
1 Code generation example: matrix formation

Formation of matrices takes a substantial amount of time
in finite element computations.
Disadvantage of finite elements over finite differences.

But standard algorithm can be far from optimal.

We give a general formalism which can be automated and linked
with FIAT and FFC, called FErari

Finite Element ReArRangement of Integrals

Narrows the efficiency gap between finite elements and finite
differences.

Algorithms we present here can be used in “matrix free”
representations of finite element operations: substantialreductions
in memory requirements and memory traffic.

1

1.1 Long term goal

Provide guidance regarding the development of a form
compiler for finite element variational approximation.
The FEniCS Form Compiler (FFC) is a first step in this direction
and is already in production use.

Our examples provide an indication of some of the challengesof designing such a

compiler if it is intended to be reasonably efficient.

Critical step: to determine what code needs to be generated.

This is less obvious for higher level languages which have complex
operations as elementary units.

There areopportunities for optimization which would be difficult
to uncover automatically from a low-level representation.

They must be captured at high level.

2

1.2 Automation in computational mathematical modeling

The idea of automating such tasks not new in scientific computing.

Automatic differentiation tools produce efficient gradient, adjoint, and Hessian for

existing code, enabling optimal control calculations, extended system solvers, and

Newton-based nonlinear solvers.

Other tools that automate finite element computation:

• FreeFEM and Sundance provide type of variational form compiler and

automatic generation of matrices

• Similar tools were provided in the Analysa and Dolfin projects

• Also work in numerical linear algebra, etc.

3

2 Operators related to multilinear forms

Consider a variational problem to findu ∈ V such that

a(v, u) = F (v) ∀v ∈ V (2.1)

for a given (continuous, coercive) bilinear forma(·, ·). Corresponds to a linear

system of equations

AU = F ∀v ∈ V (2.2)

where

Aij := a(φi, φj) Fj := F (φj) u :=
∑

i∈I

Uiφi (2.3)

where, e.g.,{φi : i ∈ I} is the standard Lagrange nodal basis and whereI

denotes the index set for the nodes.

4

In many iterative methods, the actual matrixA is not needed explicity, rather all

that is required is some way to compute theaction of A, that is, the mapping that

sends a vectorV to the vectorAV . This operation can be defined purely in terms

of the bilinear form as follows. Suppose we write

v :=
∑

i∈I

Viφi (2.4)

Then for alli ∈ I

(AV)i =
∑

j∈I

AijVj =
∑

j∈I

a(φi, φj)Vj

=a(φi,
∑

j∈I

Vjφj) = a(φi, v)
(2.5)

The vectorAV can be computed by evaluatinga(φi, v) for all i ∈ I.

The standard matrix assembly algorithm can be used to compute the
action efficiently.

5

With (2.5) as motivation, we can introduce the notationa(V, v) where

a(V, v) := AV . (2.6)

Note that the notation “V” inserted in a slot in the variational form indicates

implicitly the range of the index variablei. Note that evaluatingYi := a(v, φi) for

all i ∈ I computes the vectorY = AtV . In the notation of (2.6), we have

AtV = a(v,V). Correspondingly, it is natural to definea(V,V) = A.

The action of a bilinear form can be used in several contexts.Perhaps the simplest

is when non-homogeneous boundary conditions are posed. Supposeg represents a

function defined on the whole domain which satisfies the correct boundary

conditions. A typical variational problem is to findu such thatu − g ∈ V and

a(v, u) = 0 ∀v ∈ V. (2.7)

6

This can be re-written using the differenceu0 := u − g ∈ V. The variational

problem becomes: Findu0 ∈ V such that

a(v, u0) = −a(v, g) ∀v ∈ V. (2.8)

In matrix form, we would write this as

AU0 = −a(V, g). (2.9)

This could be solved by a direct method (e.g., Gaussian elimination) with

−a(V, g) as the right-hand-side vector. However, we could equally well think of

(2.7) as

a(V, u0) = −a(V, g). (2.10)

which does not require the explicit evaluation of a matrix and could be solved by

an interative method.

7

2.1 The Action of Trilinear Forms

The nonlinear term in the Navier–Stokes provides an exampleof the action of a

general multi-linear form. Certain algorithms might involve a variational problem

to findu ∈ V such that

a(u,w) = c(v, ṽ,w) ∀w ∈ V (2.11)

for two differentv ∈ V andṽ ∈ V. Choosew = φi for a generic basis function

φi. Write as usualu :=
∑

i∈I Uiφi. By analogy with the definition (2.3), we set

Aij := a(φi, φj) ∀i, j ∈ I (2.12)

which, by a simple extension of our convention (2.6), can be written as

A = a(V,V). (2.13)

Then (2.11) can be written as

8

(
AtU

)
i
=
∑

j∈I

AjiUj

=
∑

j∈I

a(φj , φi)Uj

=a(
∑

j∈I

Ujφj , φi)

=a(u, φi)

=c(v, ṽ, φi) ∀i ∈ I.

(2.14)

In notation analogous to that of (2.6), we can write (2.14) as

a(u,V) = AtU = c(v, ṽ,V), (2.15)

where the latter term introduces notation for the action of atrilinear form.

