
1 Determinants of protein-protein interfaces

At the simplest level, one would expect the sort of bonds thathelp proteins form

their basic structure would also be involved in joining two different proteins

together.

Both hydrogen bonds and salt bridges play a significant role at protein interfaces

[29].

The density of hydrogen bonds between two different proteins at an interface is

about one per two square nanometers.

If you think of a checkerboard with nanometer sized squares,then it is like having

one hydrogen bond on each of the red squares.

The average number of hydrogen bonds per interface is about ten.

On the other hand, the average number of salt bridges per interface is only two.
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2 Protein-protein interface story

It might be that the story of protein-protein interactions ends here, with the

intermolecular hydrogen bonds and salt bridges being the whole story.

However, three of the 54 high-resolution structures studied in [29] have no

hydrogen bonds or salt bridges, and another dozen have no salt bridges and five or

fewer hydrogen bonds.

Thus, we will delve deeper to see what other factors can determine protein-protein

interactions.

One factor that complicates the picture of protein-proteininteractions is the

appearance of water molecules which appear to play a structural role, as opposed

to simply mediating interactions via dielectric effects.

In the protein interfaces studied in [29], polar atom pairs bridged by water across

the interface with hydrogen bonds were more numerous than direct hydrogen bond

pairs, with each water molecule connecting 3.8 cross-chainatom pairs on average.
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3 Amino acids at protein-protein interfaces

We begin with a simple use of datamining applied to the understanding of amino

acid tendencies at interfaces.

There are different questions that one can ask, and of courseit is natural that

amino acids get ranked in different orders accordingly.

For simplicity, we contrast just two, but we also review others in Section 8.

The data here is drawn primarily from [12, 10, 4].

The site specificity of protein-protein interactions has been widely studied due to

its central biological significance [15, 17, 16, 8, 14, 12].

One finds that hydrophobic residues such as Leu and Val are more abundant at

protein-ligand interfaces, but it is also true that such residues are abundant over-all

(see Table 3).

As a result, the removal of water surrounding hydrophobic residues on the protein

surface has been assumed to be a driving force for association [27, 9].
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3.1 Amino acid composition of protein–protein interfaces

The first question [10] we consider is about the amino acid composition of

protein–protein interfaces.

This can be done by simply counting, once an identification has been made

regarding which amino acids are at an interface.

But simple frequencies are misleading: Leu is the most common residue at

interfaces, but it is also overwhelmingly the most common residue in most

proteins.

Thus one has to normalize by the natural frequencies of aminoacids in proteins

[4].
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3.2 Composition of amino acid pairs at interfaces

The second question [12] is about the amino acid compostion for pairs of amino

acids at interfacesthat are interacting.

There are many ways to define interaction, but proximity [12]is a natrual metric.

That is, two residues are defined [12] as interacting if theirCβ coordianates differ

by at most 6̊A (with a similar scheme to include Gly).

This notion is simplistic in that theCβ atom is only the first in the sequence, but it

is notable that the same sort of simple measure based on the initial segment is

successful in other contexts [19].
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3.3 Compare and contrast conflicting coompositions

Let us compare and contrast the two questions.

The first question seeks to determine clues for protein-protein association by

investigating all residues, suitably normalized.

The second question assumes that proximity of sidechain pairs is a significant

factor in protein-protein association, and thus looks for consequences of

restricting to such pairs.

Not surprisingly, each question returns different answersregarding the relative

significance of different residues.
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3.4 Some caveats

The distribution of amino acid composition in proteins displays evolutionary

trends [4], and this can require extra care to reveal subtle relationships.

Here we limit our investigations to fairly strong trends forsimplicity.

However, the precise numerical data presented would differif different databases

were chosen for the primary data being used.
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4 Interface propensity

The common belief is that hydrophobic residues on the surface of proteins are

likely candidates to support interfaces in protein-protein association.

In Section 6, we present evidence that supports this case with suitable

clarifications.

However, [10] presents data with a distinctively differentconclusion, by

normalizing the relative abundance of residues at the interface by their over-all

abundances.

The residues with the highest relative propensity [10] to beat interfaces are, in

decreasing order of frequency, Asn, Thr, Gly, Ser, Asp, Ala,and Cys, the group

depicted in Figure 1.

None of these residues is distinctively hydrophobic.

