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In PDB file 2QVI dehydrons get desolvated by calciums.




The standard explanation in the literature for the calciumaing is
that the calciums form salt bridges with the D and E sidechiun
e-cad. This is true, but it only explains part of the story.

It does not explain why this state Is favorable, comparecdhtony
both the calciums and D and E sidechains solvated (i.e.,unm)o

Something needs to explain why the water wants to get outeof th
way. In many other systems, we have found dehydrons give this
reason.

It seems to be at least part of the story for the cadherins.

In addition to forming favorable electrostatic interaosothe
calciums displace water.

Water’s role as a dielectric is modulated by such eventsilauns
ligands often bind where there is a benefit to water removal.




In the figure, the calciums are in magenta, with Ca 301 at the
upper-right. The two dehydrons near Ca 301 are indicatetidy t
backbone atoms of the donor and acceptors. Also note anmtieer
at the upper right of e-cad which is presumably a binding site

Ca 303 is desolvating the hydrogen bond LEU A 70 — ASP A 67.
This hydrogen bond is wrapped by 22 carbon groups at a desiaing
6.5 AA, but there are also 6 waters inside this radius.Thissah
exposed hydrogen bond.

While the central dehydrons explain some of the rigidityvad of
the loops, | don’t yet see why the long loop joining the twoioag
gets stabilized. So further research is needed.

Ca 302 has a whopping 11 negatively charged sidechaingwithi

4.51AA. Only six for 301 or 303. So the story for Ca 302 may be
mainly about salt bridges being formed.




Systems (r)evolution

Traditional systems research was based in three area§.

Databases

Programming Operating
Languages § Systems
Compilers

Figure 1: Traditional areas of systems research




Current systems research

Current systems research has changed in two of the threg area
And new ones have emerged.

[Pervasiv} [ EmbeddecD
Databases

Datamining

Distributed
Computing

Figure 2: Traditional areas of systems research are chghgntl new ones have
been added.




Future systems research

Future systems research will continue to evolve.

Databases

PL & Datamining
Compilers Networking
Software Distributed

Automation Computing

Figure 3: Traditional areas of systems research must charglevive




What is Software Automation?
There are two distinct phases.

(1) construct a domain specific language

with an underlying mathematical model

and a translator into executable code.

(2) optimizewithin the mathematical model

to improve execution times for generated code.
Steps are independemstometimes only (1) is done.

Step (1) is related to the generative programming model.




Conventional PL/compilers model

Conventional PL/compilers model fits into the software
automation description to some extent.

The underlying mathematical model is essentially the
A-calculus.

But true optimizations are replaced by simple

transformations because
conventional optimization would be intractable.

Some code transformations guarantee a reduction in runtime
and are always helpful in any model.




New paradigms for software
development

Hierarchical code development
Improves upon standard two level model: language+compiler

Allows appropriate optimizations to be done at differentls
Improves code correctness and decreases cost of code piaezid

Automation of code production
Utilizes abstract descriptions as basis to generate cadenatically
Leverages intrinsic domain languages

Improves code correctness and decreases cost of code piaezid
Allows true optimization of generated code




Hierarchy of problem representation

—Model
gorit

—EXxecutable code

Automation can be

description [a

nm discovery

pplication domain]

'mathematical description]

nm implementation [programming language]

'machine code: parallel, multicore

nerformed at each level

Interaction between levels can be tested to optimize
performance




Example of hierarchy: signal
processing (Spiral project)

—Model description [Discrete Fourier Transform: DF

gorit

gorit

nm discovery [Cooley-Tukey FFT]

nm implementation |

SFTW]

—EXxecutable code [BLAS, A]

"LAS, OSKI]

Automation can be performed at each level. can derivg
FFT from abstract definition of DFT

No need to hand-code for specific architectures




The software challenge

(Correct) interpretation of problem discription

Have to translate from a high-level description to low-leve

executable, correctly!
Optimization of generated code

Have to solve disparate optimization problems at commhetor in

conjunction with run-time indicators

Tension between expressiveness and efficiency

|deally the naive user could code in a high-level speciforati
language and have it translated into efficient machine code.




Problem with single-language approach

Scheme

)
0
L
Z
L
>
0
0
L
o
o
>
f

C
Fortran

EFFICIENCY

Figure 4: The conflict between efficiency and expressivejMsBragichescul.




