
Annotated Bibiliography of Scientific Code Automation

October 8, 2007

1 Efficiency–expressiveness trade-off

Analysa [2] combined efficiency and expressiveness by using a functional programming lan-
guage (AlScheme) as a scripting language which linked with C, C++ and Fortran code for
efficiency.

The Broadway compiler [18] supports domain-specific compiler optimizations. It provides
compiler support for a wide range of domains and in the context of existing programming
languages using a technique called ‘library-level optimization’ which recognizes and exploits
the domain-specific semantics of software libraries.

Ken Kennedy proposed the use of ‘telescoping languages’ [22] in which fully optimized
low-level code would be included as high-level operations in an extended language.

2 Compilers

Automatic generation of code has been performed in compiler design [15, 21].

3 Solving PDE’s: the FEM

Optimization of code for solving differential equations has been studied widely [31, 32, 45, 46].
Many of these approaches have been based on the finite element method (FEM).

3.1 FIAT and SyFi

The evaluation of finite element basis functions, and related inner-product data has been
automated by FIAT [24, 25] and by SyFi [37].

3.2 FErari

In [26], efficient evaluation of finite element matrices was addressed. This paper posed a
complex optimization problem that was further studied in [29]. In [30], a different type of
optimization, based on the geometric properties of certain tensors, was explored.

The paper [23] examines the effect of using complexity-reducing relations to generate
optimized code for the evaluation of finite element variational forms. The optimizations

1



are implemented in a prototype code named FErari. The authors demonstrate that by
invoking FErari as an optimizing backend to the form compiler FFC, they obtain reduced
local operation counts by as much as a factor 7.9 and speedups for the assembly of the global
sparse matrix by as much as a factor 2.8.

3.3 Finite element form compilers

The FEniCS Form Compiler (FEC) was introduced in [27] and further developed in [28].
Analysa [2] also included a form compiler.

4 Quantum chemistry

See [1, 4, 5, 41] Also [6, 10, 11, 12, 16, 19, 34, 35, 36, 42]

5 Dense linear algebra

[7, 8, 9]

6 Signal processing

Signal processing algorithms have been studied extensively in the Spiral project [40].

7 Distributed and parallel computing

[13, 14]

8 Program analysis and transformation

There are automatic tools that extract information from existing codes. Two areas are
performance analysis and sensitivity analysis (a.k.a., differentiation).

8.1 Automating performance analysis

The paper [20] presents a framework for parallel performance data mining and knowledge
discovery. The PerfExplorer framework is part of the authors’ ongoing research into auto-
matic parallel performance analysis. PerfExplorer adresses the need to manage large-scale
data complexity using techniques such as clustering and dimensionality reduction, and the
need to perform automated discovery of relevant data relationships using comparitive and
correlation analysis techniques. The intended uses of the framework include, but are not
limited to, benchmarking, procurement evaluation, modeling, prediction and application
optimization.

2



8.2 Automatic Differentiation

Algorithmic, or automatic, differentiation (AD) is concerned with the accurate and efficient
evaluation of derivatives for functions defined by computer programs [17]. No truncation
errors are incurred, and the resulting numerical derivative values can be used for all scientific
computations that are based on linear, quadratic, or even higher order approximations to
nonlinear scalar or vector functions. In particular, AD has been applied to optimization,
parameter identification, equation solving, the numerical integration of differential equations,
and combinations thereof. Apart from quantifying sensitivities numerically, AD techniques
can also provide structural information, e.g., sparsity pattern and generic rank of Jacobian
matrices.

9 Mesh generation

All discretization methods (finite element, finite difference, finite volume, spectral element,
boundary element) require a mesh. This is an industry unto itself, so we do not try to survey
it extensively, but give a few examples.

Triangle [44] is a program for efficiently generating 2D triangulations and Voronoi dia-
grams. Features include user-specified constraints on angles and triangle areas, user-specified
holes and concavities, and the economical use of exact arithmetic to improve robustness. The
paper [44] discusses many of the key implementation decisions, including the choice of tri-
angulation algorithms and datastructures, the steps taken to create and refine a mesh, a
number of issuesthat arise in Ruppert’s algorithm, and the use of exact arithmetic.

NETGEN [43] is an advancing front 2D/3D-Mesh generator based on abstract rules. The
process of tetrahedral mesh generation is broken up into four steps: special point calculation,
edge following, surface meshing, and volume mesh generation. Several techniques of mesh
optimization are tested for quality.

