
1 Four point condition

In general, if a distance matrix is to be represented faithfully by a tree, it must

satisfy the following four-point condition [1]

D(i, j) + D(m, n) ≤ max{D(i, m) + D(j, n),D(j, m) + D(i, n)}. (1.1)

which generalizes the familiar triangle inequality (takem = n).

This requirement implies that typical biological trees will not uniquely represent a

given biological distance matrix.

Definition 1.1 A matrix that satisfies the four point condition is called
additive.

Theorem 1.1 A distance matrix can be represented by a tree if and
only if it is additive.

See handout for a proof of ‘if’ and a corresponding algorithm.
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1.1 Four point condition: meaning

The four point condition

D(i, j) + D(m, n) ≤ max{D(i, m) + D(j, n),D(j, m) + D(i, n)}

encodes a special requirement among the three values in the inequality.

To see what the required relationship is, let us simplify notation. Suppose that we
have three positive numbers,a1, a2 anda3, and we require that

ai ≤ max{aj , ak} (1.2)

for any partition{i, j, k} = {1, 2, 3}.

Now relabel the numbers so thata1 ≥ a2 ≥ a3.

Then (1.2) is equivalent to the statementa1 = a2.

That is, (1.2) is equivalent to the requirement that the largest two of theai’s are
the same.

To see why, we simply have to examine the alternative: ifa1 > a2, then (1.2)
fails: a1 > max{a2, a3}.
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1.2 Four point condition: interpretation

In Figure 1, we show what the four point condition means for a distance matrix
with four data points. The terms inside the similar geometric figures must add in
such a way that the two largest sums agree:

D(i, j) + D(m, n) ≤ max{D(i, m) + D(j, n),D(j, m) + D(i, n)}.

D(i,j) D(i,m) D(i,n)

D(j,m) D(j,n)

D(m,n)

Figure 1: Entries in the distance matrix which are constrained by the four point

condition.
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1.3 Four point condition illustration

The distance matrix associated with the tree in Figure 2 is

D(i, j) = a + b, D(m, n) = d + e, D(i, m) = a + c + d,

D(j, n) = b + c + e, D(i, n) = a + c + e, D(j, m) = b + c + d.

Then

C = D(i, j) + D(m, n) = a + b + d + e,

B = D(i, m) + D(j, n) = a + b + 2c + d + e,

A = D(i, n) + D(j, m) = a + b + 2c + d + e.

Thus we see thatA = B andB − C = 2c > 0.

neb

d
c

a

j

i m

Figure 2: Configuration of tree connecting four points.
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1.4 Four point condition: derivation/motivation

It is possible to motivate the derivation of the four point condition as follows.
Consider the following recursive algorithm for constructing a tree from a distance
matrix.

Consider any pairi, j of nodes in the discrete space.

Suppose nodesi andj are to be leaves of an internal parent node in the tree, call it
k. Then define

D(m, k) = D(k, m) = 1

2
(D(i, m) + D(j, m) −D(i, j)) . (1.3)

for all the other nodesm.

Create a new discrete space by eliminatingi andj and addingk; in terms of the
distance matrix, we eliminate thei andj rows and add the new information
defined by (1.3).

By the triangle inequality, this new matrix is non-negative.

If we findD(k, m) = 0 we can takek = m and avoid the addition to the discrete
space, so we can assume that this new matrix is non-degenerate.
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1.5 Is the new matrix a metric?

So far, we have not identified the distancesD(i, k) andD(j, k). But of course we

must haveD(i, k) + D(j, k) = D(i, j). Furthermore, since every path fromi and

j must go throughk, we must have

D(x, y) = D(x, k) + D(k, y) (1.4)

wherex stands for eitheri or j andy stands for eitherm or n. Adding the four

equations for the various values ofx andy (and dividing by two) we get

1

2

(

D(i, m)+D(i, n) + D(j, m) + D(j, n)
)

= D(i, k) + D(j, k) + D(k, m) + D(k, n)

= D(i, j) + D(k, m) + D(k, n)

(1.5)

So if the triangle inequality is to hold for the new matrix, wemust have

1

2

(

D(i, m) + D(i, n) + D(j, m) + D(j, n)
)

≥ D(m, n) + D(i, j) (1.6)

for all m andn.
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1.6 The new matrix is a metric

