1 Code generation example: matrix formation

Formation of matrices takes a substantial amount of ti
In finite element computations.

Disadvantage of finite elements over finite differences.
But standard algorithm can be far from optimal.

We give a general formalism which can be automated and linked

with FIAT and FFC, called FErari
Finite Element ReArRangement of Integrals

Narrows the efficiency gap between finite elements and finite
differences.

Algorithms we present here can be used in “matrix free”
representations of finite element operations: substamtictions
IN memory requirements and memory traffic.

1.1 Long term goal

Provide guidance regarding the development of a for
compiler for finite element variational approximation.

The FEnICS Form Compiler (FFC) is a first step in this dirattio
and is already in production use.

Our examples provide an indication of some of the challendégsigning such a
compiler if it is intended to be reasonably efficient.

Critical step: to determine what code needs to be generfated.

This is less obvious for higher level languages which havepdex
operations as elementary units.

There areopportunities for optimization which would be difficult
to uncover automatically from a low-level representation.
They must be captured at high level.

1.2 Automation in computational mathematical modeling

The idea of automating such tasks not new in scientific comgut

Automatic differentiation tools produce efficient gradieadjoint, and Hessian for
existing code, enabling optimal control calculationseexled system solvers, ang
Newton-based nonlinear solvers.

Other tools that automate finite element computation:

e FreeFEM and Sundance provide type of variational form ctenpnd
automatic generation of matrices

e Similar tools were provided in the Analysa and Dolfin progect

e Also work in numerical linear algebra, etc.

2 Operators related to multilinear forms

Consider a variational problem to finde V such that
a(v,u) = F(v) Yv eV (2.1)

for a given (continuous, coercive) bilinear fout, -). Corresponds to a linear
system of equations
AU =F YveV (2.2)

where

Aij = al¢i b)) Fji=F(¢;) uwi=) Ui, (2.3)
1€l
where, e.g.{¢; : ¢ € Z}is the standard Lagrange nodal basis and wifere
denotes the index set for the nodes.

In many iterative methods, the actual matdxs not needed explicity, rather all

that is required is some way to compute #wion of A, that is, the mapping that
sends a vecto¥ to the vectordV'. This operation can be defined purely in terms
of the bilinear form as follows. Suppose we write

vi=)Y Vi (2.4)

€1

Then forall; € 7

(AV), :ZAz'jVj = Za((bz’,@)vj

JET jET

=a(e;, Z Vigj) = al(¢i,v)

JET
The vectorAV can be computed by evaluatinge,;, v) for all ¢ € 7.

The standard matrix assembly algorithm can be used to cantipeit
action efficiently.

With (2.5) as motivation, we can introduce the notaug¥’, v) where

a(V,v) = AV . (2.6)

Note that the notationy” inserted in a slot in the variational form indicates
implicitly the range of the index variable Note that evaluating; := a(v, ¢;) for
all © € 7 computes the vectdr = AV. In the notation of (2.6), we have

AV = a(v,V). Correspondingly, it is natural to defing¢), V) = A.

The action of a bilinear form can be used in several cont®&ashaps the simplest
IS when non-homogeneous boundary conditions are pose@oSeprepresents a
function defined on the whole domain which satisfies the cbtyeundary
conditions. A typical variational problem is to findsuch that: — g € V and

a(v,u) =0 Yovel. (2.7)

This can be re-written using the difference:= v — g € V. The variational
problem becomes: Fing’ € V such that

a(v,u’) = —a(v,g) Vv € V. (2.8)
In matrix form, we would write this as
AU? = —a(V, g). (2.9)

This could be solved by a direct method (e.g., Gaussian elimimawith
—a(V, g) as the right-hand-side vector. However, we could equally thmk of
(2.7) as

a(V,u’) = —a(V,g). (2.10)

which does not require the explicit evaluation of a matrigd anuld be solved by
an interative method.

2.1 The Action of Trilinear Forms

The nonlinear term in the Navier—Stokes provides an exaofgdlee action of a
general multi-linear form. Certain algorithms might invela variational problem
to findu € V such that

a(u,w) =c(v,v,w) VweV (2.11)

for two differentv € V andv € V. Choosew = ¢, for a generic basis function

¢;. Write as usuah := } |, U;¢;. By analogy with the definition (2.3), we set

Aij = Cl,(gbz‘, gbj) Vi,g €1 (2.12)
which, by a simple extension of our convention (2.6), can h#evras
A=a(V,V). (2.13)

Then (2.11) can be written as

(A'V), =) Aul;

JET
=2 a(#;,)
JET
=a() U;j, 9i)
JET
:a’(ua sz)
:C(V, v, qbz) Viel.

In notation analogous to that of (2.6), we can write (2.14) as

a(u,V) =AU = c¢(v,v, V), (2.15)

where the latter term introduces notation for the action tofliaear form.

