1 Four point condition

In general, if a distance matrix is to be represented fdithhy a tree, it must
satisfy the following four-point condition [1]

D(i,j) 4+ D(m,n) < max{D(i,m) + D(j,n),D(j,m)+D(i,n)}. (1.1)

which generalizes the familiar triangle inequality (take= n).

This requirement implies that typical biological treeslwibt uniquely represent a
given biological distance matrix.

Definition 1.1 A matrix that satisfies the four point condition is calle
additive

Theorem 1.1 A distance matrix can be represented by a tree if and
only if it is additive.

See handout for a proof of ‘if’ and a corresponding algorithm




1.1 Four point condition: meaning

The four point condition
D(i,j) + D(m,n) < max{D(i,m) + D(j,n), D(j,m) + D(i,n)}
encodes a special requirement among the three values indgeality.

To see what the required relationship is, let us simplifyation. Suppose that we
have three positive numbers,, a5 andas, and we require that

a; < max{a;,ar} (1.2)

for any partition{i, j, k} = {1,2, 3}.
Now relabel the numbers so that > as > as.
Then (1.2) is equivalent to the statement= as.

That is, (1.2) is equivalent to the requirement that thedstg@wo of thes;’s are
the same.

To see why, we simply have to examine the alternative; if> as, then (1.2)
fails: a; > max{as, as}.




1.2 Four point condition: interpretation

In Figure 1, we show what the four point condition means foistathce matrix
with four data points. The terms inside the similar geomdigures must add in
such a way that the two largest sums agree:

D(i,j) + D(m,n) < max{D(i,m) + D(j,n),D(j,m) + D(i,n)}.
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Figure 1: Entries in the distance matrix which are consé@ihy the four point
condition.




1.3 Four point condition illustration

The distance matrix associated with the tree in Figure 2 is
D(i,j) =a+b,D(m,n) =d+e,D(i,m)=a+c+d,
D(j,n)=b+c+e,D(i,n)=a+c+e D(j,m)=b+c+d.
Then

C=D(i,j)+D(m,n)=a+b+d+e,
B=D(i,m)+D(j,n) =a+b+2c+d+e,
A=D(i,n)+D(j,m)=a+b+2c+d+e.

Thus we seethal = B andB — C = 2¢ > 0.
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Figure 2: Configuration of tree connecting four points.




1.4 Four point condition: derivation/motivation

It is possible to motivate the derivation of the four poinhddion as follows.
Consider the following recursive algorithm for constragtia tree from a distance
matrix.

Consider any paii, 7 of nodes in the discrete space.
Suppose nodesandj are to be leaves of an internal parent node in the tree, ce
k. Then define

D(m, k) =D(k,m) =5 (D(t,m) + D(j,m) —D(s,7)) . (1.3)
for all the other nodesa.

Create a new discrete space by eliminatimgnd ; and addingg; in terms of the
distance matrix, we eliminate thendj rows and add the new information
defined by (1.3).

By the triangle inequality, this new matrix is non-negative

If we find D(k, m) = 0 we can takés = m and avoid the addition to the discrete
space, so we can assume that this new matrix is non-degenerat




1.5 Isthe new matrix a metric?

So far, we have not identified the distan@®g, k) andD(j, k). But of course we
must haveD (i, k) + D(j, k) = D(i, j). Furthermore, since every path frarand
4 must go througlt, we must have

D(z,y) = D(x, k) + D(k,y) (1.4)

wherez stands for either or j andy stands for eithem or n. Adding the four
equations for the various values:ofindy (and dividing by two) we get

%(D(z’, m)+D(i,n) + D(j,m) + D(y, n))
— D(i, k) + D(j, k) + D(k,m) + D(k,n) (1.5)
=D(i,7) + D(k,m)+ D(k,n)

So if the triangle inequality is to hold for the new matrix, weist have

5(D(i,m) + D(i,n) + D(j,m) + D(j,n)) = D(m,n) + D(i, j) (1.6)

for all m andn.