Each language has its own domain

Each reflects a different application domain

Fortran: u(x)ﬂsin(log(tan(cos(J1(69j + /7x)))))

Scripting languages: rapid prototyping, user interfaces

Functional languages: compilers, symbolic manipulatign

C. systems software

C++: job security for programmers

what language?: (parallel) sparse matrix operations

17



Nature of ‘answer’ changes over time

In antiquity, an answer was a number: the length of th
diagonal of a unit square ig?2.

Later geometric figures were answers: elliptical orbits
planets.

More recently, functions became an acceptable answdy:
an ODE Is solved by a Bessel functiof,

In computational science,vaell posed boundary value
problemis an acceptable answer.

All of these are abstractions that provide information @
demand.




FEM: computational science ‘answer’

Generates discrete (finite) algorithms for approximati
the solutions of differential equations.

differential equation—=

domain description = F E I\/I

boundary data > assembles K, F —= solution
solves KU=F
forms u from U

forcing terms (f) =
a mesh of the domain——=

Figure 5. FEM=Dblack box into which one puts model problem aatlof which
pops an algorithmK U = F) for approximating the corresponding solutions.




Adaptive FEM formalism
What is the right way to program this?

adaptive

differential equation I: E M

domain description

creates initial mesh _
boundary data solution

—— applies| FEM

forcing terms (f) _
uses error estimator

good enough?
| creates new mesh

guality requirement

Figure 6: Black box for adaptive FEM; requires no mesh ifitjanly quality re-
guirement. Generates a sequence of meshes and appliesrdt&idV until quality
IS assured.




Causes of efficiency—expressiveness
conflict

Compilers perform transformations, not optimization.

Optimization at compile time, even If based on realistid@@nance
models, would be wildly expensiveV(PV ")

True optimization would have to involve evaluating
or accurately modeling performance.

Actual performance is often data dependent.

Best transformations are often domain dependent.




What Is missing currently

Current language support for hierarchical abstraction

¢ You candefinewhat you want
e But you can’t specifynow to compile iff12, 13]

Compliler optimizations cannot be chosen to fit the
application.

Must live with what the compiler writer gives you.

Interpretation of multiple abstraction levels may also bstly.




One solution: multi-lingual

Scheme

« Analysa
~ o approach

)
)
L]
Z
L]
>
0
0
L]
i
o
>
L]

Fortran

EFFICIENCY

Figure 7: One way to combine efficiency and expressivendss [1




Limits to linking multiple languages

(Experience gained from the development of Analysa.)

Lacks formal description, requires development (and neaigmce)
of ad hoc interface.

Different memory models (allocation, garbage collectioa)
Interact adversely at run time.

Increases the burden of code maintenance (must track meultip
standards, together with interactions between them).

But it does mollify the tension between expressiveness and
efficiency.




Ken Kennedy’s telescoping languages

Scheme

« Tlelescoping
~ o Languages

)
0
L
Z
L
>
0
0
L
o
o
>
f

Fortran

EFFICIENCY

Figure 8: Telescoping language approach [6].




Similar challenges

from which we can learn

Same as problems in language/compiler design

Need to perform optimization and code generation

Often need to utilize these in an application-specific wayirgd).

Hierarchical issues addressed Iin programming language

Manticore project for parallel computation

Algegra of code optimizations

Common to use Lambda Calculus or algebra of real numbers

Finite elements introduces optimization in vector spaces

26



Personal history of software automation projects

From Brenner-Scott (1994)

“The finite element method provides a formalism for genagatiscrete (finite)
algorithms for approximating the solutions of differehgguations. It should be
thought of as a black box into which one puts the differerglation (boundary
value problem) and out of which pops an algorithm for appr@ating the
corresponding solutions. Such a task could conceivablyobe dutomatically by
a computer...”

B. Bagheri, M. Draghicescu, and L. R. Scott. Functional otg¢or finite element
computation. In Proceedings of the Second Annual Objewtr®¥d Numerics
Conference, 1994.

Babak Bagheri and L. Ridgway Scott. About Analysa. Uniugref Chicago
Technical Report TR-2004-09

While chasing this large bear ...




a small rabbit crossed our path ...

L. R. Scott, J. M. Boyle, and B. Bagheri. Distributed dataistiures for scientific
computation. In Hypercube Multiprocessors 1987, M. T. Heatl., pages 55-66.
Philadelphia: SIAM, 1987.