2.2 (Generating matrices from multilinear forms

With forms of two or more variables, there are other objduéd tan be generated
automatically in a way that is similar to what we can do to gatesthe action of a
form. For trivarariate forms, it is of interest to work withe matrix

Cij = c(v, i, ;) Vi jeT (2.16)
which we write in our shorthand as
C=c(v,V,V) (2.17)
For example, one might want to solve (fey givenf) the equation
u+v-Vu="f{ (2.18)
for a fixed, specifiedr € V, using the variational form

(u,w)r2 +c(v,u,w) = (f,w)2 YweV (2.19)

Now write the variational equation

(u,w)r2 +c(v,u,w) = (f,w)2 YweV

In component form:

> Ui((¢ir05)12 + c(v,diy05)) = (£,05)12 V€T (2.21)

icT
In operator notation, this becomes

U (V, V)2 +c(v,V,V))=F

2.3 General tensors from Forms

Frequently the spaces in a form are not all the same, e.g.,

b(v,p) ::/V-V(x)p(x) dx (2.23)

The formb(-, -) in (2.23) involves spaces of scalar functions (d&yas well as
vector functions (say/). The matrixb(V, II) is defined analogously to (2.12) ano
(2.13):

OV, 1)), = b(¢i, 4i) (2.24)

where{¢; : i € 7} is abasis ol as before, andlq; : ¢ € J} is a basis otl.
Note thath(V, IT) will not, in general, be a square matrix.

In general, if we have a form(v1, ..., v™) of n entries, then the expression

a(..., V. VR) (2.25)

defines a tensor of rank More precisely, each of thearguments in the form
a(vl,...,v™) may be a function space or a member of a function space.

For exampleq (v', v?, V!, 03, V2 V3 v*) denotes a tensor of rank 3, whereas
a (vh, Vo2 03, V2 v?, v°) denotes a tensor of rank 2.

Note that a tensor of rank zero is just a scalar, consistahttive usual
interpretation ofi(v?, ..., v").

A tensor of rank one is a vector, and a tensor of rank two is aixnat

Tensors of rank three or higher are less common in compuatdtimear algebra.

3 Matrix Evaluation by Assembly

Theassembly of integrated differential forms is done by summing its ddansnt
parts over eachlement, which are computed separately through the use of a
numbering scheme called thecal-to-global index. This index,(e, A), relates the
local (or element) node number,c L, on a particular element, indexed byto
Its position in the global data structure.

We may write a finite element functighin the form
DN Frends (3.26)
e NeLl

where f; denotes the “nodal value” of the finite element function at;tkh node
in the global numbering scheme afw : A € £} denotes the set of basis
functions on the element domdin.

The element basis functions;, are extended by zero outsidg.

Can relate “element” basis function§ to fixed set of basis functions on
“reference” element/, via mapping of/ to 1.

Could involve changing both the:” values and the $” values in a coordinated way, as with the Piola
transform , or it could be one whose Jacobian is non-consamtith tensor-product elements or

isoparametric elements.

For an affine mapping, — J¢ + x., of 7T to T.,:

$5 (@) = ox (T (z — 2e)) -

The inverse mapping; — ¢ = J~!(x — z.) has as its Jacobian

J—l_ag_m

mi " Py,

and this is the quantity which appears in the evaluation®tihnear forms. Of
coursedet J = 1/det J~1.

3.1 Evaluation of bilinear forms

The assembly algorithm utiizes the decomposition of a tianal form as a sum
over “element” forms
— Z ae(v, W)

where “element” bilinear form for Laplace’s equation definga

ae(v, W) ::/T Vou(z) - Vw(z) dz

LA S L

o, w(JE + xe) det(J) d€

by transofrming to the reference element.
Finite element matrices computed via assembly in a simi&r. w

The local element form is computed as follows.

3.2 Evaluation of bilinear forms—continued
ae (v, w) :/ zd:a—v(anLx)a—w(J§+x) det(J) d€
e 9 63}'] e axj e

d

0, O
/ 2 aij O&m (Z “L<e,/\)¢/\(€)> X

7,m,m’=1 \EL

O O
;xj O (Z Wi(e,u)Pu(§)det() d§ (3.28)

t

(Ui(e,1) \ (W, (e,1) \

\vb(e,|c|)) \wb(e,l»/ll)/

Here, theslement stiffness matrix, K¢, is given by

d

8€m agm’ 0
= Y G e et | G &g en(©)de

O&m O

0 0

KA,,u,m,m’ — —d))\(g) (95

e 60 (€) e

e ._ O&m O
G = det(J Z J; O,

for\,p € Landm,m' =1,...,d.

