reduction between

two problems A ≤ B, then an efficient algorithm for B coupled with the reduction

turns into an algorithm for A. Depending on the efficiency of the reduction, this

may or may not be an efficient algorithm for A.

Similarly, if we have a lower bound (hardness result) for A, then we get a

corresponding hardness result for B. The efficiency of the reduction dictates the

strength of the lower bound for B. Thus, in general we try to give the strongest

reduction between two problems. The strongest reduction corresponds to using

the weakest complexity class for the reduction, and the weakest type of oracle

access.

Very frequently, reductions only require a very restricted kind of oracle ac-

cess. Not only does this make the analysis of the reduction easy, but it also

helps us in obtaining fast algorithms or strong lower bounds for the problems.

We consider two types of oracle access: many-one (m), and Turing (T). The type

of oracle access is indicated as a subscript to the ≤ symbol. The symbols ≤m
and ≤T denote many-one and Turing reductions respectively.

A many-one reduction is a reduction that makes exactly one query to the

oracle and outputs the answer to that oracle query. In the case of two languages,

A and B, a many-one reduction can be thought of as a mapping f : Σ∗ → Σ∗ such

that for all x ∈ Σ∗, x ∈ A iff f(x) ∈ B.



28

A Turing reduction is the most general kind of reduction in which no restric-

tion is placed on the oracle access. Frequently, the notation ≤f(n)−T is used to

denote the fact that on inputs of size n, at most f(n) queries are made to the

oracle.

The resource bounds that it takes to compute the oracle queries can also be

used to classify the reductions in a manner orthogonal to the above classifica-

tions. We consider reductions that are computable in polynomial time, logarith-

mic space, and in parallel logarithmic time. The model of computation and the

resource bounds are indicated using a superscript to the ≤ symbol. For example,

≤P , ≤L, and ≤NC1
denote reductions running in polynomial time, logarithmic

space, and parallel logarithmic time respectively. It should be noted that be-

cause of the inclusion relations between complexity classes, an ≤NC1
-reduction

is also an ≤L-reduction, which in turn is a ≤P-reduction.

For example, the Shortest Path Problem problem discussed earlier can be

≤NC1

m -reduced to the Weighted Bipartite Graph Matching Problem [31, 33].

2.6.4 Completeness

A computational problem A is called hard for a complexity class C under reduc-

tion ≤ if every problem T in C ≤-reduces to A. If the problem A also belongs to

the class C, then we call A complete for C under ≤.

Frequently, in the absence of context, the type of reduction is often implicitly

understood. The term P-complete means complete for P under ≤Lm-reductions,

and the term L-complete means complete for L under ≤NC1

m -reductions.

The Circuit Value Problem is the language consisting of pairs (C,x) where

C is the description of a Boolean circuit, say on n inputs, and x is a bit string

of length n such that C accepts the input x. The Circuit Value Problem is

complete for P under ≤NC1

m -reductions, and hence is P-complete.

An example of an L-complete problem is the Directed Graph Connectivity

Problem.



CHAPTER 3

TECHNIQUES FOR LOWER BOUNDS

3.1 Introduction

In this chapter, we briefly discuss the history of the techniques that have been

used to prove lower bounds for combinatorial problems. Additionally, we out-

line Mulmuley’s technique that is used in this thesis to obtain lower bounds for

combinatorial problems.

3.1.1 Lower Bounds for Circuit Models

There are virtually no lower bounds known for general circuits trying to com-

pute boolean functions. It can be shown using counting arguments that there

are boolean functions on n inputs that require circuits of size Ω (2n/n). How-

ever, no super-linear lower bounds are known for the computation of an explicit

family of functions inNP by a boolean circuit.

All the super-linear lower bounds in the area are characterized by the follow-

ing idea: instead of attempting to prove a lower bound for the general circuit

model, researchers attempted to “handicap” the circuit in different ways, and

then proved lower bounds in these weaker models of computation.

The first success story in the area was in the case of monotone circuits where

the model of computation allows OR- and AND-gates, but negations using NOT-

gates are forbidden. Razborov [40] managed to give a super-polynomial lower

bound for the computation of an explicit function inNP by monotone boolean

circuits. This was later improved by Alon and Boppana [2] to an exponential

lower bound on a related function. The hope was that all monotone functions

in P would have polynomial-sized (or at least, sub-exponential sized) circuits

29
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which would prove that P ≠NP. Unfortunately, Tardos [45] managed to give a

similar lower bound for a function that was computable in P, which dashed any

hopes of trying to separate P fromNP using monotone circuit techniques.

The other line of attack was on lower bounds for constant-depth circuits.

The initial results of Yao [50], and Furst, Saxe and Sipser [20] were improved by

Håstad [26] to give optimal, exponential lower bounds for computing the parity

function using constant-depth circuits.

In contrast to circuits of constant depth, there are no known lower bounds

for circuits that have unbounded depth. This should be contrasted with the

results of this thesis in which we give lower bounds for the computation of

certain combinatorial problems on a PRAM whose running time is unbounded.

3.1.2 Lower Bounds for Algebraic Models

The computation of a problem on a RAM can be described by a sequence of

operations of two types: arithmetic and comparisons. For the time being, we

ignore pointer and bit operations. The computation of the RAM can be viewed

as a path in a rooted tree, in which the branch operations act as nodes which

determine the different directions in which the program can go. Accordingly, we

may define a model of computation called the algebraic decision tree model, in

which the inputs x1, x2, . . . , xn are integers, and the program is a set of instruc-

tions L1, L2, . . . , Lp where each instruction is either an arithmetic operation, or a

comparison operation. The leaves of this decision tree are all labeled with yes

or no depending on whether the input is to be accepted or rejected.

Ben-Or [5] and Yao [49] used classical techniques in real algebraic geometry

to give a lower bound on the depth of an algebraic decision tree computing

some function. The technique has recently been extended by Ben-Amram and

Galil [3, 4].

Let the inputs to the problem x1, x2, . . . , xn be viewed as a single point

x = (x1, x2, . . . , xn) in the n-dimensional Euclidean space Rn. The decision prob-

lem identifies the set of yes-instances W ⊆ Rn, such that an input is accepted



31

iff (x1, x2, . . . , xn) ∈ W . Suppose we know the number of disjoint connected

components of the setW (denoted by #W ). The following theorem of Ben-Or and

Yao relates this quantity to the running time of any algebraic decision tree that

solves the problem on a RAM.

Theorem 3.1.1 (Ben-Or, Yao) LetW ⊆ Rn, and let T be an algebraic decision tree

that solves the membership problem in W . If h denotes the height of the tree T ,

and #W the number of disjoint connected components of the set W , then

h = Ω(log #W −n) (3.1)

A very elegant presentation of the complete proof can be found in [38]. The

principal technique of the proof is the use of the theorem of Milnor and Thom

from classical algebraic geometry. A variant of this theorem is used later when

discussing further techniques for obtaining lower bounds.

Theorem 3.1.2 (Milnor-Thom) Let V be an algebraic variety in the n dimen-

sional Cartesian space Rn defined by the common set of zeros of p polynomial

equations:

g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn) = 0
...

gp(x1, x2, . . . , xn) = 0

If the degree of each polynomial gi is at most d, then the number of distinct

connected components of V is bounded by:

#V ≤ d(2d− 1)n−1. (3.2)

Note that the bound on the number of common zeros of the polynomials is

independent of the number of polynomials p.
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The above theorem of Ben-Or and Yao has been used to give lower bounds

for a number of important problems such as the Element Distinctness and the

Set Disjointness problems in Yao [49].

3.2 Lower Bounds for Parallel Computation

Mulmuley’s lower bounds for parallel computation are a major advancement of

the techniques of Yao and Ben-Or. They give a general tool for proving lower

bounds for combinatorial optimization problems in a slightly restricted version

of the general PRAM model. The lower bound results in this thesis depend on

the theorem of Mulmuley [35].

Mulmuley’s technique allows him to give a strong lower bound on the parallel

computation time for the Max Flow Problem in a slightly restricted (but natural)

model of computation. Since the Max Flow Problem is P-complete, this gives

strong evidence to the P ≠NC conjecture.

In Section 3.2.1, we first discuss the model. The crucial notion of parametric

complexity is introduced in Section 3.2.2. The theorem of Mulmuley is presented

in Section 3.3, which is followed by an outline of the proof.

3.2.1 Model of Computation

The model for the lower bound is a variant of the Parallel Random Access Ma-

chine. In this restricted model, first defined by Mulmuley [35], bit operations

on the registers are not allowed. Mulmuley’s model eliminates those opera-

tions that allow bit-extraction or updates of the bits of the individual registers,

but provides the usual arithmetic, indirect referencing, conditional and uncon-

ditional branch operations at unit cost (independent of the bit-lengths of the

operands). In addition, it is an unbounded fan-in model, in which the operations

{+,min,max} have unbounded fan-in at unit cost (independent of the bit-lengths

of the operands). However, multiplication is restricted to have bounded fan-in.
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Unlike earlier models used for proving lower bounds, such as the constant-

depth [26] or monotone circuit model [40], the PRAM model without bit opera-

tions is natural. Virtually all known parallel algorithms for weighted optimiza-

tion and algebraic problems fit inside the model. Examples include fast parallel

algorithms for solving linear systems [11], minimum weight spanning trees [32],

shortest paths [32], global min-cuts in weighted, undirected graphs [28], block-

ing flows and max-flows [22, 43, 47], approximate computation of roots of poly-

nomials [6, 37], sorting algorithms [32] and several problems in computational

geometry [41]. In contrast to boolean circuits where no lower bounds are known

for unbounded depth circuits, our result gives a lower bound for a natural prob-

lem in a natural model of computation.

3.2.2 Parametric Complexity

The technique for the lower bounds in this thesis involves the crucial notion of

parametric complexity first used by Mulmuley [35].

Let us assume that we are given a fixed instance of a weighted optimization

problem, in which the weights are replaced by linear functions in a parameter λ.