If condition (1.6) holds, we claim that this new matrix satisfies the triangle

inequality, that is

D(k, m) ≤ D(k, n) + D(n, m) (1.7)

for all m andn. This is equivalent to (recall the definition ofD(k, m))

(D(i, m) + D(j, m) −D(i, j)) ≤ (D(i, n) + D(j, n) −D(i, j)) + 2D(n, m)

or, by eliminating the common term−D(i, j) on both sides, the same as

D(i, m) + D(j, m) ≤ D(i, n) + D(j, n) + 2D(n, m) (1.8)

But the triangle inequality for the original matrix impliesthis: we just add

D(i, m) ≤ D(i, n) + D(n, m) (1.9)

to

D(j, m) ≤ D(j, n) + D(n, m) (1.10)

to deduce that (1.8), and therefore (1.7), holds.
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1.7 Metric matrix: the rest of the story

We need to verify the rest of the requirements of the triangleinequality, e.g.,

D(m, n) ≤ D(m, k) + D(k, n) (1.11)

for all m andn. Recalling the definition ofD(k, m) andD(k, n), we have

D(m, k) + D(k, n) = 1

2
(D(m, i) + D(m, j) + D(n, i) + D(n, j)) −D(i, j)

Therefore (1.11) is equivalent to condition (1.6).

This proves that condition (1.6) implies that the new matrixis a metric.

If the pairi andj does not satisfy condition (1.6) for allm andn, then it is not

possible to identifyi andj as neighbors in a tree representation of the distance

matrix.

If there is no pairi andj satisfying condition (1.6) for allm andn, then it is not

possible to identify any tree representation of the distance matrix with leaves as

nodes.
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1.8 Distance to deleted points problematic

The difficulty arises in the assignment of the distances between the new point and
the deleted points. Recall that we defined the new distances by

D(m, k) = D(k, m) = 1

2
(D(i, m) + D(j, m) −D(i, j)) .

If all were well, we would have

D(i, k) = D(i, m) −D(m, k) = 1

2
(D(i, m) −D(j, m) + D(i, j)) . (1.12)

for anym. Sincem is arbitrary, we must have

D(i, k) = D(i, n) −D(n, k) = 1

2
(D(i, n) −D(j, n) + D(i, j)) . (1.13)

for any other noden as well. Thus

D(i, m) −D(j, m) + D(i, j) = D(i, n) −D(j, n) + D(i, j) (1.14)

for anym andn, which is the same as saying

D(i, m) + D(j, n) = D(i, n) + D(j, m) (1.15)

which gives the four-point condition.
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1.9 Interpretation of 4-point condition

We derived the necessity of the condition

D(i, m) + D(j, n) = D(i, n) + D(j, m)

based on the assumption thati andj would be child nodes of a parent node in the

tree representation of the matrix.

This means that we have equality of sums of the the terms in enclosed in the

identical geometric figures in Figure 3 which form part of thedistance matrix.

D(j,n)

D(i,m) D(i,n)

D(j,m)

Figure 3: Entries in the distance matrix which are constrained by the four point

condition.
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1.10 Interpretation of 4-point condition: cont’d

The fact that

D(i, j) + D(m, n) ≤ D(i, m) + D(j, n) = D(i, n) + D(j, m)

(as required by the four point condition) is a consequence ofthe fact that we
assumed thati andj were nearest neighbors in the tree. This forcesm andn to be
nearest neighbors in the tree as well.

The common value

D(i, m)+D(j, n)−D(i, j)−D(m, n) = D(i, n)+D(j, m)−D(i, j)−D(m, n)

is twice the length of the internal edge.
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Figure 4: Configuration of tree connecting four points.
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2 Example

b:1DQJ c:1C08 d:1NDG

a:1NDM 3 7 6

b:1DQJ 6 5

c:1C08 5

Table 1: Distance matrix for hydrogen bond interaction differences among homol-

ogous proteins: a=1NDM, b=1DQJ, c= 1C08, d= 1NDG (PDB codes).

Distance is defined as follows. First align the sequences. For each protein, define

hydrogen bond matrix entry(i, j) to be one if there is an intermolecular

mainchain or sidechain hydrogen bond between peptidesi andj; otherwise zero.

Define the distance as the Hamming distance between the distance matrices.

