1 Basic Concepts

The finite element method provides a formalism for genegatin
discrete (finite) algorithms for approximating the solusamf
differential equations.

It should be thought of as a black box into which one puts the
differential equation (boundary value problem) and out bfch
pops an algorithm for approximating the correspondingtgmis.

We present a microcosm of the FEM restricted to one-dimeasio
problems.




1.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

d?u
i fin (0,1) (1.1)
u(0) = 0, u' (1) = 0.

If w is the solution ana is any (sufficiently regular) function such that0) = 0,
then integration by parts yields

- / F(@)o(x)dz = / @)@

_ /O o (2)0 (2)dz =: a(u, v).

DefineV = {v € L#(0,1): a(v,v) < co and v(0) = 0}. Then we can say tha
the solutionu to (1.1) is characterized by

u €V suchthat a(u,v) = (f,v) Yv eV, (1.3)

(1.2)

which is called thevariational or weakformulation of (1.1).
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Why variational?

The relationship (1.3) is called “variational” because tinectionv is allowed to
vary arbitrarily.

It may seem somewhat unusual at first, but it has a naturapmaition in the
setting ofHilbert spaces

(A Hilbert space is a vector space whose topology is definad) s
Inner-product.)

One example of a Hilbert spaceiig (0, 1) with inner-product-, -).

The spacd” may be viewed as a Hilbert space with inner-produ(et-), which
was defined in (1.2).




Is It the same?

The central issue is that (1.3) still embodies the originabpem (1.1). The
following theorem verifies this under some simplifying asgtions.

Theorem 1.1 Supposeg’ € C'°([0,1]) andu € C 2([0, 1]) satisfy(1.3). Thenu
solves(1.1).

The boundary condition(0) = 0 is calledessentiahs it appears in the variation
formulation explicitly, i.e., in the definition of. This type of boundary conditior
also frequently goes by the proper name “Dirichlet.”

The boundary condition’(1) = 0 is callednatural because it is incorporated
implicitly. This type of boundary condition is often refed to by the name
“Neumann.” We summarize the different kinds of boundarydibons
encountered so far, together with their various names ihall@ving table:




1.2 Naming conventions for two types of boundary conditions

Boundary Condition | Variational Name | Proper Name

u(x) =0 essential Dirichlet

u'(x) =0 natural Neumann

Table 1. Naming conventions for two types of boundary coods.

The assumptiong € C °([0,1]) andu € C 2(]0, 1]) in the theorem allow (1.1) to
be interpreted in the usual sense. However, we will see athgs in which to
Interpret (1.1), and indeed the theorem says that the fotronlél.3) is a way to
Interpret it that is valid with much less restrictive asstimms onf. For this
reason, (1.3) is also callednseeakformulation of (1.1).




1.3 Ritz-Galerkin Approximation

Let.S C V be any (finite dimensional) subspace. Let us consider (11B)Wi
replaced bys, namely

ug € S suchthat a(ug,v) = (f,v) Vv e S, (1.4)
It is remarkable that a discrete scheme for approximatirip) @an be defined so
easily.
This is only one powerful aspect of the Ritz-Galerkin method

However, we first must see that (egn:ohtuone) does indetdean object. In the
process we will indicate how (egn:ohtuone) represents@afsq finite) system of
equations folug.

These will be done in the following theorem and its proof.
Theorem 1.2 Givenf € L?(0,1), (1.4) has a unique solution.

The proof of Theorem 1.2 reveals important structure of tlodlem.




Let us write (1.4) in terms of a basis 6f
Let

us =) Ujé;

j=1
Let
fori,j =1,....n.
SetU = (Uj),K = (K@J) andF = (Fz)
Then (1.4) is equivalent to solving the (square) matrix eqQuat
KU =F. (1.5)

For a square system such as (1.5) we know that uniquenessvalegtito
existence, as this isfanite dimensionasystem.