If we plot the optimal value of the minimization (resp. maximization) problem

as a function of λ over some interval I, the resulting optimal cost graph is piece-

wise linear and concave (resp. convex). The parametric complexity of the fixed

instance of the weighted optimization problem over the interval I is defined as

the number of breakpoints, i.e. points at which the function changes slope.

Definition 3.2.1 The parametric complexity ρ(n,β) of a weighted optimization

problem for input size n and size parameter β is the largest parametric complex-

ity achieved on instances of the problem of size n with weights that are linear

functions of the form a+ bλ, where the bit-lengths of a and b are at most β.
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3.3 The Theorem of Mulmuley

The theorem that connects the notion of parametric complexity to lower bounds

for parallel computation on a PRAM without bit operations is due to Mulmu-

ley [35]. The theorem can be loosely stated as combinatorial problems with high

parametric complexity must have high parallel running time.

Recall that a weighted optimization problem is said to be homogeneous if

scaling the weights by k ∈ R, scales the optimum value by k as well. Even

though we are dealing with optimization problems, we can easily convert them

into decision problems as outlined in Section 2.1.3.

Theorem 3.3.1 (Mulmuley) Let ρ(n,β(n)) be the parametric complexity of any

homogeneous optimization problem where n denotes the input cardinality and

β(n) the bit-size of the parameters. Then, the decision version of this problem

cannot be solved on a PRAM without bit operations in o
(√

logρ(n,β(n))
)

time

using 2Ω
(√

logρ(n,β(n))
)

processors, even if we restrict every numeric parameter in

the input to size O(β(n)).

Mulmuley’s theorem is stronger in that it also provides a lower bound when

the running time of an algorithm depends on its total bit-length.

This theorem is the main technique that is used to prove lower bounds in this

thesis. For various combinatorial optimization problems, we construct explicit

families of combinatorial objects that have high parametric complexity. This

enables us to prove lower bounds on their parallel running time.

The other technique used is that of an efficient reduction between combina-

torial problems. If we have two problems A and B such that A ≤NC1

m B, and

we show a lower bound on A, then we can obtain a lower bound on the parallel

running time of B.
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3.3.1 Outline of the Proof

In this section, we provide an outline of the proof of Theorem 3.3.1, along

with some small extensions to the technique (which allow us to prove the lower

bounds in Chapters 4 and 5).

The inputs to the problem can be divided into two distinct categories: the

description of the problem encoded in some fashion which we refer to as the

non-numeric part, and the weights for the optimization problem which are inte-

gers and hence, referred to as the numeric part of the input.

Let there be n distinct numerical inputs to the problem x1, x2, . . . , xn ∈ Z.

Assume that p(n) processors work cooperatively to compute the solution to the

problem, and that they achieve this in t(n) time. The computation of each pro-

cessor may be thought of as a computational binary tree of depth t(n) in which

each node of the binary tree is labeled with the instruction (and the operands)

that it operates on. Let us also assume that the optimization problem is stated

as a decision problem so that each leaf of the computation tree of each proces-

sor is labeled with either a yes or a no which corresponds to the answer to the

problem.

Fix a processor among the p(n) available processors. It is clear that if two

inputs follow the same branches of the tree on this processor, then the processor

gives the same answer on these two inputs. If the two inputs follow the same

branches on all the processors, then they are indistinguishable from the point

of view of this entire computational system, and hence, we might as well regard

them as being the same input.

This observation allows us to define a natural equivalence class on the inputs.

Two inputs x and x′ are equivalent if they follow the same branches of the

computation trees on all the processors for the entire length of the computation.

We can relax the definition to define a less restricted equivalence relation on

the inputs which classifies two inputs x and x′ as t-equivalent if the two inputs

follow the same branches of the computation trees on all processors until time

t. The preceding notion of equivalence then becomes the same as the notion of

t(n)-equivalence.
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Lemma 3.3.2 Let C be a fixed t-equivalence class. Then for each memory loca-

tion r , there exists a polynomial fr ,C,t(z) of degree 2t that gives the contents of

location r at time t for every z ∈ C .

Proof: Once we fix the equivalence class, the path of the processor until time

t is fixed. At time t = 0, each memory location is either a constant or equal

to some xi. Hence it is a polynomial of degree 1. At each step, the degree of

the polynomial can double if we multiply the values in two locations. Hence, by

induction, we can obtain the polynomial fr ,C,t of degree at most 2t.

�

The above lemma from Mulmuley can be extended in the following way so

that the model permits unbounded fan-in {+,min,max, sort} operations. Note

that, adding an unbounded number of integer locations does not change the

degree of the polynomial. Likewise, taking the minimum or maximum of an ar-

bitrary number of integers does not change the degree. Similarly we can provide

a sort operation in unit step without changing the degree of the polynomial. The

only thing that happens is that the memory locations are permuted.

The first part of the proof proceeds by giving a bound on the number of t(n)-

equivalence classes. Let φ(t) be the number of t-equivalence classes, and φ be

the number of equivalence classes (which is the same as φ(t(n))).

In general, it is quite hard to give a tight upper bound on φ(t). Mulmuley’s

proof uses the technique of parameterization to give an upper bound on the

number of equivalence classes when the inputs are restricted to a suitable affine

subspace of the space of all inputs Zn.

Specifically, let us imagine that each input can be obtained as a linear form in

d variables, z1, z2, . . . , zd where d� n. In other words, there are linear functions

li such that xi = li(z1, z2, . . . , zd). One of the key ideas of the proof lies in

the fact that we can give a suitable upper bound on the number of equivalence

classes when the inputs are thus restricted.

We can extend the notion of t-equivalence in a natural fashion to inputs re-

stricted to an affine subspace. The two parametrized inputs z and z′ are t-
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equivalent if the corresponding problem inputs x(z) and x′(z′) are t-equivalent.

Let σ(t) denote the number of equivalence classes when the inputs are restricted

to this d-dimensional affine subspace. Then, we can state the following lemma

about σ(t).

Lemma 3.3.3 Let p(n) be the number of processors used in the computation.

Then, for all values of t > 0, the number of equivalence classes σ(t) is bounded

by:

σ(t) ≤
(
2+ 2 · 2tp(n)

)dt
The technique of Mulmuley actually also takes into account algorithms whose

running time may depend on the total bit-length of the input to the problem. In

order to talk about this, we need to introduce some additional notation. Let N be

the total bit-length of the input. Let the solution to the problem be computed in

t(n,N) time using p(n,N) processors. We can extend the notion of equivalence

to mean t(n,N)-equivalence.

Since we have restricted the total size of the input problem toN, we only need

to consider inputs x whose total bit-length is bounded by N. We call an input

z from the affine subspace permissible if the input x obtained from it has total

bit-length bounded by N. We restrict our attention only to permissible inputs z.

The above lemma can be extended to this more general case where it gives

essentially the same bound.

Lemma 3.3.4 Let p(n,N) be the number of processors used in the computation.

Then, for all values of t > 0, the number of equivalence classes σ(t) is bounded

by:

σ(t) ≤
(
2+ 2 · 2tp(n,N)

)dt
Each node in the computation tree operates on a fixed number of operands.

It can be seen that each operand can be determined by a fixed polynomial in

the inputs x. Since the inputs x have now been restricted to permissible inputs

depending on z, we can extend this to say that the operands at each node depend

on a fixed polynomial in the inputs z.
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An important observation about computation trees is that the only instruc-

tions that allow us to branch are the comparison operations. In other words,

since we are comparing two operands using the operations >, ≥, or =, and that

these operands are polynomials in the permissible input variables z, we can la-

bel the branching nodes with operations of the form g(z) > 0, g(z) ≥ 0, or

g(z) = 0, where g(z) is a polynomial in z. We can restate this as: the direction

of the branch only depends on the sign of the function g(z), where the sign

of the function at a point is defined as +, −, or 0 depending on whether the

function is positive, negative, or zero at that point.

Therefore, two permissible inputs z and z′ follow the same branches up to

level t (i.e. be t-equivalent) if the various polynomials that they encounter at the

nodes of the different processors have the same sign. Thus, what we need is

some upper bound on the number of sign-invariant components into which the

various gi’s at the tth-level of the computation divide the space of permissible

inputs Zd (Figure 3.1). This depends on the degree of the polynomials gi which

we shall denote by deg(gi).

Figure 3.1: Sign-invariant components of polynomials
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The bound on the number of sign-invariant components can be obtained by

appealing to the classical bound in algebraic geometry of Milnor and Thom which

gives an upper bound on the number of sign-invariant components of a set of

polynomials.

Theorem 3.3.5 (Milnor-Thom) The number of non-empty sign-invariant compo-

nents in the preceding stratification of Zd is at most

2+ 2
∑
i

deg(gi)

d . (3.3)

The original theorem of Milnor and Thom gives a bound on the number of

common zeros of a set of polynomials {gi} in Rn each of degree at most d. We

can use the original theorem to give a bound on the number of sign-invariant

computations by replacing each hypersurface g(z) = 0 by two hypersurfaces

g(z) = ±ε (as shown in Figure 3.2) where ε is an infinitesimal positive real. If

we choose ε small enough then the new hypersurfaces do not contain any per-

missible integer point, and hence, the partition of the permissible integer points

by the hypersurfaces into sign-invariant components remains the same. Now we

can apply the original theorem to obtain the bound stated in Theorem 3.3.5.

Figure 3.2: Perturbation of the polynomials
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If we fix some equivalence class at step t of the computation, then at the next

stage of the computation this class gets subdivided into a finer set of equivalence

classes. Each equivalence class is at some node of the computation in the various

processors, and hence, branches according to some polynomial gi. The total

number of such polynomials is clearly p(n,N), and each has degree at most 2t,

which by using the above theorem of Milnor and Thom, gives us the following

relation between σ(t + 1) and σ(t).

σ(t + 1) ≤
(
2+ 2 · 2tp(n,N)

)d
· σ(t)

The lemma on the number of equivalence classes follows by induction on t.

We can obtain an easy corollary from the statement of the lemma about the

number of equivalence classes.