3.3 Computation of Bilinear Form Matrices

The matrix associated with a bilinear form,

Aij = a(¢i, ¢) Zae bir ;) (3.32)

for all 7, 7, can be computed by assembly. First, set all the entrigstofzero.
Then loop over all elementsand local element numbeksandy. and compute

Ab(e)‘)?[/(enu)—i_ :Kf‘nu — Z Gi%’m/KA’M’m’m/ (333)

whereG¢, ., andK) ,, . are defined via

e
Gy

3.4 Matrix computation strategy

Gy = det(J)

We optimize the computation of each

(& . (&
K/\,AL o E : Gm,m’KA,u,m,m’
m,m’

This is a collection of dot products of fixed vectors (the tergy)
with a varying set of vectors (the “geometry” informatiorceded
In the G’s).

Pre-computations can be done, based on relations a
the K'’s, that reduce computational effort substantially.

3.5 TensorK for quadratics
zero entriestrivial entriesand

Thedetailed algorithnfor computingK for quadraticst « K¢ =

(3G11 —G12 Y11 Y0 4G9 0

—G21 3Gaz Y22 0 4G21 1

Y11 yo2 3(7v11 + 722) Yo 0 71
Y0 V2 —y3 — 8G22 V3
0 —v3 — 8G22 V2 —v3 — 8G11
g4l V3 —v3 — 8G11 V2)

where thez;;’s are the inputs and the quantitigsare defined by

Yo = — 4711,

Y1 = — 4722,

v2 =4G1221 + 8G1122 = ¥3 + 8712 = 8(G12 + 712),
v3 =4G1221 = 4721 = 8G2

where we use the notati@H; . := Gi; + Gre; finally the~;;’s are

Y11 = G11 + G12 = G112 712 = G11 4+ G22 = G1122
Y21 = G12 + G21 = G1221 722 = G12 + G22 = G1222

3.6 Symmetry properties

Let us distinguish different types of operations.

The above formulas involve (a) negation, (b) multiplicataf integers and
floating-point numbers, and (c) additions of floating-paiatmbers.

Since the order of addition is arbitrary, we may assume trebperations (c) are
commutative (although changing the order of evaluation oe@nge the result).

Thus we havéy 200 = Go212 and so forth. The symmetry @f implies that
G112 = G121 andGaioe = G292,

The symmetry of implies thatK ¢ is also symmetric, by inspection, as it must
be from the definition.

3.7 Algorithm details

The computation of the entries &f¢ procedes as follows.

The computations in (3.38) are done first and require only fouoperations, or
three (c) operations and one (b) operation (= 2G12).

Next, thevy;’s are computed via (3.37), requiring four (b) operations anel (c)
operation.

Finally, the matrixK ¢ is completed, via three (a) operations, seven (b) opeistio
and three (c) operations.

This makes a total of three (a) operations, twelve (b) opmrat and three (c)
operations.

Thus only eighteen operations are required to evall&tecompared witl288
operations via the formula (3.36).

3.8 Optimality?

There may be other algorithms with the same amount of worle@s) since there
are many ways to decompose some of the sub-matrices in téwiisars.

Finding (or proving) the absolute minimum may be difficult.

The metric for minimization should be run time, not some taay way of
counting operations.

May need to identify sets of ways to evaluate finite elementioes. These could
then be tested on different systems (architectures plupibers) to see which is
the best.

It takes fewer operations to comput& than it does to write it down, so memory
traffic must be considered.

Just elimating multiplication by zero often reduces floggooint operation cost
below memory cost.

3.9 Computing K for quadratics

Taking advantage of these simplifications, eacChfor quadratics in
two dimensions can be computed with at most 18 floating point
operations instead of 288 floating point operationsingorovement
of a factor of sixteen in computational complexity.

On the other hand, there are only 64 nonzero entries in Eac®o
eliminating multiplications by zero gives a four fold impement.
Sparse matrix accumulation requires at least 76 (=36+36+4)
memory references, not including sparse matrix indexingnkf

the matrix is stored in symmetric form, at least 46 (=21+21+4
memory references are needed.

Computational complexity can be

less than cost of memory references.

Table 1: The tensaK for cubics two dimensions on triangles, represented as a
matrix of two by two matrices. Common denominator is 160.