9

2.2 Generating matrices from multilinear forms

With forms of two or more variables, there are other objects that can be generated

automatically in a way that is similar to what we can do to generate the action of a

form. For trivarariate forms, it is of interest to work with the matrix

Cij := c(v, φi, φj) ∀i, j ∈ I (2.16)

which we write in our shorthand as

C = c(v,V,V) (2.17)

For example, one might want to solve (foru, givenf) the equation

u + v · ∇u = f (2.18)

for a fixed, specifiedv ∈ V, using the variational form

(u,w)L2 + c(v,u,w) = (f ,w)L2 ∀w ∈ V (2.19)

10

Now write the variational equation

(u,w)L2 + c(v,u,w) = (f ,w)L2 ∀w ∈ V (2.20)

in component form:
∑

i∈I

Ui ((φi, φj)L2 + c(v, φi, φj)) = (f , φj)L2 ∀j ∈ I (2.21)

In operator notation, this becomes

U t ((V,V)L2 + c(v,V,V)) = F (2.22)

11

2.3 General tensors from Forms

Frequently the spaces in a form are not all the same, e.g.,

b(v, p) :=

∫
∇·v(x)p(x) dx (2.23)

The formb(·, ·) in (2.23) involves spaces of scalar functions (say,Π) as well as

vector functions (say,V). The matrixb(V, Π) is defined analogously to (2.12) and

(2.13):

(b(V, Π))ij := b(φi, qi) (2.24)

where{φi : i ∈ I} is a basis ofV as before, and{qi : i ∈ J } is a basis ofΠ.

Note thatb(V, Π) will not, in general, be a square matrix.

12

In general, if we have a forma(v1, . . . , vn) of n entries, then the expression

a
(
. . . ,V1, . . . ,Vk, . . .

)
(2.25)

defines a tensor of rankk. More precisely, each of then arguments in the form

a(v1, . . . , vn) may be a function space or a member of a function space.

For example,a
(
v1, v2,V1, v3,V2,V3, v4

)
denotes a tensor of rank 3, whereas

a
(
v1,V1, v2, v3,V2, v4, v5

)
denotes a tensor of rank 2.

Note that a tensor of rank zero is just a scalar, consistent with the usual

interpretation ofa(v1, . . . , vn).

A tensor of rank one is a vector, and a tensor of rank two is a matrix.

Tensors of rank three or higher are less common in computational linear algebra.

13

3 Matrix Evaluation by Assembly

Theassembly of integrated differential forms is done by summing its constituent

parts over eachelement, which are computed separately through the use of a

numbering scheme called thelocal-to-global index. This index,ι(e, λ), relates the

local (or element) node number,λ ∈ L, on a particular element, indexed bye, to

its position in the global data structure.

We may write a finite element functionf in the form
∑

e

∑

λ∈L

fι(e,λ)φ
e
λ (3.26)

wherefi denotes the “nodal value” of the finite element function at the i-th node

in the global numbering scheme and{φe
λ : λ ∈ L} denotes the set of basis

functions on the element domainTe.

14

The element basis functions,φe
λ, are extended by zero outsideTe.

Can relate “element” basis functionsφe
λ to fixed set of basis functions on

“reference” element,T , via mapping ofT to Te.

Could involve changing both the “x” values and the “φ” values in a coordinated way, as with the Piola

transform , or it could be one whose Jacobian is non-constant, as with tensor-product elements or

isoparametric elements.

For an affine mapping,ξ → Jξ + xe, of T to Te:

φe
λ(x) = φλ

(
J−1(x − xe)

)
.

The inverse mapping,x → ξ = J−1(x − xe) has as its Jacobian

J−1
mj =

∂ξm

∂xj

,

and this is the quantity which appears in the evaluation of the bilinear forms. Of

course,det J = 1/ detJ−1.

15

3.1 Evaluation of bilinear forms

The assembly algorithm utiizes the decomposition of a variational form as a sum

over “element” forms

a(v, w) =
∑

e

ae(v, w)

where “element” bilinear form for Laplace’s equation defined via

ae(v, w) :=

∫

Te

∇v(x) · ∇w(x) dx

=

∫

T

d∑

j=1

∂

∂xj

v(Jξ + xe)
∂

∂xj

w(Jξ + xe) det(J) dξ

(3.27)

by transofrming to the reference element.

Finite element matrices computed via assembly in a similar way.

The local element form is computed as follows.

16

3.2 Evaluation of bilinear forms—continued

ae(v, w) =

∫

T

d∑

j=1

∂

∂xj

v(Jξ + xe)
∂

∂xj

w(Jξ + xe) det(J) dξ

=

∫

T

d∑

j,m,m′=1

∂ξm

∂xj

∂

∂ξm

(
∑

λ∈L

vι(e,λ)φλ(ξ)

)
×

∂ξm′

∂xj

∂

∂ξm′



∑

µ∈L

wι(e,µ)φµ(ξ)


det(J) dξ

=




vι(e,1)

·

·

vι(e,|L|)




t

K
e




wι(e,1)

·

·

wι(e,|L|)




.

(3.28)

17

Here, theelement stiffness matrix, Ke, is given by

Ke
λ,µ :=

d∑

j,m,m′=1

∂ξm

∂xj

∂ξm′

∂xj

det(J)

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ

=

d∑

m,m′=1

Ge
m,m′Kλ,µ,m,m′

(3.29)

where

Kλ,µ,m,m′ =

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ (3.30)

and

Ge
m,m′ := det(J)

d∑

j=1

∂ξm

∂xj

∂ξm′

∂xj

(3.31)

for λ, µ ∈ L andm, m′ = 1, . . . , d.

18

3.3 Computation of Bilinear Form Matrices

The matrix associated with a bilinear form,

Aij := a(φi, φj) =
∑

e

ae(φi, φj) (3.32)

for all i, j, can be computed by assembly. First, set all the entries ofA to zero.