Lemma 3.3.6 For any t-equivalence class C , there are a set of Γ(C, t) polynomial

constraints (equalities or inequalities) in d variables such that z ∈ C iff all the

constraints are satisfied. Moreover, the degree of each polynomial is at most 2t,

and |Γ(C, t)| ≤ p(n,N)t.
In other words, at the end of the computation, we can identify a set of poly-

nomial constraints which number

(
2+ 2 · 2t(n,N)p(n,N)

)d·t(n,N)
· p(n,N)t(n,N) (3.4)

whose sign-invariant components totally determine the fate of the computation.

Each component is labeled yes or no, and the inputs which are functions of the

permissible inputs z ∈ Zd are accepted if they are in a sign-invariant component

labeled yes.
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3.3.2 The Role of Parameterization

We have noted that restricting the inputs to a small affine subspace gives us a

bound on the number of sign-invariant components of the computation. Mul-

muley’s proof now proceeds by showing that if we restrict the inputs to lie in

a subspace spanned by a small number of parameters, then a partition of the

inputs by the number of polynomials given in Equation 3.4 cannot exist.

Fix a parameterization P for cardinality n and bit-length β(n) that gives ρ(n)

breakpoints for the graph of the optimization problem. For a given rational

number λ, each numeric parameter in P(λ) is of the form uλ+ v where we can

assume without loss of generality that u,v ∈ Z (because if not, we can scale the

parameterization P by a large enough integer without changing the number of

breakpoints).

Although the term uλ + v might be rational, we expect all of our inputs

to be integers. Since each rational number can be represented as a ratio of

two integers, we counter this problem by replacing λ = z1/z2, and the original

parameterization P by a homogeneous parameterization P̃ in two parameters z1

and z2 so that each original linear form uλ+v is replaced by the corresponding

integral form uz1 + vz2. The bit-length β(n) and the complexity ρ(n) of P̃ is

the same as that of P.

Since we are dealing with decision problems instead of the original optimiza-

tion problems, we have an extra input z3 which represents the threshold of the

optimization problem. In other words, the algorithm has to decide whether the

optimum value F(I) of the input I is greater than or equal to the threshold z3.

The inputs I are restricted to be the inputs P̃(z1, z2) are discussed above.

Lemma 3.3.7 For sufficiently large values of α > 0, if we restrict the inputs to

(I,w) =
(
P̃(z1, z2), z3

)
, where z1, z2, z3 all have bit-lengths ≤ aβ(n), then no

PRAM without bit operations can determine whether F(I) ≤ w correctly for all

inputs I within
√

logρ(n,β(n))/κ parallel time using 2
√

logρ(n,β(n))/κ processors

where κ is a constant independent of α.
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By placing d = 3 in the statement of Equation 3.4, we can obtain the following

statement:

Lemma 3.3.8 For any positive constant κ, if a PRAM works correctly on every

input I(z1, z2, z3) for permissible values of zi in time t =
√

logρ/κ using 2t

processors, then R3 can be partitioned into at most 220t2 algebraic surfaces of

degree at most 2t and each sign-invariant component can be labeled yes or no

so that a permissible integer point lies in an sign-invariant component labeled

yes iff F(I) ≤ z3.

The rest of the proof proceeds by showing that such a decomposition of R3

cannot be achieved for large enough constants α and κ.

3.3.3 A Problem on Lattices

Let F(λ) be the optimum function associated by the homogeneous parameteri-

zation P and let G be its graph. An input I(z1, z2, z3) is feasible iff P̃(z1, z2) ≤ z3.

In other words, it is feasible iff

F
(
z2

z1

)
≤ z3

z1
.

There is a natural way of looking at the graph G in terms of projective coor-

dinates. Imagine G to be sitting in the plane z1 = 1 in R3 where R3 is viewed as a

two-dimensional projective space. Each point in R3 can then be projected on to

the affine plane by the ray that passes through the point and the origin. Hence,

any point (z1, z2, z3) is feasible iff it lies beneath the graph G in the projection.

We can state the same criterion in the reverse fashion by projecting the shadow

of the graph outward into R3 and calling it the fan(G). A point (z1, z2, z3) ∈ R3

is feasible iff it lies below the fan. The situation is illustrated in Figure 3.3.

In the presentation that follows, we follow the standard convention of naming

coordinates in R3 by renaming the coordinates z1, z2, and z3 as z, x and y

respectively. Note that this use of x should not be confused with the earlier use

of x to denote a single instance of the input.
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Figure 3.3: Graph G and its fan

The graph G is piecewise linear and has ρ segments. All its vertices have

rational coordinates of bit-length at most β (or in equivalent words, size µ = 2β).

In what follows, it will be much more convenient to work in terms of the size µ

as opposed to the bit-length β.

Let us construct a bounding box defined by |x| ≤ 2µ, |y| ≤ 2µ as shown in

Figure 3.4. Clearly all the vertices of G lie within the bounding box.

Project the outline of the bounding box outward from the origin, and consider

two bounding planes z = µ̄ and z = 2µ̄ as shown in Figure 3.5. The constant µ̄

will be chosen later in the course of the proof, such that log µ̄ is a large constant

multiple of logµ, i.e., µ̄ = µO(1). The slab shown in the figure is referred to as the

block B. All of its coordinates have size at most 2µ̄ (or equivalently bit-length at

most 2β̄ where β̄ = log µ̄).

The computation of the various processors defines sign-invariant compo-

nents. In particular, we can talk about the components within the block B. The

following lemma shows that if the number of breakpoints ρ is sufficiently large,



44

�����������

�

	�

��� ���

�

�
�

� ���
��������� � ���

���! 

Figure 3.4: The Bounding Box

then a small number of surfaces cannot divide the region into sufficiently many

parts to classify the points above and below the fan correctly. Hence, no such

computation can exist.

Lemma 3.3.9 Let S be any set of surfaces in R3 of total degree D. Let β̄ = log µ̄

be greater than a large enough multiple of β = logµ, and let logρ be greater than

a large enough multiple of logD. Then, at least one sign-invariant component

in the partition of the block B formed by the surfaces in S has an integer point

lying below fan(G) and also an integer point lying above the fan.

Before we try to prove this theorem, let us observe how the Lemmas 3.3.8

and 3.3.9 combine to give us Theorem 3.3.1.

Assume that we have a set of machines that runs in time t = logρ/κ. Then by

Lemma 3.3.8, we can obtain 220t2 surfaces of degree at most 2t which partition

the block B such that each sign-invariant portion can be labeled with the required

answer.
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Figure 3.5: The Block B

The total degree of the surfaces from Lemma 3.3.8 is at most 2t ·220t2 < 221t2

where t = logρ/κ. Choose the constants a and κ large enough so that they

satisfy the constraints in Lemma 3.3.9. This lemma tells us that there is a some

sign-invariant component which contains two integer points, one from below the

fan and one from above it, which means that the computation must have erred

on these two inputs. This gives us the required contradiction.

3.3.4 Collins’ Decomposition

The crux of the proof lies in proving the statement of Lemma 3.3.9. For this we

shall need several additional tools from geometry which we shall develop in this

section.
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We have already shown how to perturb the surfaces in the set S without

changing the sign-invariant components, so that no integer point can lie on any

of them (Figures 3.1 and 3.2).

Definition 3.3.10 Let Q denote the set of surfaces whose elements are:

1. the surfaces in S,

2. the planes bounding the slab B,

3. a set of 6D planes parallel to the affine plane z = 1 that divide the slab B

into slabs of equal height.

Definition 3.3.11 Let s be a surface. A point p on the surface s is said to belong

to its silhouette as seen from the origin if the straight line joining the origin to

the point p is tangent to the surface s at the point p.

If the surface s is defined by a polynomial equation f(x,y, z) = 0, a point

p = (a, b, c) is on the silhouette if it satisfies f(a, b, c) = 0 and if the tangent

vector along the surface at that point is orthogonal to the vector from the origin

to the point. This can be restated as

a
∂f
∂x

∣∣∣∣∣∣
p

+ b∂f
∂x

∣∣∣∣∣∣
p

+ c ∂f
∂x

∣∣∣∣∣∣
p

= 0.

The silhouette of a surface s is a smooth space curve if the surface s is in

general position. However, we have no control over the set of surfaces in the set

Q. In particular, they may be highly degenerate. However, by Sard’s theorem, we

can perturb all the surfaces by infinitesimal reals without disturbing the sign-

invariant components. In other words, we can assume without loss of generality

that the surfaces in Q (and hence in S) are in general position with respect to

each other. This allows the proof to access transversality techniques which were

hitherto not available because of the degeneracy in the surface intersections.

The following space curves are projected onto the affine plane:
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Figure 3.6: Projections of the Intersections (and the silhouettes)

1. the silhouette of every surface in S, and

2. the intersection between every two pair of surfaces in Q (because of our

general position assumption, all of these are also smooth space curves).

An example of such a projection is shown in Figure 3.6.

The arrangement of curves thus obtained in the affine plane is further refined

by passing lines parallel to the y-axis (vertical lines) through the following:

1. all points of intersection among the curves,

2. all singular points on the curves,

3. all critical points on the curves (where the tangents become parallel to the

y-axis).

The resulting partition of the bounding box into regions is known as the two-

dimensional Collins’ decomposition, and is denoted as A(Q). It has the property

that the intersection of any connected region (also known as a cell) with a line
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parallel to the y-axis is connected (assuming the intersection is non-empty). The

Collins’ decomposition of the curves in Figure 3.6 is shown in Figure 3.7.
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Figure 3.7: Decomposition A(Q) in the Affine Plane

The partition A(Q) can be lifted to the slab B in a natural fashion, by passing

rays through all the projected curves, and the auxiliary vertical lines in the affine

plane. This yields a decomposition of B into three-dimensional blocks denoted

by D(Q). The decomposition has the following properties:

1. Each region has at most six sides.

2. The intersection of each cell with a ray from the origin is connected (as-

suming that it is non-empty).

3. An intersecting ray intersects any given cell in exactly two surfaces (the

nearer one being called the floor, and the further one the roof ).

4. The remaining four sides are contained in fan surfaces.

5. The projection of each cell in D(Q) is a cell in the affine partition A(Q).
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6. The total number of cells d(Q) isO
(
DO(1)

)
. This statement actually follows

from the result of Milnor and Thom because the total degree of all the

surfaces in Q along with the fan surfaces can be bounded by O
(
DO(1)

)
.