68 68 -14 0|0 -14 -6 -6 -6 -6 6 54 6 -108 | -108 6 54 6 0 0
68 68 -14 0|0 -14 -6 -6 -6 -6 6 54 6 -108 | -108 6 54 6 0 0
-14 -14 68 0|0 14 6 114 6 -48 -6 0 -6 0 54 48 | -108 -114 0 0
0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-14 -14 14 0| O 68 -48 6 114 6 -114 -108| 48 54 0 -6 0 -6 0 0
-6 -6 6 0| O -48 270 135 | -54 135 54 27 54 27 0 27 0 -135 | -324 -162
-6 -6 114 0| O 6 135 270 | -27 -54 27 0 27 0 27 54 | -135 -270| -162 0
-6 -6 6 0| 0 114 | -54 -27 270 135 -270 -135| 54 27 0 27 0 27 0 -162
-6 -6 -48 0|0 6 135 -54 | 135 270 | -135 0 27 0 27 54 27 54 | -162 -324
6 6 -6 0|0 -114| 54 27 | -270 -135| 270 135 | -54 -27 0 -27 0 -27 0 162
54 54 0 00 -108| 27 0 -135 0 135 270 | -189 -216| -27 0 -27 0 162 0
6 6 -6 0|0 48 54 27 54 27 -54 -189 | 270 135 0 135 0 -27 | -324 -162
-108 -108 0 0| O 54 27 0 27 0 -27 -216 | 135 270 | 135 0 -27 0 -162 0
-108 -108 | 54 0|0 0 0 27 0 27 0 -27 0 135 | 270 135 | -216 -27 0 -162
6 6 48 0|0 -6 27 54 27 54 -27 0 135 0 135 270 | -189 -54 | -162 -324
54 54 | -108 0] O 0 0 -135 0 27 0 -27 0 -27 | -216 -189 | 270 135 0 162
6 6 -114 0| O -6 -135 270 | 27 54 -27 0 -27 0 -27 -54 | 135 270 | 162 0
0 0 0 0|0 0 -324 -162 0 -162 0 162 | -324 -162 0 -162 0 162 | 648 324
0 0 0 0| O 0 -162 0 -162 -324| 162 0 -162 0 -162 -324| 162 0 324 648

20-1

-1
-1
-1
1
1

-1
-1
-1
1
1

-1
-1
-1

111 1 1

-11 1
-11 1

-1 00 O
-1 00 O
-1 0/0 O

o 0 00 0 0jO O OO0 O O
1 0 0j]0 1 0|0 O 1
-1 0 0|0

-1 0 0|0

O 0 00 0 0jO O OO0 O O
-1 0 0|0

o 0 00 60 0/]O O OO O O

1 0 0|0 1 0|0 O 1

4K:oooooooooooo

o 0 00 0 0/]O O OO O O
o 0 00 0 0/O O OO O O

1 0 0|0 1 0|0 O 1

A2
7))
-

e,
7))
C
b

£

©
()]
)
| -

-
e

=
)
| -
qv]
()

=

—
@
()]
7))
4]
&)
()

L
o
| -
@

€l

n-/

S

R
e
(7))
C
)

o
b

i

T

3.10 Linears in three dimensions
presented in the following table:

3.11 Algorithm for linears in three-D

EachK* can be computed by computing the three row sums9fthe three
column sums, and the sum of one of these sums.

We also have to negate all of the column and row sums, leadiaddtal of20
floating point operations instead of 288ating point operations using the
straightforward definition, an improvement of a factor oang fifteen in
computational complexity.

On the other hand, there are only 36 non-zero elemerks ind all of these are
+1.

At most 57 (=16+16+16+9) memory references are needed taqdaaral sparse
matrix update for each element.

Using symmetry of7¢ (row sums equal column sums) we can reduce the
computation to only 10 floating point operations, leading tmmprovement of
nearly 29. For a sparse matrix update, at most 39 (=10+1)ldemory
references are needed.

Seconds per million triangles

OLinear
B Quadratic

Quadrature
Tensor
Assemble

Using FErari and tensor reduction (FFC): low order elemangb.

3.12 Collinearity tests

Two vectors inIR™ are collinear if and only if the absolute value of the cosihe @
the angle between them is one. If the vectors are normalzkdue Euclidean
length one, then just check whether their dot-product haslate value one or
not. Test can be performed @(m) arithmetic operations.

Further normalization: make the first non-zero coordinfth® unit vectors
positive, by multiplying the vector by-1 if necessary. This provides a unique
representation of the vectors in projective space, and welosack for collinearity
by simply checking equality of individual components.

In a sense, we use a lexicographic ordering to check for #gudking a sorting
algorithm with this ordering determines collinearitydmn log n) arithmetic
operations.

A hash table can be used to reduce this to an expecte
O(mn) arithmetic operations.

3.13 A (random) dimensional reduction algorithm

A randomized approach could be faster for lange

If two vectors are collinear, so will be any projection of thectors onto a subset
of coordinates.

Pick at randonk different coordinates (numbers frohto m) and apply an
appropriate algorithm it dimensions. (It = 2 or 3, special techniques apply.)

When two vectors are collinear in theselimensions, apply to the algorithm
again in two other randomly selected coordinates.

It is only necessary to apply the algorithm to subsets ofaredinked by potential
collineartiy.

When such equivalence classes are sufficiently small, lesinaaining
coordinates.

4 Efficient Computation of co-planarity

One vector can be written as a linear combination of two atifer
and only if the three vectors (and the origin) are co-planar.

A simple approach to finding co-planar trios of vectors waglguire an amount
of computation cubic in the number of vectors.

For example, we could randomly select three coordinatesansider the
projection of all trios of vectors in these coordinates.rkdie matrix from the
three projected vectors and compute the determinant.dinon-zero, then the
vectors are linearly independent, so this trio of vectoeddnsot be considered
further.

Apply the algorithm recursively to the subset of vectors #ypear to be linearly
dependent in the coordinates currently chosen.