For example,D(a, b) = 3 means that 1NDM and 1DQJ differ in exactly 3

hydrogen bonds between the antigen and antibody complex.
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2.1 The tree for hydrogen bond distance

b:1DQJ c:1C08 d:1NDG

a:1NDM 3 7 6

b:1DQJ 6 5

c:1C08 5

2
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�
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�
�

1NDM

2

Z
ZZ

2DQJ 1

Z
Z

Z
Z

Z
Z

ZZ 1C08

3

�
�

�
�

� 1NDG
2

Figure 5: Tree representation of the distance matrix in Table 1.
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2.2 Hydrogen bond comparisons

Following are all the intermolecular (antibody–antigen) hydrogen bonds found in

the antibody complexes in the PDB files 1NDM, 1DQJ, 1C08, and 1NDG.

Can easily compute the Hamming distance

type donor acceptor 1NDM 1DQJ 1C08 1NDG

M-M C-ARG 621 N A-ASN 92 O 2.68 4.13 2.81 3.32 2.89 3.31 2.80 3.47

M-S B-SER 354 N C-ASP 701 OD1 3.06 7.24 3.15 6.43 3.20 6.16 (3.59 4.59)

M-S C-GLY 702 N B-SER 356 OG 2.88 6.46 2.82 6.33 3.00 6.21

S-M B-SER 331 OG C-ARG 673 O 3.42 1.28 (4.04 0.483)

S-M B-TYR 333 OH C-LYS 697 O 2.73 2.97 2.64 3.49 2.69 3.85 2.63 3.60

S-M B-TYR 350 OH C-SER 700 O 2.55 5.35 2.60 5.02 2.64 4.63 2.66 4.46

S-M B-TYR 358 OH C-ASP 701 O 3.17 0.32 3.38 0.52

S-M C-ARG 673 NH2 B-THR 330 O 2.47 0.81

S-S C-ARG 673 NH1 B-THR 330 OG1 3.16 3.91

S-S B-SER 352 OG C-ASP 701 OD1 2.71 8.07 2.70 7.98 2.50 10.2 2.88 2.60

S-S B-SER 354 OG C-ASP 701 OD1 2.85 5.56 2.49 11.5 2.77 5.93 2.80 6.64

S-S A-GLN 53 NE2 C-ASN 693 OD1 2.85 0.56 2.84 0.85 2.81 0.82

S-S C-ASN 693 ND2 A-GLN 53 OE1 3.30 0.228 2.83 0.375 3.30 0.296

S-S C-LYS 696 NZ A-ASN 31 OD1 2.95 4.76 2.83 4.64

S-S C-LYS 696 NZ A-ASN 32 OD1 2.82 7.13

total bonds 10 11 11 8

14



2.3 Table details

Hydrogen bond descriptors: S=sidechain, M=mainchain.

The numbers given are (1) the distance between the donor and acceptor (heavy) atoms in

the hydrogen bond and (2) the quality estimate of the hydrogen bond modelled as a

dipole-dipole interaction.

Note that the two bonds involving C-LYS 696 NZ in 1C08 are in conflict, in the sense that

one would not normally think of the N-H group represented by NZ as capable of forming

two hydrogen bonds. However, this ambiguity reflects the geometry involving this group

and the two ‘acceptor’ atoms (OD1 of A-ASN 31 and A-ASN 32). In1NDG(H8), the

donor for the S-M bond with C-Arg673-O changes from B-Ser331-OG to B-Arg331-NE.

Data in parentheses are for reference only. By relaxing the definition of hydrogen bond, we

can determine the interaction data for pairs of peptides notcalled a hydrogen bond.
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3 The ABC theorem

It is possible to show that the topology of tree representations for a general
distance matrix is unique under very mild conditions, as follows.

Consider the three independent quantities that figure in thefour point condition:

A = D(i, m) + D(j, n)

B = D(i, n) + D(j, m)

C = D(i, j) + D(n, m)

(3.16)

based on the three ways to partition the index set{i, j, m, n} into distinct pairs.
These quantities determine the topology of the tree representations, as follows.

There are four distinct cases. Three of them involve two internal nodes and one
internal edge, and are categorized by the following three distinct possibilities for
additive matrices:A = B > C, B = C > A, andC = A > B. The fourth tree
corresponds toA = B = C. Note that whenA = B = C, the tree representing
the distance matrix is a star. That is, there is one internal nodek, and four edges
joining the four indices tok.
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3.1 Non-additive matrices

We will show that even in the case that a matrix is not additive, a unique

assignment of one of these topology classes is possible in most cases.