3.3.5 The Choice of Sample Points

In order to derive the contradiction, we now choose sample points on all the

edges of the graph G. Let C be a large enough integer constant to be chosen

later. Divide each edge into equal spans along the x-axis by placing DC points

on it. Ignore the two outermost unbounded edges of G (if they exist). These

points are referred to as the sample points. The x-coordinates of each of these

differ by at least 1/µDC , because the coordinates of all vertices of G are rationals

that can be expressed with absolute value at most µ. The total number of sample

points is at least (ρ − 1)DC . We denote the total number of cells by d(Q).

Definition 3.3.12 Given a sample point p on an edge e of the graph G, we say

that a particular cell R ∈ D(Q) is good for p if its interior contains an integer

lattice point on the projective ray through the point p.

The cell R is said to be good for an edge if it is good for 1/d(Q)th fraction of

the sample points on the edge e.

Lemma 3.3.13 The partition D(Q) contains a cell that is good for 1/d(Q)th frac-

tion of all the edges in G.

Proof: The number of cells in D(Q) is d(Q). Hence it suffices to show that

for each edge e ∈ G, there is at least one good cell in D(Q). An application of

the pigeonhole principle then guarantees the existence of the cell needed by the

lemma.

If we apply the pigeonhole principle once again, we only need to show that

for each sample point p on the edge e, there is at least one good cell in D(Q).

Fix a sample point p on an edge e of the graph. We will show that there is at

least one good cell in D(Q) for this point p.
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The 6D dividing planes in slab B split any ray through the origin into 6D + 1

parts. In particular, it splits the ray through p into 6D + 1 parts. At most D

of these intervals intersect surfaces in S. (This can be seen easily by applying

Bezout’s theorem to the surfaces in S and the ray passing through p).

Hence, there are a large number of intervals that are not intersected by any

surface in S. Pick any one of these and call it ep. The endpoints of this interval

ep lie on two adjacent horizontal dividing planes P1 and P2 and no part of ep
intersects a surface S. Such a cell whose roof and floor are horizontal planes

is referred to as a flat cell. The vertical distance between the two points of

intersection is therefore µ̄/(6D + 1).

Claim: The interior of the edge ep contains a point on the integer lattice.

Proof: Let the coordinates of the point p be (u,v,1). u and v are rational

numbers whose numerator and denominator are at most µ.

Hence, the endpoints of ep are (ru, rv, r) and (su, sv, s) for some r , s ∈ R
such that (s − r)µ > µ̄/(6D + 1). In other words, we have:

(s − r) > µ̄
µ(6D + 1)

Since we have assumed that log µ̄ is a large enough multiple of logµ and

logD, this means that there is an integer pointm between r and s, such that the

point (mu,mv,m) belongs to the integer lattice.

�

Thus, the flat cell containing ep is good for the point p, and this proves the

claim of the lemma.

�

The graph G has ρ distinct edges of different slopes. Hence, there is a flat

cell C ∈ D(Q) that is good for at least φ = ρ/d(Q) such edges. Let the φ edges

be labeled e1, e2, . . . from left to right in the affine plane.

The projection of the cell C to the affine plane is a cell T in the affine partition

A(Q). The upper surface of the projection can only be a single surface in A(Q)
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by the definition of the partition, and hence defines a smooth function θ(x)

along the x-span of T .

The rest of the proof proceeds by giving upper and lower bounds on the

extrema of the second derivative of this curve θ, i.e. the number of places where

θ(3)(x) = 0. The two bounds are incompatible with each other for suitable

choices of certain constants in the proof which yields the desired contradiction.

Lemma 3.3.14 The second derivative of the function θ(x) has at least φ − 1

extrema along the x-span of T .

Proof: The idea in the proof is to show that the curve θ gets very close to

several sample points on each segment ei. Since the segments are all within a

small bounding box, and the slopes are all different, the curve θ must change

direction several times.

Fix one of the segments ei. Since the cell C is good for ei, it is good for at

least 1/d(Q) fraction of the sample points on ei. Since the number of sample

points on ei is DC , and d(Q) = O
(
DO(1)

)
, we can choose C large enough so that

there are at least eight sample points on ei for which the cell C is good. Order

these points from left to right. All of these points must lie within the affine cell

T because the rays through all these points contain an integer point in the cell

C . Fix one of these points p = (a, b,1).
Claim: |θ(a)− b| ≤ 1/µ̄.

Proof: Consider the integer point on the ray through p in the cell C . Let this

point be p̃ = (ka, kb, k) for some k ∈ Z. Consider the point r̃ = (ka, kb + 1, k).

This point lies within the slab B because we have chosen the bounding box to be

sufficiently large. The projection of the point r = (a, b̃,1) onto the affine plane,

must necessarily lie above the graph G. Hence, by the separation properties of

our partition, the cell C cannot contain r̃ . Because of the projection, we must

have

b̃ − b ≤ 1
µ̄
.
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Since r̃ lies outside the cell C , we must have that the curve θ separates p from

r which proves the stated claim.
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Figure 3.8: The curve θ and the sample points

An example of the sample points (in black) and the projections of the integer

points above the curve (unshaded) onto the affine plane is shown in Figure 3.8.

Let t1, t2, . . . be the distinct slopes of the edges e1, e2, . . .. The difference be-

tween any two slopes is at least Ω(1/µ2) because the coordinates of all vertices

in G can be expressed as rationals with numerators and denominators of ab-

solute value at most µ. By construction, the x-coordinates of any two sample

points differ by at least 1/(µDC).

The theorem follows from the repeated application of Rolle’s mean-value the-

orem from calculus as follows:

1. The derivative θ′(x) attains a value very close to ai between every two

adjacent sample points on ei. The error term is O(µDC/µ̄).

2. This means that the second derivative θ′′ is very close to zero between the

x-coordinates of every third sample point.

3. The absolute value of the second derivative must change by at least

Ω(|ai+1 − ai|/µ) between sample points on ei and ei+1, with error at most

O(µ2D2C/µ̄).
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Hence, each pair (ei, ei+1) contributes at least one distinct extremum of the sec-

ond derivative because we have chosen log µ̄ to be larger than a sufficiently large

constant multiple of logµ and logD.

�

Lemma 3.3.15 The second derivative of the function θ(x) has at most O
(
DO(1)

)
extrema along the x-span of T .

Proof: θ(x,y) = 0 is the polynomial equation of the upper boundary of T .

Its degree is at most O
(
DO(1)

)
because θ is either the projection of a silhouette

or the intersection of two surfaces in S. Differentiate this equation implicitly

thrice in a row to get the four implicit equations in x, y , and the three formal

derivatives y ′, y ′′ and y(3).

θ(x,y) = 0

θ1(x,y,y ′) = 0

θ2(x,y,y ′, y ′′) = 0

θ3(x,y,y ′, y ′′, y(3)) = 0

The extrema of the second derivative satisfy y(3) = 0. By making that substitu-

tion for y(3), we get four equations in four unknowns. Because the surfaces S

are in general position, these equations have at most O
(
DO(1)

)
solutions by the

Milnor-Thom bound.

�

The two lemmas, Lemma 3.3.14 and Lemma 3.3.15 are in direct contradiction

because φ = ρ/d(Q) and d(Q) = O
(
DO(1)

)
, which tells us that ρ = O

(
DO(1)

)
.

Since, we have chosen logρ to be larger than a sufficiently large constant multi-

ple of logD, we get the required contradiction. This completes the proof.
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3.4 Lower Bounds for Randomized Algorithms

Mulmuley’s theorem can be extended to produce similar lower bounds for paral-

lel algorithms that flip bits with two-sided error. For details, we refer the reader

to the original paper of Mulmuley [35]. We state the theorem here without proof.

Theorem 3.4.1 Let ρ(n,β(n)) be the parametric complexity of any homoge-

neous optimization problem where n denotes the input cardinality and β(n)

the bit-size of the parameters. Then the decision version of the problem cannot

be solved in the randomized PRAM model without bit operations (with two-sided

error) in o
(√

logρ(n,β(n))
)

time using 2Ω
(√

logρ(n,β(n))
)

processors, even if we

restrict every numeric parameter in the input to size O(β(n)).



CHAPTER 4

THE SHORTEST PATH PROBLEM

4.1 Introduction

The computation of the shortest path between two vertices in a graph (either

directed or undirected) is one of the oldest problems in Computer Science. It has

immense theoretical and practical importance. The problem has been studied

extensively both in the general case, as well as in particular instances that arise

frequently in practice.

The input to the Shortest Path Problem is a weighted, directed graph with

two specified vertices s and t. The weight on an edge in the graph can be thought

of as the length of the path between its two vertices. The objective is to compute

the length of the shortest path between s and t.

If the graph has a negative directed cycle that intersects some path between

s and t, it is clear that there can be no optimal solution, because by following

the cycle around repeatedly, we can reduce the cost of the optimal path by an

arbitrary amount. Thus, in the graphs that we consider we will assume without

loss of generality that the graph has no negative cycles.

4.1.1 Algorithms

The Shortest Path Problem (Section 2.1.3) can be solved on a RAM by using

a classical algorithm due to Dijkstra [13]. The algorithm works for graphs with

non-negative weights, and runs in time O(m + n logn), where n denotes the

number of vertices in the graph, and m refers to the number of the edges in the

graph. The algorithm is a type of greedy algorithm, which constructs a set X

55
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vertex by vertex, starting from the set {s}, and always choosing the next vertex

as the one closest to vertices in X until all the vertices have been chosen.

There are other algorithms that work for graphs with negative weights. Ad-

ditionally, they solve the problem of computing the shortest path between all

pairs of vertices. The Floyd-Warshall algorithm [17, 48] solves the problem in

O(n3) time, and Johnson’s algorithm [27] runs in time O(n2 logn+mn) (which

is superior for sparse graphs).

In order to compute the length of the shortest path in parallel, let A be

the adjacency matrix of the input graph. We define a multiplication operator

A2 = A⊗A where:

(A2)ij =min
k
{aik + akj}.

