1 Revue of the FEM

FEM provides formalism for generating discrete (finite)aalthms
for approximating the solutions of differential equations
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Figure 1: Black box into which one puts model problem and dwtlmch pops an
algorithm (KU = F) for approximating the corresponding solutions.




1.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

(1.1)

where(2 = (0, 1). Define a space incorporating thesential boundary condition
V={veL*Q): alv,v)<oo and v(0)=0}.
(1) Multiply the differential equation in (1.1) by € V:
f@(z) = —u"(z)v(z) (1.2)

(2) Integrate (1.2) over the domatitt

/01 f(x)v(z)dx = /01 —u" (x)v(z)dx (1.3)




Continuation of three-step recipe

(3) Integrate by parts (1.3) to get

(f,v):= /01 f(z)v(x)dr = /01 —u" (z)v(x)dz

(1.4)
= / v (z)v'(x)dr =: a(u,v).
0
Then we can say that the solutiorto (1.1) is characterized by
u €V suchthat a(u,v) = (f,v) Yv eV, (1.5)

which is called thevariational or weakformulation of (1.1).

Theorem 1.1 Suppose’ € CY([0,1]) andu € C 2(]0, 1]) satisfy(1.5). Thenu
solves(1.1).




1.2 Naming conventions for two types of boundary conditions

Boundary Condition
u(x) =0
u'(x) =0

Variational Name
essential

natural

Proper Name
Dirichlet

Neumann

Table 1. Naming conventions for two types of boundary coods.

The assumptiong € C °([0, 1]) andu € C ([0, 1]) in the theorem allow (1.1) to

be interpreted in the usual sense.

But the variational problem can be solved with much more ganfe including

ones that are not functions, such as the Dirac

for somea € ().

(57f):f(a’)

For this reason, (1.5) is also calleavaakformulation of (1.1).




1.3 Ritz-Galerkin Approximation

Let.S C V be any (finite dimensional) subspace. Let us consider (1 i) Wi
replaced bys, namely

us € S suchthat a(ug,v) = (f,v) Vv € S. (1.6)

Theorem 1.2 Givenf € L?(0,1), (1.6) has a unique solution.

Write (1.6) in terms of a basis &: {¢; : 1 < i <n}, and expand
us — Z qubj
j=1

Kz'j — a(gbjagbi)aF’i — (fa §b7,> for 7’7] =1,..,n.

SetU = (Uj),K = (sz) andF = (Fz)

Then (1.6) is equivalent to solving the (square) matrix equat

KU = F. (1.7)




For a square system such as (1.7) we know that uniquenessvsalegtito
existence, as this isfanite dimensionasystem.

To prove unigueness, we show that nonuniqueness impliesteadaction.
Nonuniqueness would imply that there is a nonZ€reuch thatk'V = 0.

Forv = 3 V;¢;, this means that = a(v,v) = [, (v dz, from which we
conclude thaV = 0.

Thus, the solution to (1.7) must be unique (and hence mud).exis
Therefore, the solutiong to (1.6) must also exist and be unique.

The matrixK is often referred to as th&iffnesanatrix, a name coming from
corresponding matrices in the context of structural pnoisle

It is symmetric, since thenergyinner-product:(-, -) is symmetric.

It is alsopositive definitesince

n

Z kijuiv; = a(v,v) where v = Zvjqu.

1,7=1 71=1




1.4 Piecewise Polynomial Spaces — The Finite Element Methc

Let) =2p < x1 < ... < x,, = 1 be a partition 0f0, 1], and letS be the linear
space of functions generated by the basis functions showmir?.

r——— 00— 1‘ ®

Figure 2: piecewise linear basis function

{¢;} is called anodal basis forS, and{wv(x;)} are thenodal valuesof a function
v. (The points{z;} are called theodes)




1.5 Computer Implementation of Finite Element Methods

The key step in this process is thssemblyf the inner-product (u, v) by
summing its constituent parts over each sub-intervat|@mentwhich are
computed separately.