1.6 The new matrix is a metric

If condition (1.6) holds, we claim that this new matrix shés the triangle
Inequality, that is
D(k,m) <D(k,n)+D(n,m) (1.7)

for all m andn. This is equivalent to (recall the definition Df(k, m))

(D(i,m) + D(j,m) = D(i,5)) < (D(i,n) + D(4,n) = D(i,7)) + 2D(n, m)

or, by eliminating the common termD(i, j) on both sides, the same as
D(i,m) + D(j,m) < D(i,n) + D(j,n) + 2D(n,m) (1.8)
But the triangle inequality for the original matrix implidss: we just add

D(i,m) < D(i,n) + D(n,m) (1.9)

D(j,m) < D(j,n) + D(n,m) (1.10)
to deduce that (1.8), and therefore (1.7), holds.




1.7 Metric matrix: the rest of the story
We need to verify the rest of the requirements of the trianggquality, e.g.,
D(m,n) < D(m,k)+ D(k,n) (1.11)

for all m andn. Recalling the definition oD (k, m) andD(k, n), we have

D(m, k) +D(k,n) = % (D(m, i) +D(m,j) +D(n,i) + D(n,j)) — D(1,7)

Therefore (1.11) is equivalent to condition (1.6).
This proves that condition (1.6) implies that the new masia metric.

If the pair: and; does not satisfy condition (1.6) for all andn, then it is not

possible to identifyi andj as neighbors in a tree representation of the distance
matrix.

If there is no pair and;j satisfying condition (1.6) for alln andn, then it is not

possible to identify any tree representation of the distamatrix with leaves as
nodes.




1.8 Distance to deleted points problematic

The difficulty arises in the assignment of the distances éebnthe new point and
the deleted points. Recall that we defined the new distances b

D(m,k) =D(k,m) =5 (D(i,m) +D(j,m) —D(i,j)).

If all were well, we would have

D(i, k) = D(i,m) — D(m, k) = % (D(i,m) — D(j,m) + D(i,j)).

for anym. Sincem is arbitrary, we must have
D(i, k) =D(i,n) — D(n, k) = 5 (D(i,n) — D(j,n) + D(i, 7)) .
for any other node: as well. Thus
D(i,m) — D(j,m) + D(i,j) = D(i,n) — D(j,n) + D(i, j)
for anym andn, which is the same as saying
D(i,m) + D(j,n) = D(i,n) + D(j,m)

which gives the four-point condition.




1.9 Interpretation of 4-point condition

We derived the necessity of the condition

based on the assumption thatndj would be child nodes of a parent node in th
tree representation of the matrix.

This means that we have equality of sums of the the terms ilosst in the
iIdentical geometric figures in Figure 3 which form part of thgtance matrix.

D)

Figure 3: Entries in the distance matrix which are consé@ihy the four point
condition.




1.10 Interpretation of 4-point condition: cont’d

The fact that
D(i,j) + D(m,n) < D(i,m) + D(j,n) = D(i,n) + D(j, m)

(as required by the four point condition) is a consequendhefact that we
assumed thatand; were nearest neighbors in the tree. This foneeandn to be
nearest neighbors in the tree as well.

The common value
D(i,m)+D(j,n) — D(i, ) — D(m,n) = D(i,n) +D(j,m) — D(i, j) — D(m,n)
IS twice the length of the internal edge.
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Figure 4: Configuration of tree connecting four points.




2 Example

a:1NDM
b:1DQJ
c:1C08

Table 1: Distance matrix for hydrogen bond interactionatghces among homol-
ogous proteins: a=1NDM, b=1DQJ, c= 1C08, d= 1INDG (PDB cades)

Distance is defined as follows. First align the sequencease&ch protein, define
hydrogen bond matrix entrgi, 7) to be one if there is an intermolecular
mainchain or sidechain hydrogen bond between pepiidad j; otherwise zero.

Define the distance as the Hamming distance between thackstaatrices.

For exampleD(a,b) = 3 means that INDM and 1DQJ differ in exactly 3
hydrogen bonds between the antigen and antibody complex.