Algorithm is simple and attractive but
cost Is cubic In the number of vectors.

4.1 A (nearly) quadratic algorithm

The basic idea Is to determine the set of planes gener§te
by all pairs of vectors.

We assume that collinear pairs have been removed.

Then three vectors lie in a plane if and only if the planes oheat
the pairs are the same (co-planar).

Thus we have reduced the problem to a form similar to the efftci

collinearity algorithm.

Determining whether two planes are the same could be done in @
variety of ways.

33

4.2 Determining co-planarity of three vectors

Pick three random coordinates and project vectors onto.them

For each pair of vectors andb, represent the plane that they span by the norme
vector (which can be computed using the vector cross-ptaduc).

Finding equal planes equivalent to finding normals tha
are collinear.

Thus we have reduced to the collinearity problem#ofn + 1)
vectors. The cost of the algorithm will be nearly quadratithe
number of vectors.

As in the collinearity algorithm, we find equivalence claseévectors that are
co-planar in the three coordinates chosen. We apply theitdgorecursively to
the equivalence classes, but now the equivalence relaimore complicated.

4.3 Co-planarity equivalence relation

Suppose that, b, c andb, ¢, d are co-planar. Then all af, b, ¢, d are co-planar in
the three coordinates chosen. Thus we would apply the digotb the subset
a,b,c,d. Thatis, we see that we can define a precise equivalenceretahong
triples: two triples are equivalent if they have a pair in coom.

But now suppose that we find thatd, ¢ andc, d, e are co-planar in the chosen
three coordinates, but there are no other relations imgQlvib, d, e. Then we
could apply the algorithm separatelydob, c andc, d, e. However, this may not
be a big win computationally, sineas in both sets. That is, it may make sense
apply the algorithm instead to the seb, ¢, d, e. This means that we use a
different, weaker notion of equivalence: two triples araieglent if they have a
single entry in common.

There are obvious trade-offs between the two equivalerlagars. One is more
precise but may generate a larger number of smaller equnmlelasses. The
other is weaker and may generate a smaller number of largeradence classes.
The relative performance may depend on implementationisl@tad be strongly
data dependent.

4.4 Is quadratic optimal?

It is interesting to know how close to being optimal this aldon is. To know this
requires knowing just how many common planes there can besi@er a set of
vectors in three dimensions, for simplicity, in the pogtarthant ¢ > 0, y > 0,

z > 0). Now consider the projection of the vectors on the triangldefined by

r+y+z=M, x>0,y>0,2>0 (4.39)

whereM > 0 could be arbitrary, but we will take it to be sufficiently lartp
simplify our notation. Three such vectors lie in a plane tiyio the origin if and
only if the projections ontd@’ are collinear. We now construct a setopoints
with O(n?) common planes.

Let £ be a positive integer, and consider the points in the reciantattice
(4,5), i=1,...,2k j§=1,2,3 (4.40)

We see that for each point with= 0 we can associatelines going through three
points, and thus there are at leakt common planes. Figure 1 shows an exampj
with k& = 4 showing only four of the eight sets of four planes fot 1, 2, 3. 4.

4.5 Yes quadratic is optimal

Figure 1. Example of lattice with = 4. For each point on the lower line, there ar
exactly four planes. Only the planes for 1, 2, 3, 4 are shown.

Since the number of planes to be determined is quadrati@in th
number of initial vectors, a quadratic algorithm for detgmmg
them is the best we would expect in the worst case.

5 Evaluation of general multi-linear forms

Arbitrary multi-linear forms can appear in finite elemenlcedations, e.g., the
nonlinear forme(-, -, -) in Navier—Stokes:

(1, v, w) = /T 0 Vv(z) - wiz) do

d

/T > ui(JE+ ﬂfe)a—vk(Jﬁ + zo)wi (JE +) det(J) de

0L ;
3,k=1 J

(e, 8€m
(Z Uj(A)¢5/\(§)> o,

el

t(e,p)
Wy, p

Therefore

Lie Lie L\e, am
Z Z (Ay (M) o)) (P)Z Efl:j det(J)Nx 4. pom

Jk=1X,u,pel =

d
DIDITIEEED) ST

k=1 p,peL Jj=1 el

Nuppm = [6€) G 0u(€)0,(6) d6

85 ~
Nf,,u,pj : Z - det N)\,,Lb,p,ﬂ’ln —- Z ijNAa/*Lapam

m=1

_ 9m
Gy 1= a—%d et(J)

Matrix C;; = c(u, ¢;, ¢;) can be computed using assembly (s block diagonal;
let I; denote thel x d identity matrix)

d
. t(e,A\) are
Cb(e,u),b(e,p)+ =14 Z Z U Nk,u,p,j
1=1 A el

d
=1, Z émj <Z u;(e’A)NA,,u,p,m)

m,j=1 AeLl

e,u
=14 E : Yo d VA, p,m
m,\eL

for all » andp, where

Yok = Z Gy ™. (5.46)

Computation of” similar in form to (??), and similar optimization techniques
apply. Then theipdate ofC is done in the obvious way with ¢* where

m,\NeL

7))
-
O
7))
-
(D)
£
©
(D)
()]
| -
-
]
=
(7))
)
-
(D)
&
Q
(D)
| -
©
(D)
=
—
—
LO

six) for piecewise linears in threlengnsions

The tensorV (multiplied by ninety

represented as a matrix of four by three matrices.