This is quite a surprising result, and it demands an explanation.
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4.1 Sidechains involved in interfaces
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Figure 1: Periodic table of amino acid sidechains. The most likely to be involved

in interactions, ordered from the left (asparagine).
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4.2 Basic statistical definitions

To begin with, let us clarify the basic notions.

If we have a dataset withN different types of characteristics (e.g.,N = 20 and

the characteristics are the different amino acids), then the frequencyfi of thei-th

characteristic is defined by

fi =
oi

∑N

j=1
oj

(4.1)

whereoj is the number of occurences of thej-th characteristic in the dataset.

In some cases, frequencies are represented as percentages,in which case we

simply multiply by 100 in (4.1).
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4.3 Basic statistical definitions continued

If we have two datasets with the same characteristics, with frequenciesfi andgi,

respectively, then one can define arelative frequency

ri = fi/gi (4.2)

of the characteristics between the two datasets.

There are some problems with this measure of occurence.

First of all, it might happen thatgk = 0 for somek, making the interpretation

difficult.

Related to this is the need for normalization in order to be able to compare two

different comparisons.

In [10], the following approach was taken.

11



Define a normalizedrelative propensity via

Ri =
ri

∑N

j=1
rj

. (4.3)

These relative propensities sum to one, so we can think of them like ordinary

frequencies.

Similarly, we multiply by 100 in (4.1) to convert to percentages as the unit of

“frequency.”

If we apply this approach to datasets of proteins, and the characteristics are the

different amino acid constituents, then we obtain the scheme used in [10].

In this case, the sum of the relative propensities (in percentage units) is one

hundred, so the mean is five.

In Table 1, data is presented in terms of the deviation of these relative propensities

from the mean of five.

That is, the data representRi − 5.
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3-letter 1-letter Carbon Interface Dehydron Hydropathy

code code groups Propensity Propensity Kyte et al.[18]

Asn N 1 +1.28 +1.63 -3.5

Thr T 1 +1.10 +1.41 -0.7

Gly G 0 +0.99 +1.42 -0.4

Ser S 0 +0.60 +0.80 -0.8

Asp D 1 +0.34 +0.76 -3.5

Ala A 1 +0.29 +0.6 1.8

Cys C 1 +0.25 +0.24 2.5

Val V 3 +0.20 -0.31 4.2

Met M 3 +0.10 +0.10 1.9

Tyr Y 7 +0.10 +0.10 -1.3

Table 1: Amino acids ranked according to their likelihood ofbeing found at

protein-protein interfaces.
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3-letter 1-letter Carbon Interface Dehydron Hydropathy

code code groups Propensity Propensity Kyte et al.[18]

His H 2 -0.25 -0.25 -3.2

Pro P 3 -0.25 -0.25 -1.6

Trp W 9 -0.33 -0.4 -0.9

Arg R 3 -0.35 -0.4 -4.5

Leu L 4 -0.35 -1.10 3.8

Phe F 7 -0.40 -0.40 2.8

Lys K 4 -0.42 -0.38 -3.9

Glu E 2 -0.50 -0.11 -3.5

Gln Q 2 -0.62 -0.6 -3.5

Ile I 4 -0.70 -0.92 4.5

Table 2: Amino acids ranked according to their likelihood ofbeing found at

protein-protein interfaces.
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4.4 Explanation of ranking

The unusual ranking of residues in Table 1 was explained in [10] by noting that it

correlates closely with the propensity to be engaged in under-wrapped backbone

hydrogen bonds, among amino acids acting as either proton donors or acceptors

for main-chain hydrogen bonds.

We will review the concept of wrapping of hydrogen bonds shortly.

The data on wrapping are presented in the fifth column in Table1, and the

correlation is striking.

Such under-wrapped backbone hydrogen bonds, in turn, are determinants of

protein-protein associations, as discussed subsequently.
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As noted in [10], the seven residues with the highest propensity for being engaged

in under-desolvated hydrogen bonds also have at most one torsional degree of

freedom in their side chain.

Thus, the entropic loss resulting from the conformational hindrance of the

sidechains upon protein association is minimal with these sidechains, so that the

energetic benefit of intermolecular protection of pre-formed hydrogen bonds is

most beneficial.

The only purely hydrophobic residue that has an appreciablepropensity to be in

an interface is Val, with only one sidechain rotameric state.

Therefore, its conformational hindrance upon binding entails the lowest loss in

conformational entropy.