The entry (A2)ij denotes the length of the shortest path with at most two edges

connecting vertices i and j. The operator ⊗ is associative, and hence An is

the matrix of weights of shortest paths between all vertices which have at most

n edges. Since the graph has n vertices, this is the matrix of shortest paths

between any two vertices in the graph.

The addition of n numbers can be done on a PRAM in exactly logn steps

using n/2 processors by arranging the computation in the form of a tree. The

same procedure allows us to compute the product of two n × n matrices in

logn time using n3 processors because all the entries of the product matrix are

independent of each other, and hence can be computed in parallel. Computing

An can be achieved in O(log2n) using n4 processors by repeatedly squaring the

matrix [10, 30].

The matrix-based repeated squaring algorithm for Shortest Path Problem

can be solved in ε logn steps for any ε > 0 with poly(n) processors on a PRAM

that allows unbounded fan-in min operations (but only bounded fan-in addi-

tions), because multiplying k matrices (for any fixed constant k) can be done in

2 steps in this model using nk+1 processors.

The results of this chapter show that this algorithm is optimal, even when

the edge weights are restricted to be fairly small, and the running time of the

algorithm is allowed to depend on the total bit-length.
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4.1.2 Overview of the Chapter

The rest of the chapter is laid out as follows. Section 4.2 discusses the main

result of this work. The lower bound is proved using the notion of parametric

complexity (Section 3.2.2), and the precise statement of the lower bound can be

found in Section 4.3. The main technical lemma is stated in Section 4.3.2. The

inductive construction can be found in Section 4.4. Proofs are relegated to the

end of the chapter in Section 4.5.

The proof is based on a theorem of Carstensen [8, 7]. However, Carstensen’s

proof is very complex and does not take into account the issue of bit-lengths. It

is not possible to obtain a lower bound that is sensitive to bit-lengths without

obtaining good bounds on the bit-lengths of the coefficients of the edge weights.

We give a simplified proof of her theorem (using a similar construction) which

allows us to to take into account the issue of bit-lengths.

4.2 The Main Result

Theorem 4.2.1 The Shortest Path Problem cannot be computed in o(logn)

steps on an unbounded fan-in PRAM without bit operations using nΩ(1) proces-

sors, even if the weights on the edges are restricted to have bit-lengthsO(log3n).

In fact, we can prove a slightly stronger theorem.

Theorem 4.2.2 The Shortest Path Problem cannot be computed in o(logN)

steps on an unbounded fan-in PRAM without bit operations using NΩ(1) proces-

sors.

Since the model for the lower bound assumes unit cost for all operations

(including some with unbounded fan-in), the result shows that the above algo-

rithm for the Shortest Path Problem is optimal in the unbounded fan-in PRAM

model without bit operations.
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4.3 Parametric Complexity

Our proof proceeds by giving a lower bound on the parametric complexity of the

Shortest Path Problem.

Theorem 4.3.1 There is an explicit family of graphs Gn on n vertices with edge

weights that are linear functions in a parameter λ, such that the optimal cost

graph of the weight of the shortest path between s and t has 2Ω(log2n) break-

points. In addition, the bit-lengths of the coefficients of the cost functions have

size O(log3n). Thus, the parametric complexity of the Shortest Path Problem

for graph size n and bit-length O(log3n) is 2Ω(log2n).

4.3.1 Preliminaries

A directed graph is said to be layered if its vertices can be arranged in columns

so that all edges go between vertices in adjacent columns.

All the graphs used in this chapter are directed and layered. We imagine the

graph to be embedded in a grid and label each vertex of the graph by its coordi-

nate. The vertex in the r th row and cth column is labeled as (r , c). Occasionally,

we omit the column number for the vertex if it is clear from the context.

Edges are denoted by (r , c)→ (k, c+1) or simply r → k if the column number

is unambiguous from the context. The weights of edges are labeled bywr ,k. If we

wish to emphasize the fact that the weights are linear functions in the parameter

λ, we denote the weight as wr ,k(λ).

All the graphs in this chapter have two special vertices s and t between which

we wish to compute the shortest path. Since all the graphs we use are layered,

we may assume that the vertex s sits in the 0th column and the vertex t in the

last column. The graph obtained by eliminating the special vertices s and t is

referred to as the core of the graph.
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4.3.2 The Technical Lemma

Theorem 4.3.2 For anym,n ∈ N, there exists a graph with core Gm,n having the

following properties:

(i) Gm,n is a layered graph with at most 4m · n vertices, and has exactly n

vertices in the first column.

(ii) The edges of Gm,n are labeled by linear functions in a parameter λ such

that the optimal cost graph of the weight of the shortest path between s

and t (as a function of λ) has at least nm breakpoints.

(iii) There is an edge from s to each of the n vertices in the first column with

weights

ws,(i,1)(λ) =
i(i+ 1)

2
− iλ (0 ≤ i < n).

(iv) All the vertices q in the last column of the core are connected to t with

weight

w(q,3m),t = 0.

The substitution m = logn will yield a graph on n3 vertices such that the

optimal cost graph of the shortest path has at least 2log2n breakpoints. We

can rephrase this to say that graphs Gn on n vertices can be constructed with

2Ω(log2n) breakpoints on the optimal cost graph of the shortest path. The coeffi-

cients involved in this construction will be shown to have bit-lengths O(log3n).

The construction will use negative edge weights, but since the graphs are

layered, we can always add a large positive weight to each edge without changing

the structure of the optimal paths.

4.4 Construction

The graph Gm,n is constructed inductively from Gm−1,n. The idea behind the

proof is that each optimal path in Gm−1,n yields n optimal paths in Gm,n with

varying slopes, thus increasing the number of breakpoints by a factor of n.
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Given a layered graph and a particular shortest path over some fixed interval

of the parameter λ, one can easily create n shortest paths by breaking up the

interval into n pieces, appending a new layer of n vertices, and attaching them

to the endpoint of the given path with suitable weights. However, the weights

would depend on the interval. The goal of the construction is to create a gad-

get that behaves the same way but with a choice of weight functions that are

independent of the interval. In order to do this, we need the following stronger

inductive hypothesis.

Lemma 4.4.1 For any D1,D2 ∈ R,m,n ∈ N, g : Z×Z→ Z such that g(r ,0) = 0,

and 0 < ε < 1, there is a graph with core Gm,n that possesses the following

properties:

(i) There exist nm−1 disjoint intervals, Ij,m = [αj,m + ε, βj,m − ε] where

0 ≤ j < nm−1 such that βj,m −αj,m > n. The intervals Ij,m depend only on

m and n, and are independent of the parameters D1, D2 and g.

(ii) For each interval, there exist n paths Pi,j (from vertices in the first column

of G to the last column of G) that are pairwise vertex-disjoint.

Notationally, Pi,j denotes the path in the core of the graph starting from

the vertex (i,1), and Pi,j denotes the s-t path that contains Pi,j ,

i.e., Pi,j = (s → i) ∪ Pi,j ∪ (ri,j → t) where ri,j is the last vertex of Pi,j .

(iii) Pi,j is the optimal path starting from vertex (i,1) in the interval Ij,m, where

0 ≤ i < n.

(iv) For 0 ≤ i < n, let j = nd+ r where 0 ≤ r < n. Then

C(Pi,j)(λ) = C(P0,j)(λ)+ iD1αd,m−1 + iD2λ+ g(r , i). (4.1)

(v) The difference in cost between Pi,j and any other non-optimal path starting

at vertex (i,1) is at least ε.
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4.4.1 Construction of the Intervals

Fix N >mn3. Let j = nd+ r where 0 ≤ r < n. Define αj,m and βj,m as follows:

α0,1 = 0

β0,1 = N2

αj,m = αnd+r ,m = Nαd,m−1 + rN2

βj,m = βnd+r ,m = Nβd,m−1 + (r + 1)N2

Intuitively, at each stage we stretch the intervals by a factor of N and divide it

into n parts. Hence, βj,m −αj,m = N2 � n, and this satisfies condition (i) of the

inductive hypothesis.

4.4.2 Construction of the Graph

The graph Gm,n is constructed by induction on the parameter m.

4.4.2.1 The Base Case

The graph G1,n has 3 columns with n, n and 2n − 1 vertices respectively as

shown in Figure 4.1. Each of the n vertices in the first column is connected to the

corresponding vertex in the second column, and each vertex (i,2) in the second

column is connected by n edges to the vertices (i+ j,3) where 0 ≤ j ≤ n− 1.

�

� �����

Figure 4.1: Construction of the Graph G1,n
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4.4.2.2 The Inductive Case

Gm,n is constructed recursively from two copies of Gm−1,n and a third copy of

Gm−1,2n−1 (which are referred to as GL, GM , and GR respectively) as shown in

Figure 4.2.

The first two copies of Gm−1,n are connected back-to-back. GM is a reflection

of GL with the edges reversed as well. GM has exactly n vertices in the last

column (because it is a mirror image of GL). GR (which is a copy of Gm−1,2n−1)

has 2n − 1 vertices in the first column. We connect the ith vertex in the last

column of GM to the (i+j)th vertex in the first column of GR where 0 ≤ j ≤ n−1

(similar to the construction in the base case).
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Figure 4.2: Construction of the Graph Gm,n



63

4.4.3 Construction of the Weight Functions

4.4.3.1 The Base Case

Fix the parameters D1, D2 and the function g : Z× Z→ Z. The parameter K in

the definition of the weights is a constant whose value is fixed later. Define the

weights on the edges as follows:

w(k,1),(k,2) = 0

w(k,2),(k+r ,3) =



K
[
r(r+1)

2 N2 − rλ
]

k = 0,

0 ≤ r < n;

w(0,2),(r ,3) + kD1α0,1 + kD2λ+ g(r , k) 1 ≤ k < n,

0 ≤ r < n.

4.4.3.2 The Inductive Case

Let the parameters to the construction be F1, F2, and h : Z× Z→ Z. The symbols

K1, K2, and K3 stand for constants whose values will be fixed later.