This is facilitated through the use of a numbering schemedhe
local-to-globalindex.

This index,i(e, 7), relates the local node numbeéy,on a particular element, to
Its position in the global data structure.

In our one-dimensional example with piecewise linear fiom, this index is
particularly simple: the “elements” are based on the iratksl, := [z._1, x.]
wheree is an integer in the range ..., n and

ile,j) == e+j—1fore=1,...,nandj =0,1.

That is, for each element there are two nodal parametersestst, one
corresponding to the left end of the interval= 0) and one at the rightj(= 1).
Their relationship is represented by the mappifg ).




We may write the interpolant of a continuous functipior of a vector/' as
1 1
Jr = Ei:jgzbﬂ(@j)¢§ = }E::E:Lfcxueg)%ﬁi
e j5=0 e 35=0

Where{qﬁj 5 7 =0, 1} denotes the set of basis functions for linear functions
the single interval, = [z._1, z.]:

¢5(r) = @5 ((x = Te1)/(Te — Te1))

where
1 —=x x € [0, 1]
Po(x) = ,
0 otherwaise
and
T z € [0,1]
P1(x) =

0 otherwise.




Note that we have related all of the “local” basis functi@ljsto a fixed set of
basis functions on a “reference” elemeft,1], via an affine mapping b, 1] to
ze_1,xc]. (By definition, the local basis function(ﬁf;, are extended by zero

outside the interval,.)

The bilinear forms defined in (1.4) can be assembled usingepigsentation:

a(v,w) = Z ae(v, W)

e

where the “local” bilinear form is defined (and evaluated vi

ae(v,w) = / v'w’ dx
I

t (1.8)
Wi(e
K (e,0)

Ui(e,1) Wi(e,1)

Vi(e
_ (xe . xe—l)_l (e,0)

Here, thdocal stiffness matrixK, is given by

1
0
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1.6 More weak formulations

Consider the two-point boundary value problem

d’u ,
—@+)\u:flﬂﬁ

u(0) =0, u' (1) = 0.

(1.9)

where() = (0,1). Define
V={velL*Q): avv)<oo and v(0)=0}.

(1) Multiply the differential equation in (1.9) by € V,
(2) Integrate over the domain, and (3) Integrate by parts to get

(f,v) :/0 v (2)v' (z) + Mv(z)u(z)dx =: a(u, v). (1.10)

This leads taKU + AMU = F', wherelM is called the mass matrix:
M;; = (¢i, ¢;). This equation will besingular for some\ < 0 since it
corresponds to an eigenvalue problemi—! KU = —\U.
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1.7 Different boundary conditions

Consider the boundary conditions

u(0) =0, u(l) =0
u(0) = 0, u' (1) =0
u'(0) = 0, u(1) =0 (1)
u'(0) =0, u' (1) =0
These correspond to the spaces
V={veW:v0)=0 and (1) =0}
V ={veW:v0)=0}
(1.12)

V ={veW:v(l) =0}
V=W

respectively, wheré&V is the space

W={veL*Q): alv,v) < oo}

12



1.8 Multiple weak formulations

Consider the two-point boundary value problem

d?u  du
_ — fin O 1.13
dx? * dx J in ( )

where() = (0, 1). This leads to multiple variational formulations:

/ u' ()0 (x) + v(z)u' (2)de =: ai(u,v).
0 (1.14)

1
/ v ()0 () — v (2)u(x)dr =: az(u,v).
0
depending on whether or not we integrate by parts on the geeom on the left
hand side in (1.13)

For this reason, using variational forms as a language a\amche ambiguity in
the model definition.
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2 Matrix Evaluation by Assembly

Theassemblyf integrated differential forms is done by summing its ddnent
parts over eacklementwhich are computed separately through the use of a
numbering scheme called thexal-to-globalindex. This index; (e, A), relates the
local (or element) node number,c L, on a particular element, indexed byto
Its position in the global data structure.