Considering the residues ranked at the bottom of Table 1 demonstrates that

hydrophobic residues on the protein surface are infrequentrelative to their over-all

abundance.

This implies that are negatively selected to be part of binding regions, and thus

they must play a secondary role in terms of binding.

16



Note that the polar residues (Asn, Asp, Ser, Cys and Thr) witha minimal distance

from their polar groups to the backbone are likely to be engaged in dehydrons,

according to Table 1.

It is presumed [10] that this arises not only because they have minimal nonpolar

carbonaceous groups, but also because the relative proximity of their polar groups

to a backbone hydrogen bond may limit further clustering of hydrophobic groups

around the bond.

Gly is itself the greatest under-wrapper and can even be thought of as polar due to

the fact that the polar environment of the peptide bond is exposed;

Ala is the penultimate under-wrapper and may also exhibit some of the polar

qualities of Gly.
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5 Tutorial on hydrophobic wrapping

Effect of modulation of dielectric by hydrophobic groups.

• Amino acid side chains have different properties

• Tutorial on hydrophobicity: carbonaceous groups

• Tutorial on dielectrics: more on this later

• Extent of wrapping changes nature of hydrogen bond

• Dehydrons: Under-wrapped hydrogen bonds

• A model for protein-protein interaction

• Extreme interaction: amyloid formation

• Stickiness of dehydrons
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5.1 Amino acid side chains have different properties

Carbonaceous groups on certain side chains are hydrophobic:
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Amino acids (side chains only shown) with carbonaceous groups.
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5.2 Tutorial on hydrophobicity

Carbonaceous groups (CH, CH2, CH3) are hydrophobic because

• they are non-polar and thus do not attract water strongly

• they are polarizable and thus damp nearby water fluctations

5.3 Tutorial on dielectrics

Water removal reduces the dielectric effect and makes electronic
bonds stronger.

Number of carbonaceous groups in a region determine extent of
water removal and strength of electronic bonds.
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5.4 Extent of wrapping changes nature of hydrogen bond

Hydrogen bonds (B) that are not protected from water do not persist.

From De Simone, et al., PNAS 102 no 21 7535-7540 (2005)
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Wrapping made quantitative by counting carbonaceous groups in the

neighborhood of a hydrogen bond.
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5.5 Under-wrapped hydrogen bonds

Hydrogen bonds with insufficient wrapping in one context can
become well wrapped by a partner.

The hydrogen bond is much stronger when wrapped.

The change in energy makes these hydrogen bonds sticky.

We call such under-wrapped hydrogen bonds

dehydrons
because they can benefit from becoming dehydrated.

The force associated with dehyrdons is not huge, but they canact as
a guide in protein-protein association.

In our pictures,our new lens colors dehyrdonsGREENto
distinguish from ordinary hydrogen bonds.
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Dehydrons

in human hemoglobin, From PNAS

100: 6446-6451 (2003) Ariel Fernandez,

Jozsef Kardos, L. Ridgway Scott, Yuji Goto,

and R. Stephen Berry. Structural defects and

the diagnosis of amyloidogenic propensity.

Well-wrapped

hydrogen bonds are

grey, and dehydrons are green.
The standard ribbon model
of “structure” lacks indicators
of electronic environment.
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6 Amino acid pairs at interfaces

We now return to the second question raised at the beginning of the chapter

regarding the amino acid compostion for interacting pairs of amino acids at

interfaces.

We review the results in [12] which use proximity as an interaction metric in

which two residues are defined as interacting if theirCβ coordinates differ by at

most 6Å.

In this setting, some dominant residues are indeed found to be hydrophobic.

We present in Table 3 the residues and their relative propensities, as defined in

(4.3), in decreasing order.
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Res. Pairing Pairing Pairing Total Abun- Interface Rim/Core

Code Rel. Prop. Rel. Freq. Freq. [12] dance [4] Propensity freq. [6]

Cys 5.4 2.40 1.87 0.78 +0.25 0.45

Trp 1.9 1.60 1.63 1.02 -0.33 0.32

Pro 1.7 1.55 6.74 4.35 -0.25 1.24

Ser 1.5 1.50 7.01 4.66 +0.6 1.04

Asn 1.3 1.46 4.90 3.36 +1.28 1.19

Thr 1.1 1.41 6.87 4.87 +1.1 1.19

His 0.76 1.33 2.56 1.92 -0.25 0.52

Tyr 0.32 1.23 3.70 3.00 +0.1 0.67

Gly 0.11 1.18 8.59 7.30 +0.99 1.16

Ala 0.11 1.18 9.18 7.77 +0.29 0.95

Table 3: Amino acids which occur in pairs at interfaces and their relative abun-

dances. Primary data is taken from the indicated references. Relative Propensity is

defined in (4.3) and Relative Frequency is defined in (4.2).
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Res. Pairing Pairing Pairing Total Abun- Interface Rim/Core