Then loop over all elementse and local element numbersλ andµ and compute

Aι(e,λ),ι(e,µ)+ =Ke
λ,µ =

∑

m,m′

Ge
m,m′Kλ,µ,m,m′ (3.33)

whereGe
m,m′ andKλ,µ,m,m′ are defined via

Ge
m,m′ = det(J)

d∑

j=1

∂ξm

∂xj

∂ξm′

∂xj

(3.34)

Kλ,µ,m,m′ =

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ (3.35)

19

3.4 Matrix computation strategy

Ge
m,m′ = det(J)

d∑

j=1

∂ξm

∂xj

∂ξm′

∂xj

Kλ,µ,m,m′ =

∫

T

∂

∂ξm

φλ(ξ)
∂

∂ξm′

φµ(ξ) dξ

We optimize the computation of each

K
e
λ,µ =

∑

m,m′

G
e
m,m′Kλ,µ,m,m′ (3.36)

This is a collection of dot products of fixed vectors (the tensorsK)
with a varying set of vectors (the “geometry” information encoded
in theG’s).

Pre-computations can be done, based on relations among
theK ’s, that reduce computational effort substantially.

20

3.5 TensorK for quadratics

zero entries,trivial entriesandrelated entries(−4K3,1 = K3,4 = K4,1)

3 0 0 -1 1 1 -4 -4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 3 1 1 0 0 4 0 -4 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

-4 0 0 0 -4 -4 8 4 0 -4 0 4

-4 0 0 0 0 0 4 8 -4 -8 4 0

0 0 0 4 0 0 0 -4 8 4 -8 -4

4 0 0 0 0 0 -4 -8 4 8 -4 0

0 0 0 -4 0 0 0 4 -8 -4 8 4

0 0 0 -4 -4 -4 4 0 -4 0 4 8

21

Thedetailed algorithmfor computingK for quadratics:6 ∗ Ke
=

0

B

B

B

B

B

B

B

B

B

@

3G11 −G12 γ11 γ0 4G12 0

−G21 3G22 γ22 0 4G21 γ1

γ11 γ22 3(γ11 + γ22) γ0 0 γ1

γ0 0 γ0 γ2 −γ3 − 8G22 γ3

4G21 4G12 0 −γ3 − 8G22 γ2 −γ3 − 8G11

0 γ1 γ1 γ3 −γ3 − 8G11 γ2

1

C

C

C

C

C

C

C

C

C

A

where theGij ’s are the inputs and the quantitiesγi are defined by

γ0 = − 4γ11,

γ1 = − 4γ22,

γ2 =4G1221 + 8G1122 = γ3 + 8γ12 = 8(G12 + γ12),

γ3 =4G1221 = 4γ21 = 8G12

(3.37)

where we use the notationGijkℓ := Gij + Gkℓ; finally theγij ’s are
0

@

γ11 = G11 + G12 = G1112 γ12 = G11 + G22 = G1122

γ21 = G12 + G21 = G1221 γ22 = G12 + G22 = G1222

1

A (3.38)

22

3.6 Symmetry properties

Let us distinguish different types of operations.

The above formulas involve (a) negation, (b) multiplication of integers and

floating-point numbers, and (c) additions of floating-pointnumbers.

Since the order of addition is arbitrary, we may assume that the operations (c) are

commutative (although changing the order of evaluation maychange the result).

Thus we haveG1222 = G2212 and so forth. The symmetry ofG implies that

G1112 = G1121 andG2122 = G1222.

The symmetry ofG implies thatKe is also symmetric, by inspection, as it must

be from the definition.

23

3.7 Algorithm details

The computation of the entries ofKe procedes as follows.

The computations in (3.38) are done first and require only four(c) operations, or

three (c) operations and one (b) operation (γ21 = 2G12).

Next, theγi’s are computed via (3.37), requiring four (b) operations andone (c)

operation.

Finally, the matrixKe is completed, via three (a) operations, seven (b) operations,

and three (c) operations.

This makes a total of three (a) operations, twelve (b) operations, and three (c)

operations.

Thus only eighteen operations are required to evaluateKe, compared with288

operations via the formula (3.36).

24

3.8 Optimality?

There may be other algorithms with the same amount of work (orless) since there

are many ways to decompose some of the sub-matrices in terms of others.

Finding (or proving) the absolute minimum may be difficult.

The metric for minimization should be run time, not some arbitrary way of

counting operations.

May need to identify sets of ways to evaluate finite element matrices. These could

then be tested on different systems (architectures plus compilers) to see which is

the best.

It takes fewer operations to computeKe than it does to write it down, so memory

traffic must be considered.

Just elimating multiplication by zero often reduces floating point operation cost

below memory cost.

25

3.9 ComputingK for quadratics

Taking advantage of these simplifications, eachKe for quadratics in
two dimensions can be computed with at most 18 floating point
operations instead of 288 floating point operations: animprovement
of a factor of sixteen in computational complexity.

On the other hand, there are only 64 nonzero entries in eachK. So
eliminating multiplications by zero gives a four fold improvement.

Sparse matrix accumulation requires at least 76 (=36+36+4)
memory references, not including sparse matrix indexing. Even if
the matrix is stored in symmetric form, at least 46 (=21+21+4)
memory references are needed.

Computational complexity can be

less than cost of memory references.

26

Table 1: The tensorK for cubics two dimensions on triangles, represented as a
matrix of two by two matrices. Common denominator is 160.

