
1 Metric spaces

For completeness, we recall the definition of metric spaces and the notions

relating to measures on metric spaces. A metric space is a pair (M, d) whereM is

a set andd is a function from the Cartesian productM × M to the non-negative

real numbers, such that

• d(x, x) = 0 for all x ∈ M ,

• d(x, y) = d(y, x) for all x, y ∈ M ,

• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M (the triangle inequality),

Example: edit distance
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1.1 Edit distance review

The concept of string-edit distancede is based on balancing two different types of
edits. The simplest is replacement of a letter. That is, if two stringsx andy differ
only in thek-th position, thende(x, y) = DA(xk, yk) for some metricDA on the
alphabetA.

In general, when there are multiple replacements, string edit distance is based on
just summing the effects.

However, string-edit distance also allows a different kindof change as well:
insertion and deletion.

For example, we can definex
k̂

to mean the stringx with thek-th entry removed.
It might be thatx

k̂
agrees perfectly with the stringy, and so we assignd(x, y) = δ

whereδ is the deletion penalty.

Similarly, insertions of characters are allowed to determine edit distance. Clearly,
if y = x

k̂
, then addingxk to y at thek-th position yieldsx.

Again, the effect of multiple insertions/deletions is additive, and this allows
strings of different lengths to be compared.
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1.2 Edit distance review, continued

The use of both replacements and instertion/deletions to determine edit distance

complicates the picture substantially.

The representation of an edit path fromx to y using both replacements and

insertions/deletions is not unique.

Thus edit distance is defined by taking the minimum over all possible

representations.

In general, this will not yield a metric unless constraints on δ andDA are imposed.

This can be done in a very simple and elegant way by extending the alphabetA

and metricDA to include a “gap” as a character, say “” (let Ã denote the

extended alphabet), and by assigning a distanceD eA
(x, ) for each characterx in

the original alphabet.

Theorem 9.4 of [1] tells us thatde is a metric on strings of letters inA whenever

D eA
is a metric on the extended alphabet.
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1.3 Example: two-letter alphabet

The simplest non-trivial example is an alphabet with two letters, sayx andy,

when there is only one distanceDA(x, y) that is non-zero.

The requirement that the triangle inequality hold forD eA
reduces to three

inequalities that can be expressed as

|D eA
(x, ) − D eA

(y, )| ≤ DA(x, y) ≤ D eA
(x, ) + D eA

(y, ). (1.1)

The left hand inequality derives from the two inequalities

D eA
(x, ) ≤DA(x, y) + D eA

(y, )

D eA
(y, ) ≤DA(y, x) + D eA

(x, ) = DA(x, y) + D eA
(x, )

(1.2)

Together with the condition that all distances be non-negative, we see that (1.1)

characterizes completely the requirement forD eA
to be a metric in the case of a

two-letter alphabetA.
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1.4 Two-letter alphabet, continued

For a general alphabetA, if

α ≤ DA(x, y) ≤ 2α (1.3)

for all x 6= y (including ) for someα > 0, thenDA is a metric (that is, the

triangle inequality holds).

This is because

DA(x, y) ≤ 2α ≤ DA(x, z) + DA(z, y) (1.4)

for anyz ∈ A.

One simple choice for a metric on letters is to chooseDA(x, y) = 1 for all x 6= y,

and then to takeD eA
(x, ) = 2; the resultingD eA

satisfies (1.3) for̃A.

However, condition (1.3) is far from optimal as the example (1.1) shows.
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1.5 Edit distance definition

Edit distancede is derived from the extended alphabet distanceD eA
as follows.

We introduce the notion ofalignment A of sequences(x∗, y∗) = A(x, y) where

x∗ has the letters ofx in the same order but possibly with gapsinserted, and

similarly for y∗.

We suppose thatx∗ andy∗ have the same length even ifx andy did not, which

can always be achieved by adding gaps at one end or the other. Then

de(x, y) = min
A

∑

i

D eA
(x∗

i , y
∗
i ). (1.5)

The minimum is over all alignmentsA and the sum extends over the length of the

sequences.

Fortunately, string-edit distancede, and even more complex metrics involving

more complex gap penalties, can be computed efficiently by the dynamic

programming algorithm [1].
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