The Bank-Holst adaptive meshing paradigm [3] is an efficient approach for parallel adap-
tive meshing of elliptic partial differential equations. It is designed to keep communication
costs low and to take advantage of existing sequential adaptive software.

The ‘isosurface stuffing’ algorithm [43] fills an isosurface with a tetrahedral mesh whose
dihedral angles are bounded. It is fast and robust as it generates tetrahedra from a small
number of precomputed stencils It is the first algorithm that rigorously guarantees the suit-
ability of tetrahedra for finite element methods in domains whose shapes are substantially
more challenging than boxes. If the isosurface is a smooth 2-manifold with bounded curva-
ture, and the tetrahedra are sufficiently small, then the boundary of the mesh is guaranteed
to be a geometrically and topologically accurate approximation of the isosurface.

One issue is to be able to partition a given mesh for parallel calculation The paper [38]
describes an efficient approach to partitioning unstructured meshes that occur naturally in
the finite element and finite difference methods. The approach makes use of the underlying
geometric structure of a given mesh and finds a provably good partition in random O(n) time.
It applies to meshes in both two and three dimensions. The new method has applications in
efficient sequential and parallel algorithms for large-scale problems in scientific computing.
This is an overview paper written with emphasis on the algorithmic aspects of the approach.

3



Many detailed proofs can be found in companion papers.
Another issue is to maintain shape regularity as meshes are subdivided. The papers

[39, 47] present efficient techniques for constructing simplicial meshes in which each simplex
is small enough, according to an application specific error test, and the number of distinctly-
shaped simplices in the mesh is small, depending only on the dimension of the problem.
The techniques include the decomposition of simplices of a certain kind into smaller similar
simplices, the refinement of a hierarchy of simplices to enforce an element size continuity con-
dition, and the processing of such a refined hierarchy to produce a simplicial, tree-structured
mesh.

10 Algebra of compiler optimization

In [33], the authors (according to their abstract) “use Kleene algebra with tests to verify a
wide assortment of common compiler optimizations, including dead code elimination, com-
mon subexpression elimination, copy propagation, loop hoisting, induction variable elimina-
tion, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant
instructions, array bounds check elimination, and introduction of sentinels. In each of these
cases, we give a formal equational proof of the correctness of the optimizing transformation.”

References

[1] Auer, A. A., Baumgartner, G., Bernholdt, D. E., Bibireata, A., Chop-

pella, V., Cociorva, D., Gao, X., Harrison, R., Krishnamoorthy, S., Kr-

ishnan, S., Lam, C.-C., Lu, Q., Nooijen, M., Pitzer, R., Ramanujam, J.,

Sadayappan, P., and Sibiryakov, A. Automatic code generation for many-body
electronic structure methods: the tensor contraction engine. Molecular Physics 104
(2006), 211–228.

[2] Bagheri, B., and Scott, L. R. About Analysa. Research Report UC/CS TR-2004-
09, Dept. Comp. Sci., Univ. Chicago, 2004.

[3] Bank, R. E. Some variants of the bank&#x2013;holst parallel adaptive meshing
paradigm. Comput. Vis. Sci. 9, 3 (2006), 133–144.

[4] Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata, A., Choppella,

V., Cociorva, D., Gao, X., Harrison, R. J., Hirata, S., Krishanmoorthy, S.,

Krishnan, S., Lam, C.-C., Lu, Q., Nooijen, M., Pitzer, R. M., Ramanujam,

J., Sadayappan, P., and Sibiryakov, A. Synthesis of high-performance parallel
programs for a class of ab initio quantum chemistry models. Proceedings of the IEEE
93, 2 (2005). special issue on ”Program Generation, Optimization, and Adaptation”.

[5] Bernholdt, D., Nieplocha, J., and Sadayappan, P. Raising the Level of Pro-
gramming Abstraction in Scalable Programming Models. IEEE International Confer-
ence on High Performance Computer Architecture (HPCA), Workshop on Productivity
and Performance in High-End Computing (P-PHEC), 76–84.

4



[6] Bibireata, A., Krishnan, S., Baumgartner, G., Cociorva, D., Lam, C., Sa-

dayappan, P., Ramanujam, J., Bernholdt, D., and Choppella, V. Memory-
constrained data locality optimization for tensor contractions. Lecture notes in computer
science Volume 2958: Languages and Compilers for Parallel Computing , 93–108.