Code Rel. Prop. Rel. Freq. Freq. [12] dance [4] Propensity freq. [6]

Phe -0.15 1.12 4.02 3.61 -0.4 0.33

Gln -0.33 1.08 3.41 3.15 -0.62 1.03

Met -0.72 0.99 2.38 2.41 +0.1 0.54

Asp -0.98 0.93 5.06 5.42 +0.34 1.48

Val -1.2 0.87 7.12 8.17 +0.2 1.09

Leu -1.6 0.79 7.05 8.91 -0.35 0.82

Ile -1.8 0.75 5.00 6.66 -0.7 0.76

Arg -1.9 0.71 4.46 6.27 -0.35 1.19

Glu -2.6 0.55 4.71 8.59 -0.5 1.87

Lys -2.9 0.48 3.73 7.76 -0.42 2.16

Table 4: Amino acids which occur in pairs at interfaces and their relative abun-

dances. Primary data is taken from the indicated references. Relative Propensity is

defined in (4.3) and Relative Frequency is defined in (4.2).
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6.1 Explaining the differences

Two of the residues in Table 3 with greatest relative propensity, namely Trp and

Pro, are distinctively hydrophobic, as we might expect.

However, these are also two of the most unique residues.

Moreover, other high-ranking residues are as found in Table1.

The differences between this table and Table 1 reflect the fact that we are now

asking about residues which are in proximity and thus are interacting in some

direct way.

It is natural to expect that hydrophobicity would be a prominent type of

interaction.

28



Since Table 3 does not provide relative abundances directly, we need to say how

these have been derived.

The fundamental data in Table 3 is Table II on page 93 in [12], which lists the

“contact” matrixCij .

This is a matrix that counts the number of times that residuei contacts (is within

the proximity radius of) residuej.

Summing a column (or row) ofCij and normalizing appropriately gives the total

frequencyFi of thei-th amino acid involved in such pairings.

More precisely, to report frequencies as a percentage, define

Fi = 100

∑
20

j=1
Cij

∑
20

i,j=1
Cij

(6.4)

to be the amino acid pairing frequency, shown in the column entitled Pairing

Freq. [12] in Table 3.
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6.2 Normalized abundance

The abundance of each amino acid in such pairings needs to be normalized by an

appropriate measure.

Here we have taken for simplicity the abundances published in [4] which are

reproduced in the column entitled Total Abundance [4] in Table 3.

We do not claim that this provides the optimal reference to measure relative

abundance in this setting, but it certainly is a plausible data set to use.

The data shown in the column entitled Pairing Rel. Freq. in Table 3 represents the

ratio ofFi, defined in (6.4), to the abundances reported in [4].

The fact that Cys appears to have the highest relative abundance in pairs at

interfaces reflects the simple fact that when Cys appears paired with another

residue, it is unusually frequently paired with another Cysto form a disulfide

bond, as confirmed in [12].
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7 Pair frequencies

In addition to looking at the frequencies of individual residues, one can also look

at the frequencies of pairings.

A standard tool for doing this is theodds ratio.

Suppose thatfi is the frequency of thei-th amino acid in some dataset, and

suppose thatCi,j is the frequency of the pairing of thei-th amino acid with the

j-th amino acid. Then the odds ratioOij is defined as

Oij =
Cij

fifj

(7.5)

and has the following simple interpretation. If the pairingof thei-th amino acid

with thej-th amino acid were random, then we would haveCij = fifj , and thus

Oij = 1. Therefore an odds ratio bigger than one implies that the pairing is more

common than would be expected for a random pairing, and conversely if it is less

than one.
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The log odds ratio is often defined by simply taking the logarithm of the odds

ratio. This has the benefit of making the more likely pairingspositive and the less

likely pairings negative. In [12], a quantityGij is defined by multiplying the log

odds ratio by a numerical factor of ten.