(We use the symbols F1, F2, and h as the parameters to the construction

instead of the familiar D1, D2, and g because we will need to set appropriate

parameters for each of the three graphs used in the inductive construction, and

we want to avoid cluttering the notation with superfluous superscripts.)

GL and GM are chosen with parameters:

D1 = N
2K3

(
F1 −

K2

K1

)
D2 = 0

g(r , i) = NriD1.

The graph GR (which is a copy of Gm−1,2n−1) is chosen with parameters:

D1 = N
K1
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D2 = − 1
K1

g(r , i) = N
K1

i(i+ 1)
2

+NriD1.

Since GM has exactly n vertices in the last column and GR has 2n−1 vertices

in the first column, we define the edges analogously to the base case but with

the following weights:

wi,i+r (λ) = h(r , i)−NK2

K1

{
ir + i(i+ 1)

2

}
+ i

(
F2 +

K2

NK1

)
λ (0 ≤ r < n).

The cost functions on the edges of Gm,n are defined by shifting the cost

functions in GL and GM and then scaling them by a factor of K3, by shifting the

cost function in GR, and then scaling it by a factor of K2 as follows:

we(λ) =


K3 ·wLe

(
λ
N

)
e ∈ GL

K3 ·wMe
(
λ
N

)
e ∈ GM

K2 ·wRe
(
λ
N

)
e ∈ GR.

4.5 Proofs

4.5.1 Proof of the Technical Lemma

4.5.1.1 Proof of the Base Case

Proof: [Base Case]

Define Pi,j to be the path ((i,1) → (i,2)) ∪ ((i,2) → (i+ j,3)). These paths

Pi,j are vertex-disjoint. All of the conditions of the inductive hypothesis can be

easily verified provided:

K�
max
r ,i

∣∣g(r , i)∣∣
ε

.

�
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4.5.1.2 Proof of the Inductive Case

Proof: [Inductive Case]

Fix j and λ ∈ Ij,m. Let j = nd+ r where 0 ≤ r < n. Then λ/N ∈ Id,m−1, and

hence the path PLi,d is optimal in GL starting from vertex (i,1).

Define Pi,j to be PLi,d ∪ PMi,d ∪ (i→ i+r) ∪ PRi+r ,d. The following two lemmas

provide the proof that Pi,j is an optimal path starting at vertex (i,1). These

paths are vertex-disjoint (as required by the inductive hypothesis).

Lemma 4.5.1 shows that PMi,d, which is the mirror image of PLi,d, is optimal in

GM . This is not at all clear a priori since there is no reason to believe that optimal

paths will remain optimal when the edges are reversed. In particular, we would

like to have the optimal path in GM end at (i,2 · 3m−1). Lemma 4.5.2 finishes up

the proof by showing that the path PRi+r ,d is indeed optimal in GR in the interval

Ij,m.

Lemma 4.5.1 Fix λ ∈
⋃

k=nd+r
0≤r<n

Ik,m. Then for sufficiently large values of K3, the

optimal path in GL and GM starting at node (i,1) is PLi,d ∪ PMi,d.

Proof: Assume that Q is the optimal path in this interval, and that Q is

not symmetric in GL and GM . Further, assume without loss of generality that

QL = PLi,j and QM ≠ PMi,j . Let QM end at vertex k where k ≠ i.

The idea of the proof is that the difference between the costs of PMi,j and PMk,j is

small but the difference in costs between QM and PMk,j is at least ε before scaling,

and hence at least K3ε after scaling.

Consider the situation in Figure 4.3. Before scaling, in the graph Gm−1,n, the

inductive hypothesis guarantees that

C(QM)(λ)−C(PMk,j)(λ) > ε.

Therefore, after scaling we have that

C(QM)(λ)−C(PMk,j)(λ) > K3ε.
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Figure 4.3: Proof of Lemma 4.5.1

The difference in costs between the parallel paths Pi,j and Pk,j is small by the

inductive hypothesis:

∣∣∣C(PMi,j)(λ)−C(PMk,j)(λ)∣∣∣ ≤ nN
(
F1 −

K2

K1

)
N2+m

≤ nO(m)
(
F1 +

K2

K1

)
.

We have that C(Q)(λ) = C(QL)(λ) + C(QM)(λ) + C(QR)(λ). Again, without

loss of generality QR is optimal. It is possible that the path Q gains some ad-

vantage in the links between GM and GR and also in GR. If we take the quantity

K3ε to be greater than all these gains and the quantity from above, this would

contradict the assumption that Q is the optimal path in this interval.

The maximum gain in the intermediate links from Equation (4.2) is

max
r ,i
h(r , i)+ 4n2N

K2

K1
+n(F2 +

K2

NK1
)N1+m.

The maximum gain that can be achieved in GR is nN K2
K1
N2+m. Clearly the

quantity nO(m)
(
F1 + F2 +max |h| + K2

K1

)
dominates all of the above terms. Thus,
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choosing K3 to be

K3 �
nO(m)

(
F1 + F2 +max |h| + K2

K1

)
ε

(4.2)

gives us a contradiction, and thus proves our lemma.

�

Lemma 4.5.2 Fix λ ∈
⋃

k=nd+r
d

Ik,m. Then if K2/K1 is sufficiently large, the optimal

path in GR starting from node (i,1) is PRi+r ,d.

Proof: Fix a particular value for d. Since λ ∈ Ind+r ,m, therefore λ
N ∈ Id,m−1.

From the previous lemma, it is clear that the optimal paths are symmetric in

GL and GM and that the optimal path in GR is PRk,d for some k. We claim that

k = i+ r .

By adding up the costs, we get that

C(Pi,j)(λ)−C(Pi−1,j)(λ) =
1
N
K2

K1
(αj,m − λ)+ h(r , i)− h(r − 1, i)

which means that if we impose the condition

K2

K1
� Nmaxr ,i |h(r , i)|

ε
, (4.3)

then the optimal path is as required.

�

We now continue the proof of the inductive step. The inductive hypothesis

gives us the following equations about paths in GL, GM , and GR (before scaling):

C(PLi,d)(λ) = C(PL0,d)(λ)+
i

2K3

(
F1 −

K2

K1

)
αd,m−1

C(PMi,d)(λ) = C(PM0,d)(λ)+
i

2K3

(
F1 −

K2

K1

)
αd,m−1

C(PRi,d)(λ) = C(PR0,d)(λ)+
1
K1

{
Ni(i+ 1)

2
+ iαd,m−1 − iλ

}
.
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After scaling, adding up the costs of the above paths along with the weights

of the edges joining the end vertices of GM to GR and simplifying, we get:

C(Pi,j)(λ) = C(PLi,d)(λ)+C(PMi,d)(λ)+wi,i+r (λ)+C(PRi+r ,d)(λ)

=
{
C(PL0,d)(λ)+C(PM0,d)(λ)+C(PRr,d)(λ)

}
+iF1αd,m−1 + iF2λ+ h(r , i)

= C(P0,j)(λ)+ iF1αd,m−1 + iF2λ+ h(r , i).

This yields the required relationships between the optimal paths in the in-

terval Ij,m. Condition (v) is easily satisfied by noting that if we have an optimal

and a sub-optimal path starting from vertex (i,1), then it must deviate from the

optimal path in either GL, GM , GR, or in the intermediate connecting links. Then

the proof of Lemma 4.5.2 shows that the difference in optimal costs must be at

least ε. This concludes the proof.

�

4.5.2 Proof of the Main Theorem

Proof:

Let Gm,n be the graph obtained by choosing the parameters D1 = N, D2 = 0

and g(r , i) = N2ir . Substituting the values into equation (4.1) and simplifying

using the definition of the intervals above, we get the following equation for the

optimal paths in the core of the graph:

C(Pi,j)(λ) = C(P0,j)(λ)+ iαj,m.

Therefore, for s-t paths we have that

C(Pi,j)(λ) = C(P0,j)(λ)+ iαj,m +
i(i+ 1)

2
− iλ.
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Hence, we have that Pi,j is the optimal path for the interval

[αj,m + i,αj,m + i+ 1]∩ Ij,m,

and since ε < 1, it follows that each of these paths is optimal in a non-zero

interval. Each path must have a different slope because its linear term depends

on i. Hence we get n breakpoints in each of the nm−1 intervals, yielding nm

breakpoints in all.

�

4.5.3 Analysis of the Main Theorem

Proof: [Proof of Theorem 4.3.1]

From Equations (4.2) and (4.3) in Section 4.5.1.2, and the fact that N is of size

O(n3 logn) and ε < 1, we can rewrite the recurrences for the constants as

K2

K1
� nO(1)max

r ,i
|h(r , i)|

K3 � nO(m)
(
F1 +

K2

K1

)
.

At the topmost level of the recurrence, we choose F1 = N and h(r , i) = N2ir ,

both of which are polynomial in n. However, the function h and parameter F1

changes as we descend down the construction. In both GL and GM we choose

h(r , i) = N2ir , and in GR we have |h(r , i)| dominated by poly(n)K2
K1

. We can

choose a > 0 large enough so that recurrence

(
K2

K1

)
m−1

�
(
K2

K1

)
m
na

has the solution (
K2

K1

)
r
= na(m−r).

Now in GL and GM , the quantity F1 keeps decreasing by the current value of

K2/K1, and hence its absolute value increases by at most K2/K1. Thus, we can



70

choose c > 0 sufficiently large so that

(K3)r � ncr
∑

r≤t≤m

(
K2

K1

)
t
.

This yields the following solution:

(K3)r = nb(m−r) for some b > a > 0.

The coefficients grow as the product of the individual multipliers:

size of coefficients = O(nb(1+···+(m−1)+m))

= O(nb(
m
2))

= 2O(log3n) since m = O(logn).

Since the magnitude of the coefficients is 2O(log3n), it follows that their bit-

lengths are O(log3n).