68 68 -14 0 0 -14 -6 -6 -6 -6 6 54 6 -108 -108 6 54 6 0 0
68 68 -14 0 0 -14 -6 -6 -6 -6 6 54 6 -108 -108 6 54 6 0 0
-14 -14 68 0 0 14 6 114 6 -48 -6 0 -6 0 54 48 -108 -114 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-14 -14 14 0 0 68 -48 6 114 6 -114 -108 48 54 0 -6 0 -6 0 0
-6 -6 6 0 0 -48 270 135 -54 135 54 27 54 27 0 27 0 -135 -324 -162
-6 -6 114 0 0 6 135 270 -27 -54 27 0 27 0 27 54 -135 -270 -162 0
-6 -6 6 0 0 114 -54 -27 270 135 -270 -135 54 27 0 27 0 27 0 -162
-6 -6 -48 0 0 6 135 -54 135 270 -135 0 27 0 27 54 27 54 -162 -324
6 6 -6 0 0 -114 54 27 -270 -135 270 135 -54 -27 0 -27 0 -27 0 162
54 54 0 0 0 -108 27 0 -135 0 135 270 -189 -216 -27 0 -27 0 162 0
6 6 -6 0 0 48 54 27 54 27 -54 -189 270 135 0 135 0 -27 -324 -162

-108 -108 0 0 0 54 27 0 27 0 -27 -216 135 270 135 0 -27 0 -162 0
-108 -108 54 0 0 0 0 27 0 27 0 -27 0 135 270 135 -216 -27 0 -162

6 6 48 0 0 -6 27 54 27 54 -27 0 135 0 135 270 -189 -54 -162 -324
54 54 -108 0 0 0 0 -135 0 27 0 -27 0 -27 -216 -189 270 135 0 162
6 6 -114 0 0 -6 -135 -270 27 54 -27 0 -27 0 -27 -54 135 270 162 0
0 0 0 0 0 0 -324 -162 0 -162 0 162 -324 -162 0 -162 0 162 648 324
0 0 0 0 0 0 -162 0 -162 -324 162 0 -162 0 -162 -324 162 0 324 648

26-1

3.10 Linears in three dimensions

The tensorKi,j,m,n for the case of linears in three dimensions is
presented in the following table:

4K =

1 0 0 0 1 0 0 0 1 -1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 -1 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 -1 -1 -1

-1 0 0 0 -1 0 0 0 -1 1 1 1

-1 0 0 0 -1 0 0 0 -1 1 1 1

-1 0 0 0 -1 0 0 0 -1 1 1 1

27

3.11 Algorithm for linears in three-D

EachKe can be computed by computing the three row sums ofGe, the three

column sums, and the sum of one of these sums.

We also have to negate all of the column and row sums, leading to a total of20

floating point operations instead of 288floating point operations using the

straightforward definition, an improvement of a factor of nearly fifteen in

computational complexity.

On the other hand, there are only 36 non-zero elements inK, and all of these are

±1.

At most 57 (=16+16+16+9) memory references are needed to do ageneral sparse

matrix update for each element.

Using symmetry ofGe (row sums equal column sums) we can reduce the

computation to only 10 floating point operations, leading toa improvement of

nearly 29. For a sparse matrix update, at most 39 (=10+10+10+9) memory

references are needed.

28

Using FErari and tensor reduction (FFC): low order elementsin 2D.

29

3.12 Collinearity tests

Two vectors inIRm are collinear if and only if the absolute value of the cosine of

the angle between them is one. If the vectors are normalized to have Euclidean

length one, then just check whether their dot-product has absolute value one or

not. Test can be performed inO(m) arithmetic operations.

Further normalization: make the first non-zero coordinate of the unit vectors

positive, by multiplying the vector by−1 if necessary. This provides a unique

representation of the vectors in projective space, and we can check for collinearity

by simply checking equality of individual components.

In a sense, we use a lexicographic ordering to check for equality. Using a sorting

algorithm with this ordering determines collinearity inO(mn log n) arithmetic

operations.

A hash table can be used to reduce this to an expected
O(mn) arithmetic operations.

30

3.13 A (random) dimensional reduction algorithm

A randomized approach could be faster for largem.
If two vectors are collinear, so will be any projection of thevectors onto a subset

of coordinates.

Pick at randomk different coordinates (numbers from1 to m) and apply an

appropriate algorithm ink dimensions. (Ifk = 2 or 3, special techniques apply.)

When two vectors are collinear in thesek dimensions, apply to the algorithm

again in two other randomly selected coordinates.

It is only necessary to apply the algorithm to subsets of vectors linked by potential

collineartiy.

When such equivalence classes are sufficiently small, test all remaining

coordinates.

31

4 Efficient Computation of co-planarity

One vector can be written as a linear combination of two others if
and only if the three vectors (and the origin) are co-planar.

A simple approach to finding co-planar trios of vectors wouldrequire an amount

of computation cubic in the number of vectors.

For example, we could randomly select three coordinates andconsider the

projection of all trios of vectors in these coordinates. Form the matrix from the

three projected vectors and compute the determinant. If it is non-zero, then the

vectors are linearly independent, so this trio of vectors need not be considered

further.

Apply the algorithm recursively to the subset of vectors that appear to be linearly

dependent in the coordinates currently chosen.

Algorithm is simple and attractive but

cost is cubic in the number of vectors.

32

4.1 A (nearly) quadratic algorithm

The basic idea is to determine the set of planes generated
by all pairs of vectors.

We assume that collinear pairs have been removed.

Then three vectors lie in a plane if and only if the planes of each of
the pairs are the same (co-planar).

Thus we have reduced the problem to a form similar to the efficient
collinearity algorithm.

Determining whether two planes are the same could be done in a
variety of ways.

33

4.2 Determining co-planarity of three vectors

Pick three random coordinates and project vectors onto them.

For each pair of vectorsa andb, represent the plane that they span by the normal

vector (which can be computed using the vector cross-product a × b).