It is noteworthy that the odds ratios indicated in Table III of [4] are all between a

half and two. That is, there are no pairs which occur even as much as twice as

frequently as would be expected randomly (or half as frequently).

The pair with the highest odds ratio (1.87) is Cys-Cys, a disulfide bridge.

Although Cys is uncommon, when it does appear we can expect itto be involved

in a disulfide bridge.

The next highest odds ratio pair is Trp-Pro (1.42), which pairs two of the most

unique sidechains.

The lack of rotational freedom in proline may be significant since there is no

entropic loss in the pairing, but the story is likely much more complex, e.g.,

Trp-Pro can be involved in a sandwich [24].
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In Table III of [4], The following four pairs with the next highest odds ratios

involve charged residues:

Asp-His (1.25),

Arg-Trp (1.23),

Asp-Ser (1.22) and

Asp-Thr (1.21).

The first of these is a salt-bridge, and the second is a charge-polar interaction

known as a cation-π interaction [11, 30, 7] based on the polarity of aromatic

residues.

The latter two pairs are charged and polar residues as well.

The next four pairs in ranking of odds ratio are Cys-Ser (1.20), Asp-Arg (1.19),

Met-Met (1.16) and Cys-His (1.15).

These show a similar mix of polar interactions.

So how does hydrophobicity play a role?
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7.1 Comparing odds ratios

There is no absolute scale on which to measure odds ratios, and the significance of

any deviation from one is context dependent.

But it is notable that the pair frequencies reported in [12] are much smaller than

found for alpha helices or beta sheets [19].

The top thirty values for the odds ratios for amino acid pairswith θ < 50 are all

greater than two, with the highest being 3.75 [19].

Moreover, the top fifteen values for the odds ratios for aminoacid pairs with

θ > 155, that is pairs inβ sheets, are all greater than two [19].

We interpret that to mean that the hydrophobic pairs involved in interfaces are

more nearly random, none of which occur with very high odds ratios.
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7.2 Core versus rim pairs

When we add the further analysis in [6] which differentiatedthe prevalence of

core versus rim residues in protein interfaces, the pictureis amplified.

In [6], interface topology was characterized in detail, andit was found that

interfaces could typically be described in terms of discrete patches of about 1600

Å2 in area.

For each patch, the boundary (rim) residues were identified versus the interior

(core) residues.

The statistics for amino acid preferences for the rim versusthe core are

reproduced in Table 3.

There is a strong correlation between being charged or polarand preferring the

rim, as indicated in Table 5.
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Res. Rel. Rel. Pair Total Abun- Rim/Core Homodimer

Code Prop. Freq. Freq.[12] dance [4] freq. [6] Rim/Core [1]

Lys -2.9 0.48 3.73 7.76 2.16 2.19

Glu -2.6 0.55 4.71 8.59 1.87 1.48

Asp -0.98 0.93 5.06 5.42 1.48 1.61

Pro 1.7 1.55 6.74 4.35 1.24 1.51

Asn 1.3 1.46 4.90 3.36 1.19 1.49

Thr 1.1 1.41 6.87 4.87 1.19 1.16

Gly 0.11 1.18 8.59 7.30 1.16 1.38

Arg -1.9 0.71 4.46 6.27 1.19 0.85

Val -1.2 0.87 7.12 8.17 1.09 0.83

Ser 1.5 1.50 7.01 4.66 1.04 1.15

Table 5: Amino acids which occur in pairs at interfaces and their relative abun-

dances. Primary data is taken from the indicated references.
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Res. Rel. Rel. Pair Total Abun- Rim/Core Homodimer

Code Prop. Freq. Freq.[12] dance [4] freq. [6] Rim/Core [1]

Gln -0.33 1.08 3.41 3.15 1.03 1.22

Ala 0.11 1.18 9.18 7.77 0.95 0.93

Leu -1.6 0.79 7.05 8.91 0.82 0.61

Ile -1.8 0.75 5.00 6.66 0.76 0.55

Tyr 0.32 1.23 3.70 3.00 0.67 0.58

Met -0.72 0.99 2.38 2.41 0.54 0.68

His 0.76 1.33 2.56 1.92 0.52 0.85

Cys 5.4 2.40 1.87 0.78 0.45 0.81

Phe -0.15 1.12 4.02 3.61 0.33 0.40

Trp 1.9 1.60 1.63 1.02 0.32 0.60

Table 6: Amino acids which occur in pairs at interfaces and their relative abun-

dances. Primary data is taken from the indicated references.
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7.3 Special interfaces

Protein-ligand interfaces differ in function, and interfaces with different function

can have different composition.

