Automated Scientific Computing

CMSC 34900 Topics in Scientific Computing
L. Ridgway Scotti dg@ichi cago. edu)

The course will involve reading papers in the field and makilags
presentations.

The presentations will involve both papers of others and als
on-going research that is not yet published.

Some of the class work will cover research done in the FEnICS
project and the Spiral Project.

New paradigms for software
development

Hierarchical code development
Improves upon standard two level model: language+compiler

Allows appropriate optimizations to be done at differentls
Improves code correctness and decreases cost of code pi@aezld

Automation of code production
Utilizes abstract descriptions as basis to generate caoenatically
Leverages intrinsic domain languages

Improves code correctness and decreases cost of code piaezid
Allows true optimization of generated code

Hierarchy of problem representation

—NModel description [application domain]

—Algorithm discovery

'mathematical description]

—Algorithm implementation [programming language]

—Executable code

Automation can be

'machine code: paralle

nerformed at each leve

. multicore

Interaction between levels can be tested to optimize

performance

Example of hierarchy: signal
processing (Spiral project)

—NModel description [Discrete Fourier Transform: DF

—A
—A

gorit
gorit

nm discovery [Cooley-Tukey FFT]

nm Implementation |

—EXxecutable code [BLAS, A]

SFTW]

"LAS, OSKI]

Automation can be performed at each level: can deri
FFT from abstract definition of DFT

No need to hand-code for specific architectures

Paradigm limitations?

Must have hierarchical structure

But what doesn’t?

Common in computer architecture, compiler design, sdienti
computing, etc.

Automatic generation requires abstract model

In principle, this can be developed in any area, e.qg., ojpgyat
systems

Found in VLSI design, compiler design [3, 2], scientific carhpg
8, 7, 5, 4], etc.

Why focus on scientific computation”

Has built-in hierarchical structure
Models often built from simpler models

Laplace = Stokes=— Navier-Stokes— Grade-2 fluids

Has bullt-in abstract descriptions

Equations are the language of science and engineering

E = mc?

F =ma

—vAu+curllu—aAu)xu+Vp="~f

The software challenge

(Correct) interpretation of problem discription

Have to translate from a high-level description to low-leve

executable, correctly!
Optimization of generated code

Have to solve disparate optimization problems at compihetor in

conjunction with run-time indicators

Tension between expressiveness and efficiency

|deally the naive user could code in a high-level speciforati
language and have it translated into efficient machine code.

Problem with single-language approach

Scheme| ML '

EXPRESIVENESS

C

Fortran

EFFICIENCY

Figure 1: The conflict between efficiency and expressivejMsBragichescul.

Causes of efficiency—expressiveness
conflict

Compilers perform transformations, not optimization.

Optimization at compile time, even if based on realistid@enance
models, would be wildly expensivé\(PV 1)

True optimization would have to involve evaluating
performance.

Actual performance is often data dependent.

Best transformations are often domain dependent.

What Is missing currently

Current language support for hierarchical abstraction

e You candefinewhat you want

e But you can’t specifynow to compile it
Compiler optimizations cannot be chosen to fit the
application.

Must live with what the compiler writer gives you.

Interpretation of multiple abstraction levels may also bstly.

10

One solution: multi-lingual

Scheme| ML R
N
U) N
D) A N
L N
Z N
LLI N
% > o Analysa
1] ~ o approach
Y
o
>
LU

Fortran

EFFICIENCY

Figure 2: One way to combine efficiency and expressivendss [1

11

Limits to linking multiple languages

(Experience gained from the development of Analysa.)

Lacks formal description, requires development (and neaigce)
of ad hoc interface.

Different memory models (allocation, garbage collectica)
Interact adversely at run time.

Increases the burden of code maintenance (must track meultip
standards, together with interactions between them).

But it does mollify the tension between expressiveness and
efficiency.

12

Similar challenges

from which we can learn

Same as problems in language/compiler design
Need to perform optimization and code generation

Often need to utilize these in an application-specific wayirgd).

Hierarchical issues addressed in programming langu

Manticore project for parallel computation

Algegra of code optimizations
Common to use Lambda Calculus or algebra of real numbers

Finite elements introduces optimization in vector spaces

13

Course objectives

Read papers in the field (each person to make a
presentation in class)

Perform a project involving automation, make a
presentation to the class, and write-up a report

Develop an annotated bibliography: each person invi
to contribute

14

Annotated bibliography

Want short description of each paper, together with sonteo$@rganization into
similar areas.

1 Efficiency—expressiveness trade-off

Analysa [1] combined efficiency and expressiveness by usigctional
programming language (AlScheme) as a scripting languagewiinked with C,
C++ and Fortran code for efficiency.

2 Compilers

Automatic generation of code has been performed in comgédsign [3, 2].

15

3 Scientific computing

[8, 7, 5, 4], etc.

4 Algebra of compiler optimization

In [6], the authors (according to their abstract) “use Kkealgebra with tests to
verify a wide assortment of common compiler optimizatiansluding dead code
elimination, common subexpression elimination, copy pgaiion, loop hoisting,
Induction variable elimination, instruction scheduliiadgebraic simplification,
loop unrolling, elimination of redundant instructionsrar bounds check
elimination, and introduction of sentinels. In each of theases, we give a form:
equational proof of the correctness of the optimizing tfamsation.”

This will be posted on the course web site and up-dat
based on class input.

16

A simple project idea: molecular dynamics (MD)

F =ma
means
d?x 1
R 7
dt? m ()

but we usually think in terms of energy, not force
F=VV

whereV Is the energy potential, such as Lennard-Jones

V()= | — ;|7 = |y — 5]

JFi
Also requires a confinement force to avoid drifixa

17

Time stepping in MD
The code for the time-stepping scheme is not so bad.