Finding equal planes equivalent to finding normals that
are collinear.
Thus we have reduced to the collinearity problem for1

2
n(n + 1)

vectors. The cost of the algorithm will be nearly quadratic in the
number of vectors.

As in the collinearity algorithm, we find equivalence classes of vectors that are

co-planar in the three coordinates chosen. We apply the algorithm recursively to

the equivalence classes, but now the equivalence relation is more complicated.

34

4.3 Co-planarity equivalence relation

Suppose thata, b, c andb, c, d are co-planar. Then all ofa, b, c, d are co-planar in
the three coordinates chosen. Thus we would apply the algorithm to the subset
a, b, c, d. That is, we see that we can define a precise equivalence relation among
triples: two triples are equivalent if they have a pair in common.

But now suppose that we find thata, b, c andc, d, e are co-planar in the chosen
three coordinates, but there are no other relations involvinga, b, d, e. Then we
could apply the algorithm separately toa, b, c andc, d, e. However, this may not
be a big win computationally, sincec is in both sets. That is, it may make sense to
apply the algorithm instead to the seta, b, c, d, e. This means that we use a
different, weaker notion of equivalence: two triples are equivalent if they have a
single entry in common.

There are obvious trade-offs between the two equivalence relations. One is more
precise but may generate a larger number of smaller equivalence classes. The
other is weaker and may generate a smaller number of larger equivalence classes.
The relative performance may depend on implementation details and be strongly
data dependent.

35

4.4 Is quadratic optimal?

It is interesting to know how close to being optimal this algorithm is. To know this
requires knowing just how many common planes there can be. Consider a set of
vectors in three dimensions, for simplicity, in the positive orthant (x ≥ 0, y ≥ 0,
z ≥ 0). Now consider the projection of the vectors on the triangleT defined by

x + y + z = M, x ≥ 0, y ≥ 0, z ≥ 0 (4.39)

whereM > 0 could be arbitrary, but we will take it to be sufficiently large to
simplify our notation. Three such vectors lie in a plane through the origin if and
only if the projections ontoT are collinear. We now construct a set ofn points
with O(n2) common planes.

Let k be a positive integer, and consider the points in the rectangular lattice

(i, j), i = 1, . . . , 2k, j = 1, 2, 3 (4.40)

We see that for each point withj = 0 we can associatek lines going through three
points, and thus there are at least2k2 common planes. Figure 1 shows an example
with k = 4 showing only four of the eight sets of four planes fori = 1, 2, 3, 4.

36

4.5 Yes quadratic is optimal

Figure 1: Example of lattice withk = 4. For each point on the lower line, there are

exactly four planes. Only the planes fori = 1, 2, 3, 4 are shown.

Since the number of planes to be determined is quadratic in the
number of initial vectors, a quadratic algorithm for determining
them is the best we would expect in the worst case.

37

5 Evaluation of general multi-linear forms

Arbitrary multi-linear forms can appear in finite element calculations, e.g., the
nonlinear formc(·, ·, ·) in Navier–Stokes:

ce(u,v,w) :=

∫

Te

u · ∇v(x) · w(x) dx

=

∫

Te

d∑

j,k=1

uj(x)
∂

∂xj

vk(x)wk(x) dx

=

∫

T

d∑

j,k=1

uj(Jξ + xe)
∂

∂xj

vk(Jξ + xe)wk(Jξ + xe) det(J) dξ

=

∫

T

d∑

j,k,m=1

(
∑

λ∈L

u
ι(e,λ)
j φλ(ξ)

)
∂ξm

∂xj



∑

µ∈L

v
ι(e,µ)
k

∂

∂ξm

φµ(ξ)


×



∑

ρ∈L

w
ι(e,ρ)
k φρ(ξ)


det(J) dξ

(5.41)

38

Therefore

ce(u,v,w) =
d∑

j,k=1

∑

λ,µ,ρ∈L

u
ι(e,λ)
j v

ι(e,µ)
k w

ι(e,ρ)
k

d∑

m=1

∂ξm

∂xj

det(J)Nλ,µ,ρ,m

=

d∑

k=1

∑

µ,ρ∈L

v
ι(e,µ)
k w

ι(e,ρ)
k

d∑

j=1

∑

λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

(5.42)

where

Nλ,µ,ρ,m :=

∫

T

φλ(ξ)
∂

∂ξm

φµ(ξ)φρ(ξ) dξ (5.43)

Ne
λ,µ,ρ,j :=

d∑

m=1

∂ξm

∂xj

det(J)Nλ,µ,ρ,m. =:

d∑

m=1

G̃mjNλ,µ,ρ,m. (5.44)

G̃mj :=
∂ξm

∂xj

det(J)

.

39

Matrix Cij = c(u, φi, φj) can be computed using assembly (C is block diagonal;
let Id denote thed × d identity matrix)

Cι(e,µ),ι(e,ρ)+ =Id

d∑

j=1

∑

λ∈L

u
ι(e,λ)
j Ne

λ,µ,ρ,j

=Id

d∑

m,j=1

G̃mj

(
∑

λ∈L

u
ι(e,λ)
j Nλ,µ,ρ,m

)

=Id

∑

m,λ∈L

γe,u
mλNλ,µ,ρ,m

(5.45)

for all µ andρ, where

γe,u
mλ =

d∑

j=1

G̃mju
ι(e,λ)
j . (5.46)

Computation ofC similar in form to (??), and similar optimization techniques
apply. Then theupdate ofC is done in the obvious way withKe,u where

Ke,u
µ,ρ =

∑

m,λ∈L

γe,u
mλNλ,µ,ρ,m (5.47)

40

5.1 Linear elements in three dimensions

The tensorN (multiplied by ninety-six) for piecewise linears in three dimensions

represented as a matrix of four by three matrices.