To prove uniqueness, we show that nonuniqueness impliesteacdction.




Nonuniqueness would imply that there is a nonZ€reuch thatk'V = 0.

Write v = ) | V;¢; and note that the equivalence of (1.4) and (1.5) implies tha
a(v,¢;) =0 forall 5.

Multiplying this by V; and summing ovey yields0 = a(v, v) fO x,
from which we conclude that' = 0.

Thus,v is constant, and, sineec S C V impliesv(0) = 0, we must have = 0.
Since{¢; : 1 <1i < n}isabasis of5, this means thaV = 0.

Thus, the solution to (1.5) must be unique (and hence mud)exis

Therefore, the solutiong to (1.4) must also exist and be unique.




The matrixK is often referred to as th&iffnesamatrix, a name coming from
corresponding matrices in the context of structural pnoisle

It is symmetric, since thenergyinner-product(-, -) is symmetric.

It is alsopositive definitesince

i,J=1

n n
Z kijuvivi = a(v,v) where v = Zngbj.
j=1

Clearly,a(v,v) > 0 for all (v,;) anda(v,v) = 0 was already “shown” to imply
v = 0 In the proof of Theorem 1.5.




1.4 Piecewise Polynomial Spaces — The Finite Element Methc
Let0 =29 < 21 < ... < x, = 1 be a partition of0, 1], and letS be the linear
space of functions such that

e i)veCV(0,1])

e ii) v|{z, , 4, iSalinear polynomial; = 1, ..., n, and

e iii) v(0) = 0.

We will see later thab C V. For each = 1, .., n defineg; by the requirement
that¢;(z;) = ¢;; = the Kronecker delta, as shown in Fig. 1.
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Figure 1: piecewise linear basis functign

Lemmal.l {¢; : 1 <i<mn}isabasisfors.

{#;} is called anodal basis forS, and{v(z;)} are thenodal valuesof a function
v. (The points{z;} are called theodes) The sef{¢;,} is linearly independent
sinced " | ¢;¢i(x;) = 0impliesc; = 0. To see that it spanS, consider the
following:
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Definition 1.1 Givenv € C°([0, 1]), theinterpolant v; € S of v is determined
byvr: =37, v(@)gi-

Clearly, the set ¢, } spansS if the following is true.
Lemmal2vesS=v=uvy.

v — vy is linear on eachw;_1, x;] and zero at the endpoints, hence must be

identically zero.

The interpolant defines a linear operafarC °([0, 1]) — S whereZv = vy.
Lemma 0.4.4 says thatis aprojection(i.e.,Z? = 7).
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1.5 Relationship to Difference Methods

The stiffness matriK as defined in (0.2.3), using the basis } described above
can be interpreted as a difference operator.

Leth, = x; — x;_1.
Then the matrix entrie&’;; = a(¢;, ¢;) can be easily calculated to be
(05.1) Ky=h;"+h |, K1 =Ky, =-h ), (i=1.,n-1)

andK,,, = h_ ! with the rest of the entries d& being zero.

Similarly, the entries oF can be approximated if is sufficiently smooth:

(0.5.2) (.61) = 5 (hi + hia) () + O(W)

whereh = max h;.

This follows easily from Taylor's Theorem since the intdgrfag; is
(h; + hiy1)/2. Note that the error inot O(h?) unlessl — (h;/h;11) = O(h).
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Thus, the; — th equation ofKU = F (for 1 < < n — 1) can be written as

—2 U —Ui Ui =Uia| _ 2(/,¢i) _ f(x;) + O(h).

0.5.3 — —
( ) P + Ry Pit1 h; Py + Ry

The difference operator on the left side of this equationailaa be seen to be an
O(h) accurate approximation to the differential operataF /dz* (andnot
O(h?) accurate in the usual sense unléssh;/h;.1 = O(h).)