In [15], basic differences between protein-antibody and enzyme-inhibitor pairs, as

well as others, are explored.

Using more extensive datasets available more recently, this approach has been

refined to allow classification of interface type based on aminoacid composition

[23].
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8 Comparisons and caveats

We have made several observations based on analyzing existing data sets. These

conslusions should be viewed as preliminary since these data sets must be viewed

as incomplete. Our primary intent was to introduce a methodology for exploring

such data sets and to indicate the type of results that can be obtained.

Our basic analysis of pairwise interaction data was taken from [12]. However, the

methodology is quite similar to that of the earlier paper [28], although there are

differences in the way the interior (and non-interior) sidechains in the interaction

zone are defined.

That is, the classification of rim and core residues in the interface [12] is different

in definition from exposed and interior residues in the interface in [28], although

similar in spirit.

Figure 3B of [28] shows how the residues that are interacting(proximate) in an

interface are very similar in composition to ones in the interior of proteins.
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8.1 Comparing interfaces

To illustrate the sensitivity of results depending on the database chosen, we review

the results in [1] which is very similar in spirit to [6], the difference being the use

of homodimers for the study of interfaces.

In Table 5, we present this data, with the residues reorderedto give the rim/core

preferences in order for the data in [6] to facilitate comparison with the data in [1].

What we see is the same general trend, namely that charged andpolar residues

prefer the rim, but with changes in the particular rankings among the different

groups.

However, there is a significant reversal in the roles of arginine and valine [1].
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8.2 Nonspecific interactions

The dissection trilogy is completed in [2] in which an attempt is made to

determine aminoacid distributions for “nonspecific” interactions.

This is intended to be a proxy for any surfaces which might bind however briefly

to other protein surfaces. The dataset is determined by looking at crystal contact

surfaces in the PDB.

We leave as an exercise to compare the data for these surfaceswith the other data

presented here.

See [2] for a comparison with the data in [6] and [1].
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8.3 Hot spots and alanine scanning

In [3], an attempt is made to identify so-called “hot spots” on protein surfaces.

They report on the results of an experimental technique calledalanine scanning
in which residues are replaced by alanine and compared with the original protein

by some activity assay.

What they discover is that the most common sidechains at hot spots are the ones

that are bulkiest, Trp, Tyr and Arg. This is not surprising since the replacement by

Ala has the greatest change in geometry for these residues.

However, such substitutions might be extremely rare.

What might be a better test of importance would be other mutations, e.g., ones

which do not change the volume or geometry of the side chain. Systematic

replacement of all amino acids by all other amino acids is clearly an order of

magnitude more work than just replacing by a fixed side chain.

Having a better model of what governs protein-protein interactions could lead to a

more directed study of sidechain mutation effects.
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8.4 Cation-π interactions

The aromatic sidechains do play a special role in protein interfaces through what

is called a cation-π interaction [11].

The special polar nature of the aromatic residues provides the opportunity for

interaction with positively charged (cation) residues (Lys, Arg, His).

The cation-π motifs play a special role in protein interfaces [30, 7].

The cation-π interaction also has a significant role inα-helix stabilization [26].
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A study of the role of evolution on protein interface composition can be found in

[5]. In [13, 20], interacting amino acids across interfacesare studied and

compared with regard to conservation and hot spots.

Protein-protein interactions can be classified in different ways, e.g., by how

transient they are, and studies have been done to examine differences in size of

interaction zones and sidechain propensities [22, 21].

Identification of individual sidechains that may play the role of “anchors” in

protein-ligand recognition is studied in [25] via molecular dynamics simulations.

Individual residues are identified that appear to fit into geometric features on

paired protein surfaces both in crystal structures and in the dynamic simulations.
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9 Conclusions

Two main conclusions were obtained. The first is that hydrophobicity is not the

primary variable that determines proximity to interactionsites. Instead, there is a

different “interactivity” order that governs the liklihood of an amino acid residue

being in an active zone. Electrical forces have a more prominent role that simple

steric effects.