311 10 0 0 0j0 0 0 03 1 1 1
O 0 00/3 11100 003111
O 0o 00j0OOOO3 1113111

1 3 1 10 0 0 00 0 0 0|2 3 1 1
O 0 00/1 31 100 001 3 11
O 0o 0 00 OO0 O|]1 3 1 111 3 11

11 3 1,0 0 0 00 O O 0|12 1 3 1
O 0 00/1 13 1,0 0 0 01 1 3 1

O 0o 0O 0j0O OOO11 3 111 31

111 30 00 00 O O Oj2 1 1 3

O 0o 00O0O/j1 121 300O0O01 113

O 0o 0O0j0OOOO1 11 31113

Intermediate vectors

We see now a new ingredient for computing the entrieE 6f' from the matrix
Ym.x- Definey,, = Zizl Ym.a fOorm = 1,23, and theny,, x = 2y, x + v, fOr
m=1,2,3and\ =1,2,3,4. Then

Y21 Y31 Y11+ Vo1 + %1\
Vo2 Y32 Y12 + Y22 + Y32
Y23 Y33 Y13 + Y23 + V33

Yoa Y34 Y14+ Y24+ %4)

However, note that the,,,’s are not computations that would have appeared
directly in the formulation oK but are intermediary terms that we have
defined for convenience and efficiency.

This requires 39 operations, instead of 384 operationgysi47).

Only 21 memory references are required to compytnd at most 48 memory
references are required to update

5.2 Algorithmic implications

The examples provide guidance for the general case.
The “vector” space of the evaluation problem (5.47) can bérarly in size.

In the case of the trilinear form in Navier-Stokes considahere, the dimension
IS the spatial dimension times the dimension of the apprakon (finite element)
space.

High-order finite elements would lead to very high-dimensigroblems.

We need to look for relationships among the “computatioeaters” in
high-dimensional spaces, e.g., up to several hundred innegtcases.

The lowest order case in three space dimensions requiresiaetgdimensional
space for the complexity analysis.

It will not be sufficient just to look for simple combinatiots determine optimal
algorithms. We need to think of this as an approximation (@b

Must look for vectors (matrices) which closely approximaseaof vectors that
we need to compute.

The vectors
Vv; =(1,1,1,1,0,0,0,0,0,0,0,0),
Vv, =(0,0,0,0,1,1,1,1,0,0,0,0),
V3 =(0,0,0,0,0,0,0,0,1,1,1,1)

are eacledit-distance onfrom four vectors we need to compute.

The guantitiesy,,, represent the computations (dot-product) vwih, .

The gquantitiesy,,, , are simple perturbations efwhich require only two
operations to evaluate. A simple rescaling can reducedlos¢ operation.

Edit-distance is a useful measuo=approximate the computational complexity
distance, since it provides an upper-bound on the numbesropatations it takes
to get from one vector to another. Thus we need to add thisdi/pptimization.

6 The FErari system

We have implemented a prototype system called FErari, fatd-i
Element Re-arrangement Algorithm to Reduce Instructions.

Vectors grouped according to whether they are
e zero (0),
equal (=),
colinear (|),
have only one nonzero entry (1e),
differ by edit distance one (ED1),
have only two nonzero entries (2e),

are a linear combination of two other vectors (LC2).

Table 2: FErari at work on Conforming Lagrange elements ia thimensions.
All of the vectors are accounted for by the algorithm. Kea9:is the order of
polynomials; Tot is the total number of vectors. The remanentries are the
number of vectors that are zero (0), equal (=), colinéari{ave only one nonzero
entry (1e), differ by edit distance one (ED1), have only tvamzero entries (2e),
are a linear combination of two other vectors (LC2). MAPs isipper bound on

floating point operations required.

O

Tot

0

le

ED1

2e

LC2

MAPS

9
36

0
11
41
98

|
0

4
38
16
35
ol
75

1

1
15
66

10
20
76

Non-conforming elements have fewer simple relations, but
coplanarity relations can still reduce computation sulisidy.

Table 3: FErari at work on Nonconforming Lagrange elemeamtsvd dimensions.
All of the vectors (Total) are accounted for by the algorithikey: O is the order
of polynomials; Tot is the total number of vectors. The ramrag entries are the
number of vectors that are zero (0), equal (=), colingari{ave only one nonzero
entry (1e), differ by edit distance one (ED1), have only tvamzero entries (2e),
are a linear combination of two other vectors (LC2). MAPs isipper bound on

floating point operations required.