For a uniform mesh, the equations reduce to the familiaekfice equations

Usrr — 2U; + Uy
(0.5.4) _ it h2+ L~ fla) + O(h?)

which are well known to be second-order accurate.
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Characteristics of the finite element formalism

Being based on the variational formulation of boundary @atoblems, it is quite
systematic, handling different boundary conditions weilses one simply replace
Infinite dimensional spaces with finite dimensional subspac

What results, as in (0.5.3), is the same as a finite differengati, in keeping
with thedictumthat different numerical methods are usually more simhant
they are distinct.

However, we are able to derive very quickly the convergemopegrties of the
finite element method.

Finally, the notation for the discrete scheme is quite carhpethe finite element
formulation.

This can be utilized to automate coding the algorithm viarappate software
support.
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1.6 Computer Implementation of Finite Element Methods

One key to the success of the finite element method, as dedclogngineering
practice, was the systematic way that computer codes ceultblemented.

One important step in this process is gesemblyf the inner-product(u, v) by
summing its constituent parts over each sub-intervat|@mentwhich are
computed separately.

This is facilitated through the use of a numbering schemeddhe
local-to-globalindex.

This index,i(e, j), relates the local node numbegr,on a particular elemeng, to
its position in the global data structure.
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In our one-dimensional example with piecewise linear fiomg, this index is
particularly simple: the “elements” are based on the i@k, .= [z._1, 2]
wheree is an integer in the range ..., n and

ile,j) == e+j—1fore=1,...,nandj =0,1.

That is, for each element there are two nodal parametersestst, one
corresponding to the left end of the interval= 0) and one at the rightj(= 1).
Their relationship is represented by the mappifg ).

17




We may write the interpolant of a continuous function for sipace of all
piecewise linear functions (no boundary conditions implps#a

1
(0.6.1) fro= > F(@ies)dS
e 7=0

Where{gbg’T > 5 =0, 1} denotes the set of basis functions for linear functions
the single interval, = [z._1, x.]:

(b‘;(a:) = ¢ ((z —ze—1)/(Te — Te—1))

where
l—=x z € [0,1]
gbo (CC) = .
0 otherwaise
and
T z € [0,1]
¢1(x) =

0 otherwise.
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Note that we have related all of the “local” basis functierjgo a fixed set of
basis functions on a “reference” elemeft,1], via an affine mapping gdb, 1] to
[ze—1, ). (By definition, the local basis functiong;, are extended by zero
outside the interval..)

The expression (0.6.1) for the interpolant shows (cf. Lemmaipthat any
piecewise linear functiort (no boundary conditions imposed) can be written in
the form

1
(0.6.2) fo= 2> fien®S

(& j:O

wheref; = f(x;) for all i. In particular, the cardinality of the image of the inde
mappingi(e, j) is the dimension of the space of piecewise linear functidlnte
that the expression (0.6.2) represefitacorrectly at the nodal points, but this he
no effect on the evaluation of multilinear forms involvingegrals off.
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The bilinear forms defined in (1.2) can be easily evaluateskfabled) using this
representation as well. For example,

a(v,w) = Z ae (v, w)

e

where the “local” bilinear form is defined (and evaluated vi

ae(v,w) = / v'w' dx

1
1 /
— — T (3;vi(e 2jWi(e,)Pj) dx
1) /0 ( J)¢J ( jWie.)b5) (1.6)

_ ( g 1 Ui(e,0) Wi(e,0)
Vi(e,1) Wi(e,1)

Here, thdocal stiffness matrixK, is given by

1
— / ¢; ¢,y dxfori,j=1,2.
0
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Note that we have identified the space of piecewise lineastfoms,v, with the
vector space of valuegy; ), at the nodes.

The subspace, of piecewise linear functions that vanishvat 0, defined in
Sect. 0.4, can be identified with the subspéee) > vy = 0}.