SupposeD is a general distance matrix that is not necessarily additive. Without

loss of generality, by renaming the indices if necessary, wecan assume that the

terms are ordered:

A ≥ B ≥ C. (3.17)

The four-point condition can now be stated simply:A = B. In this case, the

distance matrix can be represented exactly by a tree. Now we consider the other

case, thatA > B. First, we define thè1-norm for distance matrices:

‖D‖`1 =
∑

i<j

|D(i, j)| (3.18)

Note that we allow for negative entries, as we intend to applythe norm to

differences of distance matrices.
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3.2 ABC theorem statement

The following theorem characterizes the closest additive distance matrix (one that

can be represented by a tree) in the`1-norm to a general distance matrix.

Recall that, by definition, it is equivalent to say that a matrix is additive and that it

satisfies the four point condition.

Theorem 3.1 Suppose thatA > B. Then

inf {‖D −D′‖`1 : D′ satisfies the four-point condition} = A − B. (3.19)

Moreover, ifB > C, then all additive distance matricesD′ which satisfy

‖D −D′‖`1 = A − B (3.20)

have trees with the same topology.
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3.3 ABC theorem exception

WhenA > B = C, there is an ambiguity in representingD since there are

additive matricesD′ all equally close iǹ 1 norm with different topology types.

We leave as an exercise to show that there is a matrixD1 with

A′ = B′ = C′ = B = C < A,

as well as two others:

D2 with A′ = B′ = A andC′ = B = C

andD3 with A′ = C′ = A andB′ = B = C,

all with the property that‖D −Di‖`1 = A − B, but with different topologies.

(Hint: draw the different trees for the differentDi’s.)
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3.4 ABC theorem proof

To prove these assertions, we first show that

inf {‖D −D′‖`1 : D′ satisfies four-point condition} ≤ A − B. (3.21)

To so so, we simply need to exhibit aD′ which satisfies the four-point condition

and‖D −D′‖`1 = A − B. We can do this if we keepA′ = A and increaseB′ to

be equal toA. For example, we can set

D′

in = Din + A − B, (3.22)

leaving all other entries ofD′ the same as forD. Thus by explicit construction, we

have‖D −D′‖`1 = A − B. Similarly, since we also haveA′ = A = B′, D′

satisfies the four point condition.

However, there is one small point that we must check. We stated that the four

point condition is equivalent toA = B for a distance matrix.

But if D′ does not satisfy the triangle inequality, thenA = B is not sufficient.
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3.5 ABC theorem proof, cont’d: check triangle inequality

So we need to show thatD′ satisfies the triangle inequality.

For any terms in the triangle inequality havingD′

in on the right-hand side, the

inequalities still hold, since we have only made the right-hand side larger. So it

suffices to check that

D′

in ≤ D′

ix + D′

xn (3.23)

for x = j, m. But this is equivalent to showing that (recall the definition of A−B)

Dim + Djn −Djm = Din + (A − B) ≤ Dix + Dxn (3.24)

for x = j, m. Forx = j, this becomes

Dim −Djm ≤ Dij (3.25)

which holds by the triangle inequality forD. Similarly for x = m, (3.24) becomes

Djn −Djm ≤ Dmn (3.26)

which also holds by the triangle inequality forD.
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3.6 ABC theorem proof, cont’d: check triangle inequality

So we need to show thatD′ satisfies the triangle inequality.

For any terms in the triangle inequality havingD′

in on the right-hand side, the

inequalities still hold, since we have only made the right-hand side larger. So it

suffices to check that

D′

in ≤ D′

ix + D′

xn

for x = j, m. But this is equivalent to showing that (recall the definition of A−B)

Dim + Djn −Djm = Din + (A − B) ≤ Dix + Dxn

for x = j, m. Forx = j, this becomes

Dim −Djm ≤ Dij

which holds by the triangle inequality forD. Similarly for x = m, (3.24) becomes

Djn −Djm ≤ Dmn

which also holds by the triangle inequality forD.

22



3.7 ABC theorem proof, cont’d: check triangle inequality

So we need to show thatD′ satisfies the triangle inequality.