On the other hand, pairwise interactions of hydrophobic residues do play a

secondary role in protein-protein interactions, especially in the interior, or core,

regions of interaction domains. Moreover, their interactions tend to be less

specific than might be the case in other pairings, such as in alpha helices and beta

sheets. Nonspecific interactions can be problemmatic [].
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[10] Ariel Ferńandez, L. Ridgway Scott, and Harold A. Scheraga. Amino-acid
residues at protein-protein interfaces: Why is propensityso different from
relative abundance?J. Phys. Chem. B, 107(36):9929–9932, 2003.

[11] Justin P. Gallivan and Dennis A. Dougherty. Cation-pi interactions in

47



structural biology.PNAS, 96(17):9459–9464, 1999.

[12] Fabian Glaser, David M. Steinberg, Ilya A. Vakser, and Nir Ben-Tal.
Residue frequencies and pairing preferences at protein-protein interfaces.
Proteins: Str. Func. Gen., 43:89–102, 2001.

[13] Inbal Halperin, Haim Wolfson, and Ruth Nussinov. Protein-protein
interactions; coupling of structurally conserved residues and of hot spots
across interfaces. implications for docking.Structure, 12:1027–1038, 2004.

[14] Zengjian Hu, Buyong Ma, Haim Wolfson, and Ruth Nussinov. Conservation
of polar residues as hot spots at protein interfaces.Proteins: Str. Func. Gen.,
39:331–342, 2000.

[15] Susan Jones and Janet M. Thornton. Principles of protein-protein
interactions.Proc. Natl. Acad. Sci. USA, 93:13–20, 1996.

[16] Susan Jones and Janet M. Thornton. Analysis of protein-protein interaction
sites using surface patches.J. Mol. Biol., 272:121–132, 1997.

[17] Susan Jones and Janet M. Thornton. Prediction of protein-protein interaction
sites using patch analysis.J. Mol. Biol., 272:133–143, 1997.

48



[18] J. Kyte and R. F. Doolittle. A simple method for displaying the hydropathic

character of a protein.J. Mol. Biol., 157:105–132, 1982.

[19] Jing Liu, L. Ridgway Scott, and Ariel Fernández. Interactions of aligned

nearest neighbor protein side chains.Journal of Bioinformatics and

Computational Biology, 7:submitted–, 2006.

[20] Buyong Ma, Tal Elkayam, Haim Wolfson, and Ruth Nussinov.

Protein-protein interactions: Structurally conserved residues distinguish

between binding sites and exposed protein surfaces.Proc Natl Acad Sci

USA, 100:5772–5777, 2003.

[21] Irene M. A. Nooren and Janet M. Thornton. Diversity of proteinprotein

interactions.EMBO Journal, 22:3486–3492, 2003.

[22] Irene M. A. Nooren and Janet M. Thornton. Structural characterisation and

functional significance of transient protein-protein interactions.Journal of

Molecular Biology, 325(5):991–1018, 2003.

[23] Yanay Ofren and Burkhard Rost. Analysing six types of protein-protein

interfaces.Journal of Molecular Biology, 335:377–387, 2003.

49



[24] Sergei Radaev and Peter Sun. Recognition of immunoglobulins by Fcγ

receptors.Molecular Immunology, 38(14):1073–1083, 2002.

[25] Deepa Rajamani, Spencer Thiel, Sandor Vajda, and Carlos J. Camacho.

Anchor residues in protein-protein interactions.Proc Natl Acad Sci USA,

101:11287–11292, 2004.

[26] Z. Shi, C.A. Olson, and N.R. Kallenbach. Cation-π interaction in model

α-helical peptides.Journal of the American Chemical Society,

124(13):3284–3291, 2002.

[27] G. R. Smith and M. J. Sternberg. Prediction of protein-protein interactions

by docking methods.Curr Opin Struct Biol, 12:28–35, 2002.

[28] Chung-Jung Tsai, S. L. Lin, Haim J. Wolfson, and Ruth Nussinov. Studies of

protein-protein interfaces: A statistical analysis of thehydrophobic effect.

Protein Science, 6:53–64, 1997.

[29] Dong Xu, Chung-Jung Tsai, and Ruth Nussinov. Hydrogen bonds and salt

bridges across protein-protein interfaces.Protein Engineering,

10(9):999–1012, 1997.

50



[30] Wai-Ming Yau, William C. Wimley, Klaus Gawrisc, and Stephen H. White.

The preference of tryptophan for membrane interfaces.Biochemistry,

37:14713–14718, 1998.

51