3 1 1 1 0 0 0 0 0 0 0 0 3 1 1 1

0 0 0 0 3 1 1 1 0 0 0 0 3 1 1 1

0 0 0 0 0 0 0 0 3 1 1 1 3 1 1 1

1 3 1 1 0 0 0 0 0 0 0 0 1 3 1 1

0 0 0 0 1 3 1 1 0 0 0 0 1 3 1 1

0 0 0 0 0 0 0 0 1 3 1 1 1 3 1 1

1 1 3 1 0 0 0 0 0 0 0 0 1 1 3 1

0 0 0 0 1 1 3 1 0 0 0 0 1 1 3 1

0 0 0 0 0 0 0 0 1 1 3 1 1 1 3 1

1 1 1 3 0 0 0 0 0 0 0 0 1 1 1 3

0 0 0 0 1 1 1 3 0 0 0 0 1 1 1 3

0 0 0 0 0 0 0 0 1 1 1 3 1 1 1 3

41

Intermediate vectors

We see now a new ingredient for computing the entries ofKe,u from the matrix

γm,λ. Defineγm =
∑4

λ=1 γm,λ for m = 1, 2, 3, and theñγm,λ = 2γm,λ + γm for

m = 1, 2, 3 andλ = 1, 2, 3, 4. Then

Ke,u =




γ̃11 γ̃21 γ̃31 γ̃11 + γ̃21 + γ̃31

γ̃12 γ̃22 γ̃32 γ̃12 + γ̃22 + γ̃32

γ̃13 γ̃23 γ̃33 γ̃13 + γ̃23 + γ̃33

γ̃14 γ̃24 γ̃34 γ̃14 + γ̃24 + γ̃34




(5.48)

However, note that theγm’s are not computations that would have appeared

directly in the formulation ofKe,u but are intermediary terms that we have

defined for convenience and efficiency.

This requires 39 operations, instead of 384 operations using (5.47).

Only 21 memory references are required to computeγ, and at most 48 memory

references are required to updateC.

42

5.2 Algorithmic implications

The examples provide guidance for the general case.

The “vector” space of the evaluation problem (5.47) can be arbitrary in size.

In the case of the trilinear form in Navier-Stokes considered there, the dimension

is the spatial dimension times the dimension of the approximation (finite element)

space.

High-order finite elements would lead to very high-dimensional problems.

We need to look for relationships among the “computational vectors” in

high-dimensional spaces, e.g., up to several hundred in extreme cases.

The lowest order case in three space dimensions requires a twelve-dimensional

space for the complexity analysis.

43

It will not be sufficient just to look for simple combinationsto determine optimal

algorithms. We need to think of this as an approximation problem.

Must look for vectors (matrices) which closely approximate aset of vectors that

we need to compute.

The vectors

V1 =(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

V2 =(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

V3 =(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

(5.49)

are eachedit-distance onefrom four vectors we need to compute.

The quantitiesγm represent the computations (dot-product) withVm.

The quantities̃γmλ are simple perturbations ofγ which require only two

operations to evaluate. A simple rescaling can reduce this to one operation.

Edit-distance is a useful measureto approximate the computational complexity

distance, since it provides an upper-bound on the number of computations it takes

to get from one vector to another. Thus we need to add this typeof optimization.

44

6 The FErari system

We have implemented a prototype system called FErari, for Finite
Element Re-arrangement Algorithm to Reduce Instructions.

Vectors grouped according to whether they are

• zero (0),

• equal (=),

• colinear (‖),

• have only one nonzero entry (1e),

• differ by edit distance one (ED1),

• have only two nonzero entries (2e),

• are a linear combination of two other vectors (LC2).

45

Table 2: FErari at work on Conforming Lagrange elements in two dimensions.

All of the vectors are accounted for by the algorithm. Key:O is the order of

polynomials; Tot is the total number of vectors. The remaining entries are the

number of vectors that are zero (0), equal (=), colinear (‖), have only one nonzero

entry (1e), differ by edit distance one (ED1), have only two nonzero entries (2e),

are a linear combination of two other vectors (LC2). MAPs is anupper bound on

floating point operations required.

O Tot 0 = ‖ 1e ED1 2e LC2 MAPs

1 9 0 0 0 4 4 0 1 10

2 36 6 11 6 4 8 0 1 20

3 100 6 41 10 4 16 8 15 76

4 225 0 98 6 4 35 16 66 209

5 441 0 183 15 4 51 28 160 446

6 784 0 342 21 4 75 32 310 784

46

Non-conforming elements have fewer simple relations, but
coplanarity relations can still reduce computation substantially.

Table 3: FErari at work on Nonconforming Lagrange elements in two dimensions.

All of the vectors (Total) are accounted for by the algorithm. Key: O is the order

of polynomials; Tot is the total number of vectors. The remaining entries are the

number of vectors that are zero (0), equal (=), colinear (‖), have only one nonzero

entry (1e), differ by edit distance one (ED1), have only two nonzero entries (2e),

are a linear combination of two other vectors (LC2). MAPs is anupper bound on

floating point operations required.