For any terms in the triangle inequality havingD′

in on the right-hand side, the

inequalities still hold, since we have only made the right-hand side larger. So it

suffices to check that

D′

in ≤ D′

ix + D′

xn

for x = j, m. But this is equivalent to showing that (recall the definition of A−B)

Dim + Djn −Djm = Din + (A − B) ≤ Dix + Dxn

for x = j, m. Forx = j, this becomes

Dim −Djm ≤ Dij

which holds by the triangle inequality forD. Similarly for x = m, (3.24) becomes

Djn −Djm ≤ Dmn

which also holds by the triangle inequality forD.
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3.8 ABC theorem proof, cont’d: other inequality

To prove the desired equality (3.19), must demonstrate the reverse inequality:

inf {‖D −D′‖`1 : D′ satisfies four-point condition} ≥ A − B. (3.27)

This is the same as saying that‖D −D′‖`1 ≥ A − B for everyD′ that satisfies

four-point condition.

From the definition of the norm, we can write

|A − A′| + |B − B′| + |C − C′| ≤ ‖D −D′‖`1 (3.28)

for any distance matrices. Now suppose it were the case that for someD′ we have

‖D −D′‖`1 < A−B. Then we want to show thatD′ cannot satisfy the four point

condition. By (3.28) we have

B′ − A′ + A − B =A − A′ + B′ − B

≤‖D −D′‖`1 < A − B
(3.29)

from which we conclude thatB′ < A′.
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3.9 ABC theorem proof: other inequality, cont’d

Similarly, sinceB ≥ C, we have

C′ − A′ + A − B =A − A′ + C′ − B

≤A − A′ + C′ − C

≤‖D −D′‖`1 < A − B

(3.30)

from which we conclude thatC′ < A′. SoD′ cannot satisfy the four point

condition if‖D −D′‖`1 < A − B.

This completes the proof of the equality (3.27).

Combining (3.27) with (3.21) completes the proof of the equality (3.19):

inf {‖D −D′‖`1 : D′ satisfies the four-point condition} = A − B.

Now we turn to the other part of the theorem which characterizes the set of

optimal distance matrices.
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3.10 ABC theorem proof: optimal matrix characterization

Now suppose thatD′ is additive and satisfies (3.20):

‖D −D′‖`1 = A − B,

andB > C. Then we want to show that

A ≥ A′ = B′ ≥ B. (3.31)

Suppose thatA < B′. ThenB′ − B > A − B and applying (3.28) we find that
‖D − D′‖`1 > A − B. ThereforeA ≥ B′.

On the other hand, ifA′ < B thenA − A′ > A − B, and again (3.28) yields a
contradiction.ThereforeA′ ≥ B.

If A′ < B′, then

A − A′ + B′ − B = A − B + B′ − A′ > A − B (3.32)

contradicting optimality, again via (3.28), sothereforeA′ ≥ B′.

We are almost done with the proof of (3.31), but there is one more inequality to
establish, namely thatA′ > B′ cannot hold.
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3.11 ABC theorem proof: last step

Finally, if A′ > B′, then the four point condition implies thatA′ = C′. Then

A − A′ + C′ − C = A − C > A − B (3.33)

by our assumption thatB > C, so again (3.28) yields a contradiction, implying
A′ = B′, concluding our proof that (3.31) has to hold.

Applying (3.31) in (3.28), we get

A − B =A − A′ + B′ − B

=|A − A′| + |B − B′|

≤|A − A′| + |B − B′| + |C − C′|

≤‖D − D′‖`1 = A − B

(3.34)

which means that equality holds throughout the experession(3.34), so we must
haveC = C′. In particular, we conclude thatA′ = B′ ≥ B > C = C′.

Now it is easy to show that all additive matrices withA′ = B′ > C′ have the
same topology.Q.E.D.
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4 What UPGMA does

UPGMA applied to a distance matrix will coallesce the closest points, that is, the

one for which the entry in the distance matrix is smallests, sayD(i, j).

One might hope that UPGMA would find the correct tree for an additive matrix.

The nearest neighbors in the tree for an additive matrix are the indices that

combine to form the termC that is the smallest of the three terms involved in the

four point condition:C < B = A.

However, even though it may hold thatD(i, j) is the smallest entry in the distance

matrix,C = D(i, j) + D(m, n) is not smaller thanA or B.

In this case, UPGMA finds the wrong tree.

For example, consider a distance matrix withA = 5 + 5, B = 4 + 4, and

C = 3 + 7:
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b c d

a 3 5 4

b 4 5

c 7

Table 2: Additive distance matrix for which UPGMA gives the wrong tree.

3

c c

d
b

aa

b
d

1

1

1

3

Figure 6: UPGMA tree and additive tree for distance matrix inTable 2.
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