The tree for hydrogen bond distance

b:1DQJ
3

c:1C08
7
6

d:INDG
6
5
5

1INDM

1CO08

Figure 5: Tree representation of the distance matrix ind4abl




2.2 Hydrogen bond comparisons

Following are all the intermolecular (antibody—antigegilfogen bonds found in
the antibody complexes in the PDB files INDM, 1DQJ, 1C08, axD .

Can easily compute the Hamming distance

type

donor

acceptor

INDM

1DQJ

1C08

INDG

M-M
M-S
M-S
S-M
S-M
S-M
S-M
S-M
S-S
S-S
S-S
S-S
S-S
S-S
S-S

C-ARG 621 N
B-SER 354 N
C-GLY 702 N
B-SER 331 OG
B-TYR 333 OH
B-TYR 350 OH
B-TYR 358 OH
C-ARG 673 NH2
C-ARG 673 NH1
B-SER 352 OG
B-SER 354 OG
A-GLN 53 NE2
C-ASN 693 ND2
C-LYS 696 NZ
C-LYS 696 NZ

A-ASN 92O
C-ASP 701 OD1
B-SER 356 OG
C-ARG 6730
C-LYS 697 O
C-SER 7000
C-ASP 7010
B-THR 330 O
B-THR 330 OG1
C-ASP 701 OD1
C-ASP 701 OD1
C-ASN 693 OD1
A-GLN 53 OE1
A-ASN 31 OD1
A-ASN 32 OD1

2.684.13
3.067.24
2.88 6.46

2.732.97
2.555.35
3.170.32

3.163.91
2.718.07
2.855.56
2.850.56

2.813.32
3.156.43
2.826.33

2.643.49
2.605.02
3.380.52
2.470.81

2.707.98

249115

2.840.85
3.300.228

2.893.31
3.206.16
3.006.21
3.421.28
2.693.85
2.64 4.63

2.5010.2
2.775.93

2.830.375
2.954.76
2.827.13

2.80 3.47
(3.59 4.59)

(4.040.483)
2.63 3.60
2.66 4.46

2.88 2.60
2.806.64
2.810.82
3.300.296
2.834.64

total bonds

11




2.3 Table detalls

Hydrogen bond descriptors: S=sidechain, M=mainchain.

The numbers given are (1) the distance between the donorcaeg@tar (heavy) atoms in
the hydrogen bond and (2) the quality estimate of the hydraged modelled as a
dipole-dipole interaction.

Note that the two bonds involving C-LYS 696 NZ in 1CO08 are imftiat, in the sense that
one would not normally think of the N-H group represented [&/d$ capable of forming
two hydrogen bonds. However, this ambiguity reflects thenggtoy involving this group
and the two ‘acceptor’ atoms (OD1 of A-ASN 31 and A-ASN 32)1MDG(H8), the
donor for the S-M bond with C-Arg673-0 changes from B-Ser883 to B-Arg331-NE.

Data in parentheses are for reference only. By relaxing ¢fi@itlon of hydrogen bond, we
can determine the interaction data for pairs of peptidesakdd a hydrogen bond.




3 The ABC theorem

It is possible to show that the topology of tree represematfor a general
distance matrix is unique under very mild conditions, akfus.

Consider the three independent quantities that figure ifotlnepoint condition:
A =D(i,m)+ D(j,n)
B =D(i,n) +D(j,m) (3.16)
C' =D(i,j) +D(n,m)

based on the three ways to partition the index{$ef, m, n} into distinct pairs.
These quantities determine the topology of the tree reptasens, as follows.

There are four distinct cases. Three of them involve twanaenodes and one
internal edge, and are categorized by the following threerdit possibilities for
additive matricesA =B > (C,B =C > A,andC = A > B. The fourth tree
corresponds tal = B = C'. Note that whemd = B = (), the tree representing
the distance matrix is a star. That is, there is one interoaéh, and four edges
joining the four indices ta.




3.1 Non-additive matrices

We will show that even in the case that a matrix is not addigvenique
assignment of one of these topology classes is possible $ih cases.