O Tot 0 = ‖ 1e ED1 2e LC2 MAPs

1 9 0 0 0 4 4 0 1 10

3 100 0 11 1 0 0 0 88 177

5 441 0 105 0 0 0 0 336 672

47

6.1 FErari search strategy

FErari searched through the vectors as follows. (The operation counts for FErari
to find the dependences or properties are given in parentheses.) The operation
counts that result from using the discovered property are listed at the end, and are
counted as multiply-add pairs (MAPs). FErari starts with theentire list of(Total)

vectors and marks vectors in the list at thei-th state that have thei-th property:

1. zero vectors (O(n)) – these entries ofK are free

2. vectors that areequal (O(n log(n)) – these entries ofK are free

3. vectors that arecolinear (O(n log(n))) – costs one MAP each

4. vectors that have onlyone nonzeroentry (O(n)) – one MAP each

5. vectors that are edit distance one (ED1) from another vector or its negation
(O(n2)) – one MAP each, plus maybe a (cheap) sign flip

6. vectors that have onlytwo nonzeroentries (O(n)) – two MAPs each

7. vectors that are linear combinations (LC2) of two other vectors (O(n2)) – two
MAPs each

48

6.1.1 FErari search strategy — continued

Note that the cheaper operations to perform and the ones thathave the biggest

payoff are done first.

FErari did not search here among alternate evaluation graphs, but rather it assigned

evaluation strategies to each vector iteratively following the above scheme.

The examples are limited to two-dimensional cases for the Poisson operator, for

simplicity. The data were generated with the Fiat system. However, FErari can be

applied to data supplied by any method.

The search for high-order geometric relations can be

expensive.
FErari needs efficient search strategies.

49

6.2 Review of where we are

Finite element structure allows automation of software
generation (e.g., variational form language).
Need to generate efficient code leads to re-examination of finite
element computation. Example: finite element matrix computation.

Finite element matrix computation introduces new problem in computational

complexity.

• FErari automates the generation of code to compute finite element matrices.

– Now we need to optimize FErari to carry out these optimizations

efficiently.

50

7 Higher-dimensional dependences

The algorithm described in section??can be generalized to higher-dimensional

dependences in an obvious way. The linearly dependence of four vectors can be

viewed as the case when two three-dimensional subspaces, generated by two trios

of the vectors, coincide. If we take the normals to the three-dimensional subspaces

generated by each trio of vectors in four dimensions, then the coincidence of the

three-dimensional subspaces is reduced to checking collinearity of the normals.

This can be done by the algorithms described in section??. Thus finding linear

dependence of four vectors among a total ofn vectors can be done in nearly

O(n3) work.

In a similar way, we can determine linearly dependence ofd + 1 vectors among a

total ofn vectors in nearlyO(nd) work.

51

8 Variable coefficients

We begin with a simple example, the weighted Laplacian:

a(v, w) :=

∫

Ω

ω(x)∇v(x) · ∇w(x) dx (8.50)

Let V be the space for the approximation (v, w ∈ V). What we really compute

with is the projection ofω onto the spaceS of products of things in∇V (for the

Laplacian).

S provides equivalent “exact integration.” Smaller spacesS̃ ⊂ S

may also yield a desired (maybe optimal) order of approximation.

For linears, gradV is just piecewise constants, so we can takeS to be piecewise

constants. IfV consists of piecewise polynomials of degreek, then we can takeS

to be piecewise polynomials of degree2k − 2.

There is still the problem of determining the projection ofω ontoS. For now, we

will just assume thatω ∈ S.

52

8.1 Evaluation of weighted bilinear forms

ae(v, w) :=

∫

Te

ω(x)∇v(x) · ∇w(x) dx

=

∫

T

ω(Jξ + xe)

d∑

j=1

∂

∂xj

v(Jξ + xe)
∂

∂xj

w(Jξ + xe) det(J) dξ

=

∫

T

ω(Jξ + xe)

d∑

j,α1,α2=1

∂ξα1

∂xj

∂

∂ξα1

(
∑

λ∈L

vι(e,λ)φλ(ξ)

)
×

∂ξα2

∂xj

∂

∂ξα2



∑

µ∈L

wι(e,µ)φµ(ξ)


det(J) dξ

(8.51)

Let us assume thatω ∈ S can be expanded as

ω|Te
(Jξ + xe) =

∑

κ∈S

ωe
κσκ(ξ). (8.52)

53

Then

ae(v, w) =
∑

κ∈S

∑

λ,µ∈L

ωe
κvι(e,λ)wι(e,µ)A

e
κ,λ,µ (8.53)

Here, theelement stiffness matrix, Ae, is given by

Ae
κ,λ,µ :=

d∑

j,α1,α2=1

∂ξα1

∂xj

∂ξα2

∂xj

det(J)

∫

T

σκ

∂

∂ξα1

φλ(ξ)
∂

∂ξα2

φµ(ξ) dξ

=
d∑

α1,α2=1

Ge
α1,α2

Aκ,λ,µ,α1,α2

(8.54)

where

Aκ,λ,µ,α1,α2
=

∫

T

σκ

∂

∂ξα1

φλ(ξ)
∂

∂ξα2

φµ(ξ) dξ (8.55)

and

Ge
α1,α2

:= det(J)

d∑

j=1

∂ξα1

∂xj

∂ξα2

∂xj

(8.56)

for λ, µ ∈ L andα1, α2 = 1, . . . , d.

54

8.2 Computation of Bilinear Form Matrices

The matrix associated with the bilinear forma(·, ·) can be computed by the

standard assembly algorithm, with the matrix update being of the form

Aι(e,λ),ι(e,µ)+ =

d∑

α1,α2=1

∑

κ∈S

ωe
κGe

α1,α2
Aκ,λ,µ,α1,α2

(8.57)

whereGe
α1,α2

= det(J)
∑d

j=1
∂ξα1

∂xj

∂ξα2

∂xj
.

There are several approaches to take at this point.