O

Tot

0

le

ED1

2e

LC2

MAPSs

1
3
S

9
100
441

0
0
0

0
11

0

4
0
0

4
0
0

1
38

10
177
672

6.1 FErari search strategy

FErari searched through the vectors as follows. (The ojp@rabunts for FErari

to find the dependences or properties are given in parersthédee operation
counts that result from using the discovered property atediat the end, and are
counted as multiply-add pairs (MAPSs). FErari starts withehare list of(Total)
vectors and marks vectors in the list at thi state that have theth property:

1. zero vectors O(n)) — these entries ok are free
. vectors that arequal (O(nlog(n)) —these entries ok are free
. vectors that areolinear (O(nlog(n))) — costs one MAP each
. vectors that have onlyne nonzeroentry (O(n)) — one MAP each

. vectors that are edit distance one (ED1) from anotheovectits negation
(O(n?)) —one MAP each, plus maybe a (cheap) sign flip

. vectors that have onltyo nonzercentries (O(n)) — two MAPS each

. vectors that are linear combinations (LC2) of two othetees (O(n?)) — two
MAPSs each

6.1.1 FErari search strategy — continued

Note that the cheaper operations to perform and the onebdkiatthe biggest
payoff are done first.

FErari did not search here among alternate evaluation grdgoih rather it assigned
evaluation strategies to each vector iteratively folloydhe above scheme.

The examples are limited to two-dimensional cases for thesBo operator, for
simplicity. The data were generated with the Fiat systenw@&ler, FErari can be
applied to data supplied by any method.

The search for high-order geometric relations can be

expensive.
FErari needs efficient search strategies.

6.2 Review of where we are

Finite element structure allows automation of software
generation (e.g., variational form language).

Need to generate efficient code leads to re-examination it fin
element computation. Example: finite element matrix coraton.

Finite element matrix computation introduces new problermamputational
complexity.
e FErari automates the generation of code to compute finitaexieé matrices.

— Now we need to optimize FErari to carry out these optimizegio
efficiently.

/7 Higher-dimensional dependences

The algorithm described in secti@? can be generalized to higher-dimensional
dependences in an obvious way. The linearly dependenceiotéztors can be
viewed as the case when two three-dimensional subspacesated by two trios
of the vectors, coincide. If we take the normals to the tldeeensional subspaces
generated by each trio of vectors in four dimensions, thercttincidence of the
three-dimensional subspaces is reduced to checking eatliy of the normals.
This can be done by the algorithms described in se@idi hus finding linear
dependence of four vectors among a totah afectors can be done in nearly
O(n3) work.

In a similar way, we can determine linearly dependenc-efl vectors among a
total of n vectors in nearh®(n?) work.

8 Variable coefficients

We begin with a simple example, the weighted Laplacian:

a(v, w) ::/Qw(x)V’U(az) - Vw(x) dr (8.50)

Let V' be the space for the approximatian{ € V). What we really compute
with is the projection ofv onto the spacé of products of things irvVV (for the
Laplacian).

S provides equivalent “exact integration.” Smaller spaées S
may also yield a desired (maybe optimal) order of approxmnat

For linears, grad’ is just piecewise constants, so we can tédke be piecewise
constants. IV consists of piecewise polynomials of degkeehen we can také
to be piecewise polynomials of degreke — 2.

There is still the problem of determining the projection.odnto S. For now, we
will just assume that € S.

8.1 Evaluation of weighted bilinear forms
ae (v, w) ::/ w(x)Vo(zx) - Vw(x) dx
T,

/ J&”—I—:L’e J§—|—$66
T

) g 0 TE +) det(7) g

d

0€a,
:/Tw(J§+a:e) Z aij e <Z ”U,,(e,x)qb/\(f)) X

j,Oél,Oégzl el

0y, O
(filfj 3fa2 (Z Pele, u)¢u)det() 5

peL

(8.51)

Let us assume that € S can be expanded as

w|r. (JE + x¢) Zw 0. (& (8.52)

KES

= Z Z w/iUL(G,)\)wL(e’M>A27>‘HU’

KES \,ueL

Here, theslement stiffness matrix, A ¢, is given by

d

o 96, Ok, :
= 2 GeTEdal)) [o 50O 506 ds

7,01 ,02=1

E: Goq a9 /%Aa,u»Oél,OQ

a1 ,02— 1

0 0
AIQ,)\,/L,OQ,OCQ :/TO_% ¢/\(‘S) gb,u(f) df

afa 1 a‘fag

G¢ ;= det(J Z 0oy o,

arae Ox; Ox;

for \,u € Landa,ar =1,...,

8.2 Computation of Bilinear Form Matrices

The matrix associated with the bilinear fouf, -) can be computed by the
standard assembly algorithm, with the matrix update befrigeoform

AL(G A),e(e, u)"’ — Y Y W Gzl Qo /4; AL L, 01,0l (857)

ay,a2=1kKES

d Oéa; 9o
whereGe, ,, = det(J) > TSR

j:1 8:r:j aCEj

There are several approaches to take at this point.