SupposeD is a general distance matrix that is not necessarily aeditivithout
loss of generality, by renaming the indices if necessarycaveassume that the
terms are ordered:

A>B>C. (3.17)

The four-point condition can now be stated simply= B. In this case, the
distance matrix can be represented exactly by a tree. Novons&der the other
case, thatd > B. First, we define thé'-norm for distance matrices:

1Dl =) ID(i, )] (3.18)

i<
Note that we allow for negative entries, as we intend to afipynorm to
differences of distance matrices.




3.2 ABC theorem statement

The following theorem characterizes the closest additistadce matrix (one that
can be represented by a tree) in thenorm to a general distance matrix.

Recall that, by definition, it is equivalent to say that a mxas additive and that it
satisfies the four point condition.

Theorem 3.1 Suppose thatl > B. Then

inf {||D — D'||pn : D’ satisfies the four-point condition=A — B.  (3.19)

Moreover, if B > C, then all additive distance matricd® which satisfy
|D—-D'||p =A—-B (3.20)

have trees with the same topology.




3.3 ABC theorem exception

WhenA > B = C, there is an ambiguity in representifigsince there are
additive matrice®’ all equally close ir’* norm with different topology types.

We leave as an exercise to show that there is a matriwith
A =B =C'"=B=C<A,
as well as two others:
D?with A’ = B’ = AandC' = B=C
andD? with A’ = ' = AandB’ = B = C,
all with the property thalD — D*||,» = A — B, but with different topologies.
(Hint: draw the different trees for the differem’s.)




3.4 ABC theorem proof

To prove these assertions, we first show that
inf {||D — D'||,» : D’ satisfies four-point condition< A — B. (3.21)

To so so, we simply need to exhibitld which satisfies the four-point condition
and||D — D’'||,, = A — B. We can do this if we keed’ = A and increasé&’ to
be equal tad. For example, we can set

D, =D, + A— B, (3.22)

leaving all other entries dP’ the same as faP. Thus by explicit construction, we
have||D — D’||,» = A — B. Similarly, since we also havé’ = A = B’, D’
satisfies the four point condition.

However, there is one small point that we must check. Wedstat the four
point condition is equivalent td = B for a distance matrix

But if D’ does not satisfy the triangle inequality, thén= B is not sufficient.




3.5 ABC theorem proof, cont’d: check triangle inequality

So we need to show th@’ satisfies the triangle inequality.

For any terms in the triangle inequality havifiy, on the right-hand side, the
inequalities still hold, since we have only made the rigatdh side larger. So it
suffices to check that

D, <D, +D., (3.23)

for = 5, m. But this is equivalent to showing that (recall the defimtaf A — B)
Dim + Djn — Djm = Din + (A — B) < Djy + Dy, (3.24)
for x = 5, m. Forx = j, this becomes
Dim — Djm < Dyj (3.25)
which holds by the triangle inequality f@. Similarly forx = m, (3.24) becomes
Din — Djm < Dyn (3.26)

which also holds by the triangle inequality for.




3.6 ABC theorem proof, cont’d: check triangle inequality

So we need to show th@’ satisfies the triangle inequality.

For any terms in the triangle inequality havifiy, on the right-hand side, the
inequalities still hold, since we have only made the rigatdh side larger. So it
suffices to check that

Din < Diy + Dy

for = 5, m. But this is equivalent to showing that (recall the defimtaf A — B)
Dim + —Djm =Din +(A—B) <D, +
for z = 5, m.
Dim, — Djm, < Dy
which holds by the triangle inequality f@. Similarly for x = m, (3.24) becomes
Din —Djm < Dy,

which also holds by the triangle inequality for.




3.7 ABC theorem proof, cont’d: check triangle inequality

So we need to show th@’ satisfies the triangle inequality.