Includingvg in the data structure (with a value of zero) makes the asseofbl
bilinear forms equally easy in the presence of boundary itond.
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2 Two dimensional flow
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The finite element method can be applied in the same way in an
eccentricity = 0.667
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Figure 2. Mesh for pump flow in two dimensions.
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Figure 3: Pump flow in two dimensions
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Model problem

We consider a variational problem with “energy” form
a(v,w) = / a(x)Vu - Vwdr (2.7)
Q

Let V;, = piecewise linear functions on a non-degenerate rigshnd assume
that the discontinuities at and f, fall on mesh lines iry,,.

Solve foru;, € V,, such that
a(uy,,v) = (f,v) YveV (2.8)

The application of a finite element method is similar to the-dimensional case

A mesh as in Figure 2 is created, and a corresponding Spacépiecewise
polynomials is defined.

In this way, simulations as depicted in Figure 3 can be peréat.
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2.1 Error estimators and adapted meshes

It is also possible to predict the error on a given mesh auticaisy.

Based on the error prediction a new mesh can be created.

The errorey, := u — uy, satisfies theesidual equation
alep,v) = R(v) YveV

where theesidualR € V' is defined byR(v) :=

+ ; ]{[Ozﬂ - Vuplvds

One part ofR is absolutely continuous

sinceVuy, anda are smooth on each.
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The other term in the definition of the residual is the “jumei
Rj(v) := Z ]{[Ozn -Vuplvds YveV (2.11)

where|¢| denotes the jump ip (across the face in question). More precisely,

[#](2) := lim ¢(z + en) — ¢(z — en)

e—0

so that the expression in (2.8) is independent of the choic@whaln on each
face.

If A is the differential operator associated with the form (2n@mely,
Av := -V - (aVv), then we see thak 4 = A(u — up) = Aey, on eachr.

Relations (2.9-2.10) are derived simply by integrating bysan eachi’, and the
resulting boundary terms are collected in the tétm
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Although (2.9-2.10) can be viewed as just a re-writing of (4t®ives an
expression of the error in terms of a right-hand sitle V.

Insertingv = e, In (2.9), we see that

aolenln oy < |R(en)| < |RIm-1ollenllm ). (2.12)
Therefore
aollen ) < Rl g-1q)- (2.13)

Error estimated by || ;-1 () involves only data f and«) and and something
we have computed,).

Difficult to compute a negative norm explicitly sinéehas two different parts:
standard (integrable) function plus “interface Delta fiimas.”

But can provide an effective estimate|a®|| ;-1 as follows.
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The residual has special properties. In particular, thednmental orthogonality
implies that

R(v) :==a(ep,v) =0 Yov € V.

For each interior face, let’T,, denote the union of the two elements sharing the
face. Then using aon-smooth data interpolany}, [Scott-Zhang] we find

[R(v)| =|R(v — Znv)

<~ If — V- Vup |72 h7
(ZT: B (2.14)

1/2
+> |l on - Vauy,] H%z<e>he) vl @)
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Hereh,. (resp.hr) iIs a measure of the size efresp.T’), and7T (resp.fe) denotes
the neighborhood of elements touchifiidresp.T.,). For this reason, we define
thelocal error indicator &, by

5e(uh)2 =
(2.15)
Fhell [an - Vup] |72

where a natural choice fdr,. (resp.hr) is the length ok (resp. square root of the
area ofl") unless the elements are anisotropic.

The error estimator (2.15) can be generated automaticaliy the description
(2.7).
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With this definition, the previous inequalities can be sumeeal as

1/2
[R(v)| < v (Z 5e(Uh)2> V[0

which in view of (2.12) implies that

1/2
len] () < &lo (26: 5e(uh)2> (2.16)

where~ is only related to interpolation error.

From the error estimate, a better mesh can be determinedhampdocess
repeated to get a more accurate simulation.

The use of adaptivity in the mesh makes the simulation psogesgh more
efficient, although more complicated!

But it all can be done automatically.
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