[7] Bientinesi, P., Dhillon, I. S., and van de Geijn, R. A. A parallel eigensolver
for dense symmetric matrices based on multiple relatively robust representations. SIAM
J. Sci. Comput. 27, 1 (2005), 43–66.

[8] Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and

van de Geijn, R. A. The science of deriving dense linear algebra algorithms. ACM
Trans. Math. Softw. 31, 1 (2005), 1–26.

[9] Bientinesi, P., Quintana-Ort́ı, E. S., and van de Geijn, R. A. Representing
linear algebra algorithms in code: the flame application program interfaces. ACM Trans.
Math. Softw. 31, 1 (2005), 27–59.

[10] Cociorva, D., Baumgartner, G., Lam, C.-C., Sadayappan, P., Ramanujam,

J., Nooijen, M., Bernholdt, D. E., and Harrison, R. Space-time trade-off opti-
mization for a class of electronic structure calculations. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implementation
(New York, NY, USA, 2002), ACM Press, pp. 177–186.

[11] Cociorva, D., Wilkins, J., Baumgartner, G., Sadayappan, P., Ramanujam,

J., Nooijen, M., Bernholdt, D., and Harrison, R. Towards automatic synthesis
of high-performance codes for electronic structure calculations: Data locality optimiza-
tion. Lecture Notes in Computer Science 2228 (2001), 237–??

[12] Cociorva, D., Wilkins, J. W., Lam, C.-C., Baumgartner, G., Ramanujam,

J., and Sadayappan, P. Loop optimization for a class of memory-constrained compu-
tations. In ICS ’01: Proceedings of the 15th international conference on Supercomputing
(New York, NY, USA, 2001), ACM Press, pp. 103–113.

[13] de Carvalho, F. H., and Lins, R. D. The # model: separation of concerns for
reconciling modularity, abstraction and efficiency in distributed parallel programming.
In SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing (New York,
NY, USA, 2005), ACM Press, pp. 1357–1364.

[14] de Carvalho Junior, F., Lins, R., CorrÃ?a, R., AraÃ?jo, G., and de Santi-

ago, C. 2007, ch. Design and Implementation of an Environment for Component-Based
Parallel Programming, pp. 184–197. 10.1007/978-3-540-71351-7 15.

[15] Fraser, C. W. Automatic generation of code generators. PhD thesis, 1977.

[16] Gao, X., Sahoo, S. K., Lam, C.-C., Ramanujam, J., Lu, Q., Baumgartner,

G., and Sadayappan, P. Performance modeling and optimization of parallel out-
of-core tensor contractions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming (New York, NY, USA,
2005), ACM Press, pp. 266–276.

5



[17] Griewank, A. Evaluating derivatives: principles and techniques of algorithmic dif-
ferentiation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[18] Guyer, S. Z., and Lin, C. Broadway: a compiler for exploiting the domain-specific
semantics of software libraries. Proceedings of the IEEE 93 (2005), 342–357.

[19] Hirata, S. Tensor Contraction Engine: Abstraction and Automated Parallel Imple-
mentation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation
Theories. J. Phys. Chem. A 107, 46 (2003), 9887–9897.

[20] Huck, K. A., and Malony, A. D. Perfexplorer: A performance data mining frame-
work for large-scale parallel computing. sc 0 (2005), 41.

[21] Karuri, K. A Framework for Automatic Generation of Code Optimizers. PhD thesis,
2001.

[22] Kennedy, K., Broom, B., Chauhan, A., Fowler, R., Garvin, J., Koelbel,

C., McCosh, C., and Mellor-Crummey, J. Telescoping languages: A system
for automatic generation of domain languages. Proceedings of the IEEE 93, 2 (2005).
special issue on ”Program Generation, Optimization, and Adaptation”.

[23] Kirby, R., and Logg, A. Benchmarking domain-specific compiler optimizations for
variational forms. Preprint from The Finite Element Center, April 2007.

[24] Kirby, R. C. Algorithm 839: Fiat, a new paradigm for computing finite element basis
functions. ACM Trans. Math. Softw. 30, 4 (2004), 502–516.

[25] Kirby, R. C. Optimizing fiat with level 3 blas. ACM Trans. Math. Softw. 32, 2 (2006),
223–235.

[26] Kirby, R. C., Knepley, M., Logg, A., and Scott, L. R. Optimizing the evalu-
ation of finite element matrices. SIAM J. Sci. Computing 27 (2005), 741–758.

[27] Kirby, R. C., and Logg, A. A compiler for variational forms. ACM Trans. Math.
Softw. 32, 3 (2006), 417–444.