For any terms in the triangle inequality havify, on the right-hand side, the
iInequalities still hold, since we have only made the rigamdh side larger. So it
suffices to check that

D, <D, +D.,..

for x = 5, m. But this is equivalent to showing that (recall the defimtaf A — B)
+Djp, —Djp, =Dipy + (A — B) < + Dyn,
for x = 5, m. Forx = j, this becomes
Dy — Djm < D;;

which holds by the triangle inequality f@. Similarly

Djn — Djm S Dmn
which also holds by the triangle inequality for.




3.8 ABC theorem proof, cont’d: other inequality

To prove the desired equality (3.19), must demonstrateeierse inequality:
inf {||D — D'||,» : D’ satisfies four-point condition> A — B. (3.27)
This is the same as saying th@ — D’||,» > A — B for everyD’ that satisfies

four-point condition.

From the definition of the norm, we can write
A—A'|+|B—-B'|+|C-C"<||D—-D|n (3.28)

for any distance matrices. Now suppose it were the casedhabimeD’ we have
|D —D'||n < A— B. Then we want to show th&@’ cannot satisfy the four point
condition. By (3.28) we have

B —-A+A—-B=A—-A+B —B

, (3.29)
<ID-D|ln < A-B

from which we conclude thaB’ < A’.




3.9 ABC theorem proof: other inequality, cont'd

Similarly, sinceB > C, we have
C'—-A+A-B=A-A+C"-B
<A-A'+C'-C (3.30)
<ID-Dp <A-B
from which we conclude that’ < A’. SoD’ cannot satisfy the four point
condition if|D — D’||n < A — B.
This completes the proof of the equality (3.27).
Combining (3.27) with (3.21) completes the proof of the diy&3.19):

inf {||D — D'||pn : D’ satisfies the four-point condition= A — B.

Now we turn to the other part of the theorem which charaatsrthe set of
optimal distance matrices.




3.10 ABC theorem proof: optimal matrix characterization

Now suppose thab’ is additive and satisfies (3.20):
|D =Dl =A- B,
andB > C'. Then we want to show that
A>A"=B > B. (3.31)

Suppose thatl < B’. ThenB’ — B > A — B and applying (3.28) we find that
|D —D'||;n > A— B. ThereforeA > B’.

On the other hand, i’ < BthenA — A’ > A — B, and again (3.28) yields a
contradiction.Therefored” > B.

If A’ < B’, then
A-A+B -B=A-B+B' -A>A-B (3.32)
contradicting optimality, again via (3.28), swerefored’ > B’.

We are almost done with the proof of (3.31), but there is onesmmequality to
establish, namely that’ > B’ cannot hold.




3.11 ABC theorem proof: last step

Finally, if A’ > B’, then the four point condition implies thdt = C”. Then
A-A+C-C=A-C>A-B (3.33)
by our assumption tha® > (', so again (3.28) yields a contradiction, implying
A" = B’, concluding our proof that (3.31) has to hold.
Applying (3.31) in (3.28), we get
A-B=A-A"+B -B
A—A'|+|B- DB
A—-A'l+|B-B'|+|C -
D-Dlpn=A-B

(3.34)

which means that equality holds throughout the expereg8i@4), so we must
haveC' = C’. In particular, we conclude that’ = B’ > B > C = (".

Now it is easy to show that all additive matrices wth= B’ > C’ have the
same topologyQ.E.D.




4 What UPGMA does

UPGMA applied to a distance matrix will coallesce the clog®snts, that is, the
one for which the entry in the distance matrix is smallestg 13(z, 7).

One might hope that UPGMA would find the correct tree for antasgdmatrix.

The nearest neighbors in the tree for an additive matrixtarendices that
combine to form the termd’ that is the smallest of the three terms involved in the
four point condition:C' < B = A.

However, even though it may hold thB{i, j) is the smallest entry in the distance
matrix,C' = D(¢, j) + D(m, n) is not smaller tham or B.

In this case, UPGMA finds the wrong tree.

For example, consider a distance matrix with=5 + 5, B = 4 + 4, and
C=3+T7:




Table 2: Additive distance matrix for which UPGMA gives theong tree.

C

Figure 6: UPGMA tree and additive tree for distance matriXable 2.
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