�

4.6 Corollaries

4.6.1 Shortest Paths in Sparse Graphs

In practice, it is often the case that the graphs for which we need to compute

shortest paths are sparse, i.e., the number of edgesm = O(n) as opposed to the

general case where m can be as large as Ω(n2). The construction that we give

above gives rise to dense graphs where m = Ω(n2). We can replace each edge in

the graph by a path of length n. This yields a new graph which hasm(n−1)+n
vertices. However, the total number of edges in the graph is mn. We can also

distribute the weight of each edge evenly between the new edges. This new

graph is now sparse, and a simple calculation shows that we obtain essentially
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the same theorem for sparse graphs (the constant factor gets absorbed into the

Ω(1) term in the exponent for the number of processors).

Theorem 4.6.1 The Shortest Path Problem cannot be computed in o(logN)

steps on an unbounded fan-in PRAM without bit operations using NΩ(1) proces-

sors, even if the input graph is sparse.

4.6.2 Lower Bounds for Matching Problems

The Shortest Path Problem is ≤NC1

m -reducible to the Weighted Bipartite

Graph Matching Problem [31, 33]. The size of the weights in the reduction is

the same as the original size of the shortest path problem. Thus, we obtain a

lower bound for the Weighted Bipartite Graph Matching Problem which is

similar to the one obtained for the Shortest Path Problem.

Corollary 4.6.2 The Weighted Bipartite Graph Matching Problem cannot be

solved in o(logN) steps on an unbounded fan-in PRAM without bit operations

using NΩ(1) processors.

4.6.3 Lower Bounds for Matroid Problems

A matroid is a combinatorial structure that can be viewed as a generalization of

the theory of algebraic independence in vector spaces.

Definition 4.6.3 A matroid M = (V ,F) is a structure over a finite set V , and a

family F of subsets of V , which satisfies the following axioms:

1. ∅ ∈ F ,

2. if A ∈ F , then all subsets of A are in F ,

3. if A,B ∈ F , and |B| > |A|, then there is an e ∈ B −A, s.t. A∪ {e} ∈ F .
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The set V is called the base set, and the sets of the family F are referred

to as independent sets. Note that if the elements of V were vectors in a vector

space, then the set of all independent elements would satisfy the above axioms.

Therefore, the matroid acts as a generalization of the notion of independence in

vector spaces.

If we assign weights to the elements of the base set V , and define the weight

of a set A ∈ F to be the sum of the weights of its constituent elements, a natural

problem is to find an independent set of largest weight. A surprising property

of matroids is that one can find a solution to this by choosing elements from the

set V in a “greedy” fashion [31, 33].

Given two matroids M1 and M2 over the same weighted base set V , the Ma-

troid Intersection Problem is to find the set of largest weight that is inde-

pendent in both matroids.

A related problem is the Matroid Parity Problem. Here, we are given a

matroidM as well as a family P of pairs of elements of the base set, i.e., P ⊆
(
V
2

)
.

The goal is to find an element X ∈ P such that the set
⋃
A∈X A is independent,

and its weight is maximum. It would have been better to refer to the problem

as the Matroid Pairing Problem but the inappropriate name is now firmly

established in the literature.

Since the Weighted Matching problem is ≤NC1

m -reducible to both the Ma-

troid Intersection Problem and the Matroid Parity Problem [31, 33], we

obtain similar lower bounds for these problems.

Corollary 4.6.4 The Matroid Intersection Problem (resp. Matroid Parity

Problem) cannot be solved in o(logN) steps on an unbounded fan-in PRAM

without bit operations using NΩ(1) processors.

4.6.4 Lower Bounds for Randomized Algorithms

Since the theorem of Mulmuley also applies to the randomized versions of the

PRAM, all the lower bounds stated earlier are also true in the randomized setting

(with two-sided error).



CHAPTER 5

THE MAXIMUM BLOCKING FLOW PROBLEM

5.1 Introduction

Network flow algorithms have a venerated history in the study of algorithms.

They were among the first combinatorial problems for which fast algorithms

were designed in the early days of computing. Once again, like the algorithms for

computing shortest paths in graphs, they have substantial practical importance.

The key problem in this area is computing the maximum flow in an undi-

rected network. The input to the problem is a weighted, undirected graph G and

two designated vertices s and t (source and sink respectively). The edges can

be thought of as pipes carrying water, and the weights as the capacities of the

pipes. The objective is to compute the maximum amount of water that can be

transported from the source s to the sink t.

5.1.1 Algorithms

The original algorithm proposed by Ford and Fulkerson for computing the Max

Flow did not run in polynomial time. The first polynomial time algorithm was

given by Edmonds and Karp [16]. In fact, they gave two algorithms, one of which

runs in time O(m log |f∗|), in which f∗ denotes the value of the optimal flow,

and another that takes time O(m2n),

The first major improvement in the running time of network flow algorithms

was provided by Dinic [14] who discovered an algorithm that ran in timeO(mn2).

Dinic introduced the crucial notion of a blocking flow in the same paper, and

used it to give a faster algorithm than the one given by Edmonds and Karp.

Karzanov in 1974 [29], and later Malhotra, Pramodh-Kumar, and Maheshwari in

73
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1978 [34] improved the time taken to compute a blocking flow from O(mn) to

O(n2) which improved the overall running time to O(n3).

A flow is said to be blocking if the elimination of saturated edges (edges

in which the capacity has been reached) leaves the graph disconnected. Dinic

showed that the Max Flow problem can be solved by solving a sequence of at

most n blocking flow problems.

The Max Blocking Flow problem is the following: given a weighted, undi-

rected graph G and two special vertices s and t, compute the value of the largest

flow that “blocks”, i.e. every path between s and t has one edge that is saturated.

Equivalently, we may say that the residual graph obtained by eliminating satu-

rated edges, has no path between s and t. The problem is known to be equivalent

to computing the maximum flow in a directed, acyclic graph.

Both the Max Flow and Max Blocking Flow problems are known to be

P-complete [39, 21]. Hence, under the assumption that P ≠ NC, they cannot

have fast parallel algorithms.

However, the design of parallel algorithms that are faster than known sequen-

tial algorithms has significant practical importance. The fastest parallel algo-

rithm for computing a blocking flow in an acyclic network is due to Vishkin [47]

who shows how to compute it in O(n logn) time using n processors.

5.1.2 Overview of the Chapter

The layout of the chapter is analogous to the layout of Chapter 4. The lower

bound on the parametric complexity is stated in Section 5.3. The main technical

lemma can be found in Section 5.3.2. The inductive construction of the graph is

in Section 5.4, and the proofs for the theorems and lemmas are at the end of the

chapter in Section 5.5.

A similar lower bound for the parametric complexity Max Flow problem

was given by Carstensen [8] in a completely different context. Mulmuley [35]

simplified the proof to get a strong lower bound on the Max Flow problem. Our

lower bound for the Max Blocking Flow problem is based on the latter and

follows its presentation rather closely.
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5.2 The Main Result

Theorem 5.2.1 The Max Blocking Flow problem cannot be computed in time

o(n1/4) on an unbounded fan-in PRAM without bit operations using 2Ω(n1/4) pro-

cessors, even if the bit-lengths of the capacities on the edges are restricted to be

of size O(n2).

We can actually prove a stronger theorem that takes into account algorithms

whose running time may depend on the total bit-length N.

Theorem 5.2.2 The Max Blocking Flow problem cannot be computed in time

o(N1/8) on an unbounded fan-in PRAM without bit operations using 2Ω(N1/8) pro-

cessors.

5.3 Parametric Complexity

Theorem 5.3.1 The parametric complexity of the Max Blocking Flow problem

on n vertices is 2Ω(n) for β(n) = O(n2).

5.3.1 Preliminaries

The computation of the maximum blocking flow is equivalent to computing the

max-flow in a directed acyclic graph. All the graphs that we consider are DAGs.

An s-t cut in the graph is a set of edges such that removing these edges from

the graph makes s and t disconnected, i.e., there is no path from s to t in the

resultant graph.

The presentation of the theorem can be simplified by appealing to the classic

“max-flow min-cut” theorem [12] which states that the value of the max-flow

in the graph is equal to the weight of the minimum s-t cut in the graph. It is

convenient to use the word capacity when referring to the flow, but the term

weight when we want to talk about the cut. In what follows, we use the two

terms interchangeably.
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5.3.2 The Technical Lemma

Theorem 5.3.2 For every n ∈ N, there exists a weighted directed acyclic graph

Gn whose capacities are linear functions in a parameter λ such that the following

hold:

1. All the edge capacities are non-negative when λ is in some interval I.

2. The graph of the weight of the s-t min-cut as a function of a λ has 2n − 1

breakpoints in the interval I.

3. The coefficients of the weight functions have bit-lengths of size O(n2).

5.4 Construction

5.4.1 Construction of the Intervals

Fix T = 2n+1. The interval I under consideration is [−T , T]. We define various

sub-intervals of this interval I, which are in one-to-one correspondence with the

nodes of a complete binary tree of depth n (Figure 5.1).

Consider a complete binary tree of depth n whose nodes are labeled with sub-

intervals of [−T , T]. Associate the root node with I. For each of its two children,

split the interval into two halves and associate the left half of the interval with

the left child and the right half with the right child.

� �

� � � �

� �

� �� �

� �

� � � �

� �

� �� �

��� �

� �� �

Figure 5.1: Tree of Intervals
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Each node of the tree is also in one-to-one correspondence with a sequence

of +1’s and −1’s. The root node corresponds to the empty string ε. Any such

sequence σ of +1’s and −1’s of length i identifies a unique node at the ith level

in the tree, and hence, with a unique sub-interval of I. For any such sequence σ ,

let σ(r) denote the r th symbol of the sequence.

Definition 5.4.1 For any sequence σ , define H(σ) to be the interval associated

with the node corresponding to the sequence σ . Let m(σ) be its midpoint.

Definition 5.4.2 For any sequence σ , define I(σ) to be the interval created by

removing intervals of length 1 from both ends of H(σ).

Then, m(ε) = 0 and for tj = 2n−j+1, we have that

m(σ) =
∑
j≤i
σ(j) tj. (5.1)

5.4.2 Construction of the Graph

The directed, acyclic graph Gn has 2n+2 vertices as shown in Figure 5.2. Besides

the designated vertices s and t (source and sink respectively), there are 2n other

vertices labeled as 1,2, . . . , n and 1̄, 2̄, . . . , n̄ respectively.