8.2.1 Fulltensor approach

Using (8.57), the product tensar§ G, , ,, could be formed and processed via
FErari applied to the full tensof; x .., .«,- This requiresi?|£| multiplications
initially, and then FErari is used witl|* tensors in a space of dimensidf{L|.

8.2.2 Product structure approach: |

The expression (8.57) can be written

Aa(e A),e(e, ,u)"_ Zw KL)\,LL

KES

whereAy, , , was defined in (8.54):

/1>\,,UJ § : Goq 16 FG)\,,UJaOéhOéQ

a1 ,02— 1

FErari can optimize the computation of ead¢h, , but each such

A
term must be computed separately.
This requires FErari to be used with|° tensors in a space of dimensidh
followed by |£| multiplications in (8.58).

Using FErari with more vectors in a lower-dimensional spadiéely to be more
efficient that using FErari with fewer vectors in a highemédnsional space. And
the additional computation is reduced as well in the secqpdaach.

8.2.3 Product structure approach: Il

A third way to use FErari is to define the matrix update via

AL(E A),e(e, ,u)_l_ — Z Gal Qs)\ by O] 0029

aq,02— 1

where A%

N aq.a, al€ computed via FErari from the definition

)\,LLOﬁl oo ZweAm)\,u,al Qg (860)

KES

This requires FErari to be used wif|£|? tensors in a space of dimensipgl,
followed byd? MAPsin (8.58).

FErari can generate optimized code for all of these appesatdygether with an
estimate of computational complexity.

All three approaches provide different strategies to
generate code for finite element matrix definition.

8.2.4 Weighted Laplacian for cubics in 3-D

Comuting the matrix for the weighted Laplacian for cubic$iree dimensions:
n= number of vector dot products; is the dimension of the vector space.

Note thatmn = 25200 is the number of MAPSs required for
conventional tensor contraction in all cases.

Strategy | n | m | MST MAPs| additional| total MAPSs
Full tenson 21 14334 120 14454
G first |4200| 6 7021 4200 11221
w first 1260 20 7728 1260 8988

These are based only on certain tensor relations using a MmiBpanning Tree
(MST). Further reductions may acrue from using geometrities.

Note large size of computation and substantial reductions.

8.3 Evaluation of Bilinear Form Actions

The matrix action associated with the bilinear fasifn, -) can be computed by the
standard assembly algorithm as well. For example, theractie a(V, w) has a
vector update update that can be written in the following\edent forms:

e e
L(e >\)+ _ z : W GOél a9 "‘" >\>:U'70417a2w1/(67,u)

a1,02,R, W

:Zw ESWALATHN

E : Goq Qg >\,U041;Ol2 W, (e,p)

a1,62,U

E: e e
WGozlag Ky, Q1 ,Qe0

a1,02,K

whereAy | | ., =2, Axamar,aWi(e,w) Would be computed via FErari.

O FErari for matrix action

Quadratic Lagrange elements for scalar gradient form inbwo

Indicated are amounfser element(for matrix representation only). A typical
vector requires two words per element.

Method used to sSparse locall floating | total
compute form action | mem refs mem refs point ops| memory

Store Elem. Stiff. Mat. 54 0 72 36
FErari Elem. Stiff. Mat. 21 /8

8
guadrature/special 21 6 62
0

Global Stiff. Mat. 27 46 23

Conclusion: FErari is not compellingut very competitive.
FErari masks cost of computing local stiffness matrix.

10 Computing a matrix via quadrature

The computations in equations (3.32-3.33) can be computegLiadrature as

AL(@,A),L(@,,LL)+ — ngv@(f)) (Gevqb,u(g))

_wa Z ¢>\m) %,ngbu,n(g)

m,n=1

waqﬁkm ¢,u n(g)

where the coefficient&’, , ,, , are analogous to those defined in (8.52), but he
they are defined by quadrature:

(10.63)

(The coefficients are exactly those of (8.52) if the quadeaisiexact.)

The right strategy for computing a matrix via quadrature \dbus appear to be
to compute the coefficient&’, , ,,, ,, first using (9.63), and then proceeding as
before.

However, there is a different strategy associated with catace when we want
only to compute thaction of the linear operator associated with the matrix and
not the matrix itself.

11 Conclusions

Mathematical structure of finite elements supports
automation of software generation.

Determining optimal code generation requires
re-examination of finite element computations.

The determination of local element matrices involves a hove
problem in computational complexity.

We have demonstrated the potential speed-up availableswiple
low-order methodsncluding their use for matrix action.

TheFEr ari system was developed to carry out this
type of optimization automatically.

Computational mathematical modeling can become morebtelia
and efficient by using such tools (seeniCS.orgor more
iInformation).

