1 Metric spaces

For completeness, we recall the definition of metric spaces and the notions relating to measures on metric spaces. A metric space is a pair (M, d) where M is a set and d is a function from the Cartesian product $M \times M$ to the non-negative real numbers, such that

- $d(x, x)=0$ for all $x \in M$,
- $d(x, y)=d(y, x)$ for all $x, y \in M$,
- $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in M$ (the triangle inequality),

Example: edit distance

1.1 Edit distance review

The concept of string-edit distance d_{e} is based on balancing two different types of edits. The simplest is replacement of a letter. That is, if two strings x and y differ only in the k-th position, then $d_{e}(x, y)=D_{A}\left(x_{k}, y_{k}\right)$ for some metric D_{A} on the alphabet A.

In general, when there are multiple replacements, string edit distance is based on just summing the effects.

However, string-edit distance also allows a different kind of change as well: insertion and deletion.

For example, we can define $x_{\hat{k}}$ to mean the string x with the k-th entry removed. It might be that $x_{\hat{k}}$ agrees perfectly with the string y, and so we assign $d(x, y)=\delta$ where δ is the deletion penalty.

Similarly, insertions of characters are allowed to determine edit distance. Clearly, if $y=x_{\hat{k}}$, then adding x_{k} to y at the k-th position yields x.

Again, the effect of multiple insertions/deletions is additive, and this allows strings of different lengths to be compared.

1.2 Edit distance review, continued

The use of both replacements and instertion/deletions to determine edit distance complicates the picture substantially.

The representation of an edit path from x to y using both replacements and insertions/deletions is not unique.

Thus edit distance is defined by taking the minimum over all possible representations.

In general, this will not yield a metric unless constraints on δ and D_{A} are imposed.
This can be done in a very simple and elegant way by extending the alphabet A and metric D_{A} to include a "gap" as a character, say "_" (let \widetilde{A} denote the extended alphabet), and by assigning a distance $D_{\widetilde{A}}\left(x,{ }_{-}\right)$for each character x in the original alphabet.

Theorem 9.4 of [1] tells us that d_{e} is a metric on strings of letters in A whenever $D_{\widetilde{A}}$ is a metric on the extended alphabet.

1.3 Example: two-letter alphabet

The simplest non-trivial example is an alphabet with two letters, say x and y, when there is only one distance $D_{A}(x, y)$ that is non-zero.

The requirement that the triangle inequality hold for $D_{\widetilde{A}}$ reduces to three inequalities that can be expressed as

$$
\begin{equation*}
\left|D_{\widetilde{A}}\left(x,{ }_{-}\right)-D_{\widetilde{A}}\left(y,{ }_{-}\right)\right| \leq D_{A}(x, y) \leq D_{\widetilde{A}}\left(x,{ }_{-}\right)+D_{\widetilde{A}}\left(y,{ }_{-}\right) \tag{1.1}
\end{equation*}
$$

The left hand inequality derives from the two inequalities

$$
\begin{align*}
& D_{\widetilde{A}}\left(x,{ }_{-}\right) \leq D_{A}(x, y)+D_{\widetilde{A}}\left(y,{ }_{-}\right) \\
& D_{\widetilde{A}}\left(y,{ }_{-}\right) \leq D_{A}(y, x)+D_{\widetilde{A}}\left(x,_{-}\right)=D_{A}(x, y)+D_{\widetilde{A}}\left(x,{ }_{-}\right) \tag{1.2}
\end{align*}
$$

Together with the condition that all distances be non-negative, we see that (1.1) characterizes completely the requirement for $D_{\widetilde{A}}$ to be a metric in the case of a two-letter alphabet A.

1.4 Two-letter alphabet, continued

For a general alphabet A, if

$$
\begin{equation*}
\alpha \leq D_{A}(x, y) \leq 2 \alpha \tag{1.3}
\end{equation*}
$$

for all $x \neq y$ (including _) for some $\alpha>0$, then D_{A} is a metric (that is, the triangle inequality holds).

This is because

$$
\begin{equation*}
D_{A}(x, y) \leq 2 \alpha \leq D_{A}(x, z)+D_{A}(z, y) \tag{1.4}
\end{equation*}
$$

for any $z \in A$.
One simple choice for a metric on letters is to choose $D_{A}(x, y)=1$ for all $x \neq y$, and then to take $D_{\widetilde{A}}\left(x,{ }_{-}\right)=2$; the resulting $D_{\widetilde{A}}$ satisfies (1.3) for \widetilde{A}.

However, condition (1.3) is far from optimal as the example (1.1) shows.

1.5 Edit distance definition

Edit distance d_{e} is derived from the extended alphabet distance $D_{\widetilde{A}}$ as follows.
We introduce the notion of alignment \mathcal{A} of sequences $\left(x^{*}, y^{*}\right)=\mathcal{A}(x, y)$ where $x *$ has the letters of x in the same order but possibly with gaps _ inserted, and similarly for y^{*}.

We suppose that $x *$ and y^{*} have the same length even if x and y did not, which can always be achieved by adding gaps at one end or the other. Then

$$
\begin{equation*}
d_{e}(x, y)=\min _{\mathcal{A}} \sum_{i} D_{\widetilde{A}}\left(x_{i}^{*}, y_{i}^{*}\right) \tag{1.5}
\end{equation*}
$$

The minimum is over all alignments \mathcal{A} and the sum extends over the length of the sequences.

Fortunately, string-edit distance d_{e}, and even more complex metrics involving more complex gap penalties, can be computed efficiently by the dynamic programming algorithm [1].

References

[1] Michael Waterman. Introduction to Computational Biology. Chapman \& Hall/CRC Press, 1995.