8.2.1 Full tensor approach

Using (8.57), the product tensorsωe
κGe

α1,α2
could be formed and processed via

FErari applied to the full tensorAκ,λ,µ,α1,α2
. This requiresd2|L| multiplications

initially, and then FErari is used with|L|2 tensors in a space of dimensiond2|L|.

55

8.2.2 Product structure approach: I

The expression (8.57) can be written

Aι(e,λ),ι(e,µ)+ =
∑

κ∈S

ωe
κAe

κ,λ,µ (8.58)

whereAe
κ,λ,µ was defined in (8.54):

Ae
κ,λ,µ =

d∑

α1,α2=1

Ge
α1,α2

Aκ,λ,µ,α1,α2

FErari can optimize the computation of eachAe
κ,λ,µ, but each such

term must be computed separately.

This requires FErari to be used with|L|3 tensors in a space of dimensiond2,

followed by|L| multiplications in (8.58).

Using FErari with more vectors in a lower-dimensional spaceis likely to be more

efficient that using FErari with fewer vectors in a higher-dimensional space. And

the additional computation is reduced as well in the second approach.

56

8.2.3 Product structure approach: II

A third way to use FErari is to define the matrix update via

Aι(e,λ),ι(e,µ)+ =
d∑

α1,α2=1

Ge
α1,α2

Aω
λ,µ,α1,α2

, (8.59)

whereAω
λ,µ,α1,α2

are computed via FErari from the definition

Aω
λ,µ,α1,α2

=
∑

κ∈S

ωe
κAκ,λ,µ,α1,α2

. (8.60)

This requires FErari to be used withd2|L|2 tensors in a space of dimension|L|,

followed byd2 MAPS in (8.58).

FErari can generate optimized code for all of these approaches together with an

estimate of computational complexity.

All three approaches provide different strategies to
generate code for finite element matrix definition.

57

8.2.4 Weighted Laplacian for cubics in 3-D

Comuting the matrix for the weighted Laplacian for cubics inthree dimensions:

n= number of vector dot products,m is the dimension of the vector space.

Note thatmn = 25200 is the number of MAPs required for
conventional tensor contraction in all cases.

Strategy n m MST MAPs additional total MAPs

Full tensor 21 120 14334 120 14454

G first 4200 6 7021 4200 11221

ω first 1260 20 7728 1260 8988

These are based only on certain tensor relations using a Minimum Spanning Tree

(MST). Further reductions may acrue from using geometric relations.

Note large size of computation and substantial reductions.

58

8.3 Evaluation of Bilinear Form Actions

The matrix action associated with the bilinear forma(·, ·) can be computed by the

standard assembly algorithm as well. For example, the action v = a(V, w) has a

vector update update that can be written in the following equivalent forms:

vι(e,λ)+ =
∑

α1,α2,κ,µ

ωe
κGe

α1,α2
Aκ,λ,µ,α1,α2

wι(e,µ)

=
∑

κ,µ

ωe
κAe

κ,λ,µwι(e,µ)

=
∑

α1,α2,µ

Ge
α1,α2

Aω
λ,µ,α1,α2

wι(e,µ)

=
∑

α1,α2,κ

ωe
κGe

α1,α2
Aw

κ,λ,α1,α2

(8.61)

whereAw
κ,λ,α1,α2

=
∑

µ Aκ,λ,µ,α1,α2
wι(e,µ) would be computed via FErari.

59

9 FErari for matrix action

Quadratic Lagrange elements for scalar gradient form in two-D.

Indicated are amountsper element(for matrix representation only). A typical

vector requires two words per element.

Method used to sparse local floating total

compute form action mem refs mem refs point ops memory

Store Elem. Stiff. Mat. 54 0 72 36

FErari Elem. Stiff. Mat. 21 8 78 3

quadrature/special 21 6 62 3

Global Stiff. Mat. 27 0 46 23

Conclusion: FErari is not compelling,but very competitive.

FErari masks cost of computing local stiffness matrix.

60

10 Computing a matrix via quadrature

The computations in equations (3.32–3.33) can be computed viaquadrature as

Aι(e,λ),ι(e,µ)+ =
∑

ξ∈Ξ

ωξ∇φλ(ξ) · (Ge∇φµ(ξ))

=
∑

ξ∈Ξ

ωξ

d∑

m,n=1

φλ,m(ξ)Ge
m,nφµ,n(ξ)

=

d∑

m,n=1

Ge
m,n

∑

ξ∈Ξ

ωξφλ,m(ξ)φµ,n(ξ)

=

d∑

m,n=1

Ge
m,nKλ,µ,m,n

(10.62)

61

where the coefficientsKλ,µ,m,n are analogous to those defined in (8.52), but here

they are defined by quadrature:

Kλ,µ,m,n =
∑

ξ∈Ξ

ωξφλ,m(ξ)φµ,n(ξ) (10.63)

(The coefficients are exactly those of (8.52) if the quadrature is exact.)

The right strategy for computing a matrix via quadrature would thus appear to be

to compute the coefficientsKλ,µ,m,n first using (9.63), and then proceeding as

before.

However, there is a different strategy associated with quadrature when we want

only to compute theaction of the linear operator associated with the matrix and

not the matrix itself.

62

11 Conclusions

Mathematical structure of finite elements supports
automation of software generation.
Determining optimal code generation requires
re-examination of finite element computations.

The determination of local element matrices involves a novel
problem in computational complexity.

We have demonstrated the potential speed-up available withsimple
low-order methods,including their use for matrix action.

TheFErari system was developed to carry out this
type of optimization automatically.
Computational mathematical modeling can become more reliable
and efficient by using such tools (seeFEniCS.orgfor more
information).

63