There are edges connecting s to all of the vertices i and ı̄ (1 ≤ i ≤ n) and

edges from all the vertices i and ı̄ (1 ≤ i ≤ n) to t. In addition, each i and ı̄ is

connected by an edge to j and ̄ provided that j > i.
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Figure 5.2: Construction of the Graph Gn

5.4.3 Construction of the Weight Functions

Define wn = 1 and for i < n, define:

wi > T
∑
i<j≤n

wj. (5.2)

The choice wi = 2 · (T + 1)n−i suffices to satisfy the above equation. Recall

that tj = 2n−j+1. Define the edge weights as follows:

w(s, i) = w(s, ı̄) = wiT 1 ≤ i ≤ n

w(i, t) = wi(T + λ) 1 ≤ i ≤ n

w(ı̄, t) = wi(T − λ) 1 ≤ i ≤ n

w(i, j) = w(ı̄, ̄) = wj
2
(T + ti) 1 ≤ i < j ≤ n

w(i, ̄) = w(ı̄, j) = wj
2
(T − ti) 1 ≤ i < j ≤ n.

All the edge weights are positive in the interval I, and have bit-lengths O(n2).
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5.5 Proofs

5.5.1 Proof of the Technical Lemma

Before we prove the main theorem, we need to prove a lemma which gives us the

structure of the s-t min-cuts in Gn in the various intervals I(σ).

Lemma 5.5.1 For any i ≤ n, and a sequence σ of length i, fix λ ∈ I(σ). Let

(U(λ), V(λ)) be an s-t min-cut in Gn for this λ. Then for all j ≤ i,

1. U(λ) contains j iff σ(j) = −1,

2. U(λ) contains ̄ iff σ(j) = +1.

Proof: Since the weighted graph Gn remains unchanged when each vertex i

is exchanged with ı̄ and all terms with λ are replaced by −λ, it suffices to prove

only the first statement. The proof is by induction on i.

Base Case: i = 1.

Let σ(1) = +1. Suppose that U(λ) contains the vertex 1. If we move the

vertex 1 from U(λ) to V(λ) the value of the cut would decrease by:

∆ = w(1, t)−w(s,1)

+


∑
j>1
j∈V(λ)

w(1, j)+
∑
j>1
̄∈V(λ)

w(1, ̄)

+

∑
j>1

j∈U(λ)

w(1, j)+
∑
j>1
̄∈U(λ)

w(1, ̄)


= w1(T + λ)−w1T +

1
2

∑
j>1

(wj(T + t1)+wj(T − t1))

= w1λ+ T
∑
j>1

wj.

By choice, the second term is smaller than w1 and hence in the interval

I(+1) = [1, T − 1] the decrease in the min-cut is positive which contradicts the

face that (U,V) is the min-cut. Therefore U(λ) cannot contain the vertex 1.
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Similarly, if σ(1) = −1 and V(λ) contained the vertex 1, then moving it from

V(λ) to U(λ) would decrease the weight of the cut by

−w1λ− T
∑
j>1

wj

which is positive if λ ∈ I(−1) = [−(T − 1),−1] which contradicts the fact that

(U(λ), V(λ)) was a min-cut. This proves that U(λ) contains 1 iff σ(1) = +1.

Inductive Case: Fix a value of i where i ≤ n.

Let σ̂ be the string obtained by removing the last symbol from σ . We must

have that I(σ) ⊂ I(σ̂ ). Hence, by the inductive hypothesis, it follows that for all

j < i, for all λ ∈ I(σ), U(λ) contains the vertex j iff σ(j) = −1 and the vertex ̄

iff σ(j) = +1. We need to prove that U(λ) contains the vertex i iff σ(i) = −1.

Consider the case when σ(i) = +1. Suppose to the contrary that U(λ) con-

tains the vertex i. By moving the vertex from U(λ) to V(λ), the weight of the cut

would decrease by:

∆ = w(i, t)−w(s, i)

+


∑
j>i

j∈U(λ)

w(i, j)+
∑
j>i

j∈V(λ)

w(i, j)+
∑
j>i

̄∈U(λ)

w(i, ̄)+
∑
j>i

̄∈V(λ)

w(i, ̄)


+


∑
j<i

j∈U(λ)

w(j, i)−
∑
j<i

j∈V(λ)

w(j, i)+
∑
j<i

̄∈U(λ)

w(̄, i)−
∑
j<i

̄∈V(λ)

w(̄, i)


= wiλ+

∑
j>i

w(i, j)+
∑
j>i

w(i, ̄)

−
∑
j<i

σ(j)w(j, i)−
∑
j<i

σ(j)w(̄, i)


= wiλ−wi

∑
j<i

σ(j) tj + T
∑
j>i

wj

= wi(λ−m(σ̂))+ T
∑
j>i

wj. by (5.1)

If λ ∈ I(σ) and σ(i) = +1 then λ −m(σ̂) ≥ 1. We know, by equation (5.2),

that the absolute value of the last term is smaller than wi. Hence, this decrease
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is positive. Thus, moving the vertex i from U(λ) to V(λ) would strictly decrease

the value of the cut which contradicts the fact that (U(λ), V(λ)) was a min-cut.

Therefore, U(λ) cannot contain i if σ(i) = +1.

Similarly, if σ(i) = −1 and V(λ) contained the vertex i, then moving it to

V(λ) to U(λ) would decrease the weight of the cut by

−wi(λ−m(σ̂))− T
∑
j>i

wj,

which is positive if λ ∈ I(σ) which contradicts the fact that (U(λ), V(λ)) was a

min-cut. This proves that U(λ) contains i iff σ(i) = +1.

�

5.5.2 Proof of the Main Theorem

We now continue the proof that the s-t min-cut cost function for Gn has at least

2n − 1 breakpoints in the interval [−T , T].
Proof: Let σ be any sequence of +1’s and −1’s of length n. Then, from the

Lemma 5.5.1, we know that in each interval I(σ), the min-cut remains the same.

We also know that U(λ) contains the vertex i iff σ(i) = −1 and ı̄ iff σ(i) = +1.

Hence, the weight of the cut at any λ ∈ I(σ) is of the form P(σ)λ + Q(σ)
where P(σ) = −

∑
iσ(i) wi. Thus, the slopes of the weights in distinct 2n inter-

vals are all different and hence, we must have 2n − 1 breakpoints for the graph

of Gn as λ ranges over the interval [−T , T].
�



82

5.6 Corollaries

5.6.1 Maximum Blocking Flow in Sparse Graphs

We can apply the same technique used in the Shortest Path Problem to con-

vert the explicit family of dense graphs into an explicit family of sparse graphs.

We place n − 1 extra vertices on each edge of the graph, and divide the weight

of the edge evenly among the new edges. This yields a graph with m(n− 1)+n
vertices and mn edges. Thus, the new graphs Gn has n3 vertices and Θ(n3)

edges. This yields a slightly weaker lower bound for sparse graphs which is

stated below.

Theorem 5.6.1 The Max Blocking Flow problem cannot be computed in time

o(n1/12) using 2Ω(n1/12) processors, even if the bit-lengths of the capacities on

the edges are restricted to be of size O(n2), and the input graph is restricted to

be sparse.

Theorem 5.6.2 The Max Blocking Flow problem cannot be computed in time

o(N1/24) on an unbounded fan-in PRAM without bit operations using 2Ω(N1/24)

processors, even if the input graph is sparse.

5.6.2 Lower Bounds for Randomized Algorithms

Both the lower bounds also hold for the randomized case. In both cases, the con-

stants in the exponent are slightly smaller than the ones stated in the theorems

above.



CHAPTER 6

CONCLUSION

The initial impetus for this thesis came from trying to determine the complexity

of the Weighted Graph Matching Problem. The problem is known to be in

P [33]. However, it has eluded all attempts at efficient parallelization, and is not

even known to be P-complete (which assuming P ≠ NC, as is widely believed,

would give a plausible reason not to expect a fast parallel algorithm).

Since the Shortest Path Problem ≤NC1
-reduces to the Weighted Bipar-

tite Graph Matching Problem, we obtain a lower bound for the latter prob-

lem. However, this lower bound is very weak, and unfortunately, the original

tantalizing question still remains open.

We conjecture that it should be possible to obtain super-polylogarithmic

lower bounds using the same technique for the problem of computing Weighted

Matching in general graphs. Other such problems that have resisted paral-

lelization and are known to be harder are the Matroid Intersection Problem

and the Matroid Parity Problem. It would also be interesting to give similar

lower bounds for these problems that are not known to be inNC, nor known to

be P-complete.

In this work, we also give a lower bound for the complexity of the Max Block-

ing Flow problem. However, this technique does not extend to giving lower

bounds on computing any blocking flow (other than the maximum one). Addi-

tionally, the technique does not work if we are only interested in solving the

problem approximately; i.e., we would like to compute the value of the optimum

up to a small multiplicative factor. It should be noted that the technique of

Mulmuley does extend to computing the optimum value approximately up to a

small additive factor. The question of developing techniques for lower bounds

for approximation problems is still wide open.
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Mulmuley’s technique does not carry over to providing lower bounds for se-

quential algorithms because the degrees of the polynomials are exponential in

the running time. Thus, the problem of finding techniques that will allow us to

prove strong lower bounds for sequential algorithms is also open.
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[19] A. Frank and Éva Tardos. An application of simultaneous Diophantine ap-

proximation in combinatorial optimization. Combinatorica, 7:49–65, 1987.

[20] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and

the polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27,

April 1984.

[21] Michael R. Garey and David S. Johnson. Computers and Intractability : A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[22] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum

flow problem. In Proceedings of the 18th Annual ACM Symposium on the

Theory of Computing, pages 136–146, Berkeley, California, 28–30 May 1986.

[23] Andrew V. Goldberg and Robert E. Tarjan. A parallel algorithm for find-

ing a blocking flow in an acyclic network. Information Processing Letters,

31(5):265–271, June 1989.

[24] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel

Computation : P-Completeness Theory. Oxford Univ. Press, 1995.
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