[28] Kirby, R. C., and Logg, A. Efficient compilation of a class of variational forms.
ACM Trans. Math. Softw. 33, 3 (2007), 17.

[29] Kirby, R. C., Logg, A., Scott, L. R., and Terrel, A. R. Topological optimiza-
tion of the evaluation of finite element matrices. SIAM J. Sci. Computing 28 (2006),
224–240.

[30] Kirby, R. C., and Scott, L. R. Geometric optimization of the evaluation of finite
element matrices. SIAM J. Sci. Computing 29 (2007), 827–841.

[31] Korelc, J. Automatic generation of finite-element code by simultaneous optimization
of expressions. Theoretical Computer Science 187 (Nov 1997), 231–248.

6



[32] Korelc, J. Multi-language and multi-environment generation of nonlinear fi-
nite element codes. Engineering with Computers 18 (Nov 2002), 312–327.
10.1007/s003660200028.

[33] Kozen, D., and Patron, M.-C. Certification of compiler optimizations using kleene
algebra with tests. In CL ’00: Proceedings of the First International Conference on
Computational Logic (London, UK, 2000), Springer-Verlag, pp. 568–582.

[34] Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam,

C., Sadayappan, P., Ramanujam, J., Bernholdt, D., and Choppella, V.

Data Locality Optimization for Synthesis of Efficient Out-of-Core Algorithms. Proc. of
the Intl. Conf. on High Performance Computing (2003).

[35] Lam, C.-C., Cociorva, D., Baumgartner, G., and Sadayappan, P. Memory-
optimal evaluation of expression trees involving large objects. In HiPC (1999), pp. 103–
110.

[36] Lam, C.-C., Sadayappan, P., and Wenger, R. On optimizing a class of multi-
dimensional loops with reductions for parallel execution. Parallel Processing Letters 7,
2 (1997), 157–168.

[37] Mardal, K. A., Skavhaug, O., Lines, G., Staff, G., and Odegard, A. Using
python to solve partial differential equations. Computing in Science and Engineering
(2007).

[38] Miller, G. L., Teng, S., Thurston, W., and Vavasis, S. A. Automatic mesh
partitioning. Tech. rep., Ithaca, NY, USA, 1992.

[39] Moore, D., and Warren, J. Adaptive simplicial mesh quadtrees. Houston J. Math
21, 3 (1995), 525–540.

[40] Püschel, M., Moura, J. M. F., Johnson, J., Padua, D., Veloso, M., Singer,

B. W., Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K.,

Johnson, R. W., and Rizzolo, N. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE 93, 2 (2005). special issue on ”Program Generation, Optimiza-
tion, and Adaptation”.

[41] Sahoo, S. K., Krishnamoorthy, S., Panuganti, R., and Sadayappan, P. In-
tegrated loop optimizations for data locality enhancement of tensor contraction expres-
sions. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference
(2005), pp. 13–13.

[42] Sahoo, S. K., Krishnamoorthy, S., Panuganti, R., and Sadayappan, P. In-
tegrated loop optimizations for data locality enhancement of tensor contraction expres-
sions. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing
(Washington, DC, USA, 2005), IEEE Computer Society, p. 13.

[43] Schöberl, J. Netgen: An advancing front 2d/3d-mesh generator based on abstract
rules. Computing and Visualization in Science (1997).

7



[44] Shewchuk, J. R. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In Applied Computational Geometry: Towards Geometric Engineeri= ng,
M. C. Lin and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer Science.
Springer-Verlag, May 1996, pp. 203–222. From the First ACM Workshop on Applied
Computational Geometry.

[45] van Engelen, R., Wolters, L., and Cats, G. CTADEL: a generator of multi-
platform high performance codes for PDE-based scientific applications. In ICS ’96:
Proceedings of the 10th international conference on Supercomputing (New York, NY,
USA, 1996), ACM Press, pp. 86–93.

[46] Wang, P. S., Tan, H.-Q., Saleeb, A. F., and Chang, T.-Y. P. Code gener-
ation for hybrid mixed mode formulation in finite element analysis. In SYMSAC ’86:
Proceedings of the fifth ACM symposium on Symbolic and algebraic computation (New
York, NY, USA, 1986), ACM Press, pp. 45–52.

[47] Zhang, S. Successive subdivisions of tetrahedra and multigrid methods on tetrahe-
dralmeshes. Houston J. Math 21, 3 (1995), 541–556.

8