We may write a finite element functighin the form
DY fuen®s (2.15)
e AeLl

where f; denotes the “nodal value” of the finite element function atitkh node
in the global numbering scheme afw, > A € £} denotes the set of basis
functions on the element domdin.
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The element basis functions;, are extended by zero outsidg.

Can relate “element” basis function§ to fixed set of basis functions on
“reference” element7, via mapping of/ to T..

Could involve changing both the:” values and the ¢” values in a coordinated way, as with the Pio
transform , or it could be one whose Jacobian is non-consaantith tensor-product elements or

isoparametric elements.

For an affine mapping, — J¢ + z., of 7 to 7T.,:
O5(1) = or (JHx — ze)) .
The inverse mapping; — ¢ = J!(x — z.) has as its Jacobian

J_l—%_m

mi " Qg

and this is the quantity which appears in the evaluation®tihnear forms. Of
coursedet J = 1/det J~1.
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2.1 Evaluation of bilinear forms

The assembly algorithm utiizes the decomposition of a tianal form as a sum
over “element” forms

a(v,w) = Z ae(v,w)

e

where “element” bilinear form for Laplace’s equation definea

ae(v, W) ::/T Vou(x) - Vw(z) dx

; (2.16)

0
_ /T D g V& + ) g (JE + ) det () de

j=1
by transofrming to the reference element.
Finite element matrices computed via assembly in a simi&r. w

The local element form is computed as follows.
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2.2 Evaluation of bilinear forms—continued

(v, w) / Z—v JE + x) g—%w(Jera:e)det(J) dé

d

Om
/ 2 3ij OEm (Z ”L<6A>¢A(§)) X

j,m,m’=1 AeLl

U,
ang o (Z W, (00 (& )det( yde  (2.17)

peEL
[ ey

(e )

t

\Ub(e,lﬁl)) \wb(e,lﬁl))
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Here, theelement stiffness matriXe, is given by

e ._ agm 0§m/ (9_ 0
K5, -—.m%j/_ o o, WD) [ G 0a(€) e —ulE) d
o (2.18)
— Z Grfn,m’K)\,umm/
m,m’=1
where
Ko = | o on(©)0—,(6) de (2.19)
e 7 Om O
and
e : 8€m 85777/
GS,\ s 1= det(J)jz::l o, D (2.20)

for\,pu € Landm,m' =1,...,d.
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3 Revue of Adaptivity

differential equation

domain description

boundary data

forcing terms (f)

guality requirement

adaptive

FEM

creates initial mesh
—applies FEM

uses error estimator

good enough?

|___creates new mesh

solution

Figure 3: Black box for adaptive FEM; requires no mesh idyjainly quality re-
guirement. Generates a sequence of meshes and appliesrdt&id until quality

IS assured.
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Model problem

We consider a variational problem with “energy” form
a(v,w) = /Qoz(a:)VU -Vwdx
Solve foru;, € V, such that
a(uy,,v) = (f,v) YveV
The errorey, := u — uy, satisfies theesidual equation
alep,v) = R(v) YveV

where theesidualR € V' is defined byR(v) :=

+ Z 7{[0&1 - Vuplvds

If A is the differential operator associated with the form (3.Bamely,
Av := =V - (aVwv), then we see thak 4 = A(u — up) = Aey, on eachl’.

Relations (3.23-3.24) can be derived automatically.
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(3.24)




Thelocal error indicator&, by

Ee(uh)z =
(3.25)
thell [om - Vun] |72 ()

can also be generated automatically from the descriptid@i}3

With this definition, we showed that

1/2
i 2
len| (o) < a0 <z€: Ee(un) ) (3.26)

where~ is only related to interpolation error.

From the error estimate, a better mesh can be determinecefine wheref. (up,)
IS large.

The process is repeated to get a more accurate simulation.

The use of adaptivity is more complicated but makes the stimurl process muct
more efficient.

But it all can be done automatically.
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