The scheme is
U—U+AtF

X — X+AtU

function [XX,VYy, Zz, uu, vv, W =
ti mestep(xx,vyy,zz, uu, vv, wy, dt, kst ep, rcut)
XS=XX; YS=Yy,; z2S=2Z,
for 1 =1:kstep
[cfx, cfy,cfz, kb, remax]=confin(xx,yy,zz,rcut,1.0);
[fx, fy,fz,anen, potl]=vecljpot(xx,yy,zz,rcut);
fx=cfx+fx; fy=cfy+fy; fz=cfz+fz;
uu=uu+dt *f x; vv=vv+dt *fy; ww=wwdt*f z;
XX=XX+dt *uu; yy=yy+dt*vv; zz=zz+dt*ww;
end

18

Computing the force in MD ...

function [fxl,fyl,fzl,anmen,|jpot]=
vecl j pot (xI,yl, zl,rcutsq)
n=max(si ze(xl));
amen=r cut sq;
| | pot =0;
fxl =zeros(1,n); fyl=zeros(1,n); fzl=zeros(1,n);
for 1=2:n
XIi=xl-shift(xl,i-1);
yli=yl-shift(yl,i-1);
zli=zl-shift(zl,i-1);
rs(i:n)=(xti(i:n).*xli(i1:n))+
(yli(i:n)y.*yli(i:n))+(zli(i:n).*zli(i:n));
amen=m n(mn(rs(i:n)),anen);
rsi(i:n)=1./rs(i:n);
rfor(i:n)=rsi(i:n).*rsi(i:n);
rsix(i:n)=rsi(i:n).*rfor(i:n);
rate(i:n)=rfor(i:n).*rfor(i:n);

19

rtlv(i:n)=rfor(i:n).*rate(i:n);
| j pot =l pot+sum(rtlv(i:n))-sunm(rsix(i:n));
rfrten(i:n)=rsi(i:n).*rfor(i:n).*rate(i:n);

kfr(i:n) = 24*(2*rfrten(i:n)-rate(i:n));
df x(i:n) = kfr(i:n).*xli(i:n);
dfy(i:n) = kfr(i:n).*yli(i:n);
df z(i:n) = kfr(i:n).*zli(i:n);

fxl (1:n)=fFxl(i:n)+df x(i:n);
fyl(i:n)=fyl(i:n)+dfy(i:n);
fzl (i:n)=fzl (i:n)+df z(i:n);
fxl (1:n-i+1)=fFxI (1:n-i+1)-df x(i:n);
fyl(1:n-1+1)=fyl (1:n-i+1)-dfy(i:n);
fzl (1l:n-1+1)=fzl (1:n-1+1)-dfz(i:n);
end
| | pot =8*1 | pot ;

... looks like a dog’s breakfast

20

And we still need to compute the containment force

function [fxl, fyl,fzl, kb, renus]=
confin(xl,yl,zl,rfurw, stren)
n=max(si ze(xl)); kb=0; renus=rfurw
for 1=1:n
are= (xlI (i1))**2 + (yl(i))**2 + (zl(i))**2 ;
renmus=nax(are, remnus),;
| f are<rfurw
fxI (1)=0; fyl(i)=0; fzl(i)=0;
el se
kb=kb+1;
are=are-rfurw,
are=stren*are/ (1+sqrt(are)); % subharnonic
fxl (1)y=-xl(i)*are; fyl(i)=-yl(i)*are; fzl(i)=-zl(i)*are;
endi f
end

21

Wouldn’t it be nice If

we had a system in which we could specify the force
computation more mathematically

(more compact notation: % — r~12)

we could easily make changes in the force definitions
see how this changes the physics of the simulation

If we have to write it by hand, could we verify the forc
computation to be sure it does what we intend:

isitreallyr—0? =122

22

Tentative schedule

Tu 25 Sep
Th 27 Sep
Tu 2 Oct
Th 4 Oct
Tu 9 Oct
Th 11 Oct
Tu 16 Oct

Course Intro [today]
FEM intro
Review of FEM

—Erari

Review of FErari
Claes Johnson

Review of ...

23

References

[1] Babak Bagheri and L. R. Scott. About Analysa. ResearghoRdJC/CS
TR-2004-09, Dept. Comp. Sci., Univ. Chicago, 2004.

[2] Christopher Warwick FraseAutomatic generation of code generatoPhD
thesis, 1977.

[3] Kingshuk Karuri. A Framework for Automatic Generation of Code
Optimizers PhD thesis, 2001.

[4] J. Korelc. Multi-language and multi-environment gerigna of nonlinear
finite element codef=ngineering with Computerd8:312-327, Nov 2002.
10.1007/s003660200028.

[5] Joze Korelc. Automatic generation of finite-elemente&ty simultaneous
optimization of expressiond.heoretical Computer Scienck37:231-248,
Nov 1997.

[6] Dexter Kozen and Maria-Christina Patron. Certificatidrcompiler
optimizations using kleene algebra with testsCIn’00: Proceedings of the

24

First International Conference on Computational Logi@ages 568—-582,
London, UK, 2000. Springer-Verlag.

[7] Robert van Engelen, Lex Wolters, and Gerard Cats. CTADEgenerator of
multi-platform high performance codes for PDE-based gsifiempplications.
In ICS '96: Proceedings of the 10th international conferenoe o
Supercomputingpages 86—93, New York, NY, USA, 1996. ACM Press.

[8] Paul S. Wang, Hui-Qian Tan, Atef F. Saleeb, and Tse-Yurghang. Code
generation for hybrid mixed mode formulation in finite elarhanalysis. In
SYMSAC '86: Proceedings of the fifth ACM symposium on Sycraoudi
algebraic computationpages 45-52, New York, NY, USA, 1986. ACM Pre:

25