Ernesto Gomez and L. Ridgway Scott. Compiler Support forlieri’rocess
Sets. University of Chicago Technical Report TR-2005-14

L. Ridgway Scott, Terry Clark, and Babak Bagheri. Scient#farallel Computing.
Princeton University Press, 2005

before getting back on track with the FEnICS project:

Robert C. Kirby, Anders Logg, L. Ridgway Scott and Andy R.réérTopological
Optimization of the Evaluation of Finite Element Matric€8AM J. Sci.
Computing 28:224-240, 2006.

A. R. Terrel, L. R. Scott, M. G. Knepley, and R. C. Kirby. Autated FEM
discretizations for the Stokes equation. BIT, 48(2):388+4008.

Peter R. Brune, Matthew G. Knepley, and L. Ridgway Scott.dfigntial grids in
high-dimensional space University of Chicago Technicgdd®eTR-2011-7




1 Solving PDE’s: the FEM

Optimization of code for solving differential equationssizeen
studied widely [7, 8, 17, 18].

Many of these approaches have been based on the finite eleme
method (FEM).

There are four distinct areas of finite element codes: fon@paces,
domain geometry/mesh, differential equation, and eqoatodution.

These are not hierarchical: interactions are multi-fat.etg

Each area has it own natural language and its own optimrzmtio

But interactions require inter-procedural analysis to
obtain ideal performance.




Structure of PDE codes

Different modules must interact.

function spaces
g

Fiat, SyFi FFC

partial diff. eq.

|

geometry/mesk ed. solution

Sieve PetSc

Figure 9: The structure and and some interactions of PDEscode




Mathematics of PDE codes

Different domains use different mathematics.

function space: partial diff. eq.

S5
@
functional anal. variational forms

|

geometry/mest eq. solution

combin. topolog linear algebra

Figure 10: Sample mathemtatical structures of compondm®& codes.




Boundary condition interactions

Require independent modules to be compatible.

function spaces partial diff. eq.

functional anal. variational forms

s

4 )
boundary

_ conditions
combin. topolog - J

geometry/mest

Figure 11: The interactions of boundary conditions in PD&es




FErari interactions

FErari can be used as a matrix-free method.

May be of interest for multi-core processors.

function spaces partial diff. eq.

functional anal. variational forms

N

s B
FErari as a
matrix—free

L method ,

eq. solution

linear algebra

Figure 12: The interactions required to use FErari in PDEesod




Mathematics may be incomplete

What is aC" element? Cubic Hermite?!

function spaces

functional anal.

global element definitio

links local/global info.

geometry/mesh

combin. topology

Figure 13: Requirements for a definition of global finite edns.




Software automation paradigm

application domain correct translation

math. abstraction | code optimization

Figure 14. Components of the software automation paradigm.

Current (functional) PL research fits this paradigm:

application domain language compiler

math. abstraction Lambda calculus

Figure 15: PL paradigm as software automation.




|s Software Automation CS?

Is It Math?
Many areas now claim to be both

Algorithms and complexity
Combinatorics

Computational biology

Software Automation is clearly
Computational Mathematics




FFC examples

Copyright (c) 2005 Johan Jansson.
Licensed under the GNU GPL Version 2

elasticity with e(u) = grad(u) + grad(u)'T

#
#
#
# The bilinear form e(u) : e(u) for linear
#
#
#

Compile this form with FFC: ffc Elasticity.form
element = FiniteElement("Vector Lagrange", "tetrahedron

BasisFunction(element)
BasisFunction(element)

(ulil.dx() + ulll.dx(®)) * (v[il.dx() + vil.dx()) * d




Copyright (c) 2004 Anders Logg (logg@tti-c.org)
Licensed under the GNU GPL Version 2

#

#

#

# The bilinear form for the nonlinear term in the

# Navier-Stokes equations with fixed convective velocity.
#

# Compile this form with FFC: ffc NavierStokes.form

element = FiniteElement("Vector Lagrange", "tetrahedron

BasisFunction(element)

Y
u BasisFunction(element)
w = Function(element)

a = wjJ*u[i].dx(j)*V[i]*dx

This compiles to 388 lines of C++ code (38665 characters)




2 Code generation example: matrix formation

Formation of matrices takes substant
time In finite element computations.

Disadvantage of finite elements over finite differences
But standard algorithm can be far from optimal.

A general formalism can be automated called FErart:

Finite Element ReArRangement of Integrals

Eliminates efficiency penalty of finite elements.




2.1 Computation of Bilinear Form Matrices

The matrix associated with a bilinear form,

Aij = a(di, ¢5) = Y ac(¢i, ¢;) (2.1)

e

for all 7, j, can be computed by assembly. First, set all the entrigstofzero.
Then loop over all elementsand local element numbeksandy and compute

Asenyatennt =K5 4= D Gro B o (2.2)

whereGy, .., andK ,, m » are defined via

e . afm agm
Gy = det(J Z 9, O,

j_

0
K)\,,u,m,m’ — agm ¢>\ (5) afm’ (f) d€




2.2 Matrix computation strategy

We optimize the computation of each

K)e\”u — Z qun,m/K)\,,u,m,m’ (25)

d

e 8£m 8£m’
whereG,, ,,,, = det(J

0

0
Kk,u,m,m’ — - 8@“7¢A(£)%¢“(£) d§

Collection of dot products of fixed vector&’} with
varying set of vectors({’s encode “geometry”
iInformation of elements).

Pre-computations can be done, based on relations a
the K’s, that reduce computational effort substantially.




2.3 TensorK for quadratics
zero entriestrivial entriesand




2.4 Computing K for quadratics

Taking advantage of these simplifications, eachfor quadratics in
two dimensions can be computed with at most 18 floating point
operations instead of 288 floating point operationsingorovement
of a factor of sixteen in computational complexity.

On the other hand, there are only 64 nonzero entries in Kac®o
eliminating multiplications by zero gives a four fold impement.

Sparse matrix accumulation requires at least 76 (=36+36+4)
memory references, not including sparse matrix indexirngnkf
the matrix is stored in symmetric form, at least 46 (=21+21+4
memory references are needed.

Computational complexity can be
less than cost of memory references.




Entries
9
36
100
225
441
784

Zero
0

Equal
0
11
41
o8

183
342

CoL
0
6

10
6
15
21

1 entry
4

ED1
4
8

16
35
ol
75

2.5 Computing K for general Lagrange elements

2 entry
0
0
8
16
28
32

160
310

10
20
76
209
446
784

Figure 16: Key: CoL=Colinear, ED1=edit distance 1,LC=aneombination

Using FErari to compute finite element matrices for

Laplace’s equation in two dimensions using continuou
Lagrange elements of degree




from Numeric import zeros

G=zeros(4,"d")

def K(K,jinv):

detinv = 1.0/(jinv[0,0]*jinv[1,1] - jinv[O,1]*jinv[1,0]
G[O0] = ( jinv[0,0]**2 + jinv[1,0]**2 ) * detinv
G[1] ( jinv[0,0]*jinv[0,1]+jinv[1,0]*inv[1,1] ) * deti
G[2] G[1]

G[3] = ( jinv[0,1]**2 + jinv[1,1]**2 ) * detinv
K[1,1] = 0.5 * G[O]

K[1,0] -0.5 * G[1]- K[1,1]

K[2,1] = 0.5 * G[Z]

K[2,0] -0.5 * G[3]- K[2,1]

K[O,0] -1.0 * K[1,0] + -1.0 * K][2,0]

K[2,2] = 0.5 * G[3]

K[0,1] K[1,0]

K[O,2] K[2,0]

K[1,2] = K[2,1]

return

Generated code for computing the stiffness matrix for liresssis functions.




2.6 Efficient Computation of co-planarity

One vector can be written as a linear combination of two atifer
and only if the three vectors (and the origin) are co-planar.

A (nearly) quadratic algorithm determines set of planesgsed by all pairs of
vectors and checks for equality of planes.

Quadratic is optimal because there car2b& common planes amortj vectors.

Figure 17: Example of lattice with = 4. For each point on the lower line, therg
are exactly four planes. Only the planesfet 1, 2, 3, 4 are shown.




A faster FErari

Francis Russell uses [5] to optimize polynomial expression
algebraic factorization and common subexpression elimna
(CSE).

After symbolic integration, independent multivariatasasl
expressions for each entry of the local assembly matrix @ag/aed.

Generating efficient code from these requires identifyind a
reusing certain computations.

Standard compiler CSE passes neither have the freedomeanor th
capacity to take advantage of certain numerical relatipssh

Optimisations take advantage of the distributivity of nplitation
over addition and work in exact rational arithmetic.

Provides superior performance for multilinear forms.




Other software automation projects

Cactus: Gravitational Physics

FLAME: dense linear algebra

KPP: chemical kinetic systems [14]

Madness: wavelets [2]

Spiral: signal processing [11]

Tensor contraction engine: quantum chemistry

as well as the FENnICS project
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