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Chapter 1

Introduction to ice

Water forms many different crystal structures in its solid form. These provide insight into the
potential structures of ice even in its liquid phase, and they can be used to calibrate pair potentials
used for simulation of water [9, 14, 15]. In crowded biological environments, water may behave
more like ice that bulk water. The different ice structures have different dielectric properties [16].

There are many crystal structures of ice that are topologically tetrahedral [1], that is, each water
molecule makes four hydrogen bonds with other water molecules, even though the basic structure
of water is trigonal [3]. Two of these crystal structures (Ih and Ic) are based on the same exact local
tetrahedral structure, as shown in Figure 1.1. Thus a subtle understanding of structure is required
to differentiate them.

We refer to the tetrahedral structure depicted in Figure 1.1 as an exact tetrahedral structure. In
this case, one water molecule is in the center of a square cube (of side length two), and it is hydrogen
bonded to four water molecules at four corners of the cube. The triples of numbers represent the
Cartesian coordinates of the various water locations. The distance between oxygen centers in these
coordinates is

√
3 for the waters that are directly hydrogen bonded, as indicated by the dotted lines

in Figure 1.1, and the distance between the next-nearest neighbors is 2
√
2. The actual distance for

ice Ih or Ic is believed to be 2.76 Ångstroms, so to convert our coordinates to Ångstroms we must
multiply by 1.5935. We will see that the density of ice Ih and Ic in our units is one water per eight
cubic units, which corresponds to about one water per 32.37 cubic Ångstroms.

The ice structures are not simple repeats of this basic cube. Instead, this unit is utilized in
different ways to form different forms of ice I. In other forms of ice, this tetrahedral structure is
distorted, but the four hydrogen bonds remain.

Notice that we have not specified the location of the hydrogen (donors) for the hydrogen bonds
in Figure 1.1. We use dotted lines to indicate the hydrogen bonds inside the cube, independent of
where the hydrogens are located. In general, there are six different specifications for the hydrogens
for the central water molecule located at the center of the box, since there are four possible locations
for each pair of hydrogens:

6 =

(
4
2

)
.

For each of these six pairings, it is easy to see that there is a compatible assignment of hydrogens
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1.1. LATTICES IN R
3 CHAPTER 1. INTRODUCTION TO ICE
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Figure 1.1: The tetrahedral basis for the crystal structures of both forms of ice I. The triples of
numbers are the Cartesian coordinates of the water positions in a cube of side two units. Forms
the basis for both the cubic structure of the diamond lattice for ice Ic and the hexagonal structure
of ice Ih.

for the four corner water molecules (each edge must contain precisely one hydrogen). However,
when one continues this process to their neighbors, constraints on the hydrogen positions become
significant. In some forms of ice, the positions of the hydrogens are fixed, and we can indicate the
directions of the hydrogen bonds by arrows (cf. Figure 3.1).

One way to think of the structure of ice is as a graph with a type of periodic structure. In
this way, there is a natural finite graph that generates this periodic structure [12]. These graphs
differentiate the different forms of ice, and they help to visualize the structure. Let us introduce
these notions more precisely.

1.1 Lattices in R
3

A lattice is a very simple notion, a set of points generated by shifting the origin in three directions
repeatedly. They are specified by three vectors as in (2.9) or (2.18).

Definition 1.1 Suppose that g1, g2, g3 ∈ R
3 are not co-planar. A lattice L(g1, g2, g3) in R

3 is the

set of points

L(g1, g2, g3) =
{
xα =

3∑

i=1

αig
i
∣∣ α ∈ Z

3

}
,

where g1, g2, g3 ∈ R
3 are called the generators of the lattice.

Thus a lattice just consists of the vertices of a tiling of R3 obtained with simple boxes with
possibly slanted sides. Lattices make sense in any number of dimensions, with the number of
generators being the dimension. The vertices of the parallelograms in Figure 2.2 provide an example
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CHAPTER 1. INTRODUCTION TO ICE 1.2. CRYSTALS IN R
3

of a lattice in two dimensions. Since we are primarily interested in three-dimensional lattices, we
have simplified to this case.

A lattice forms a group under the addition

xα + xβ =
3∑

i=1

(αi + βi)g
i ∀α, β ∈ Z

3, (1.1)

and this group is isomorphic to Z
3. We can denote this isomorphism by φ, where

φ(β) = xβ ∀β ∈ Z
3. (1.2)

The fundamental domain of a lattice L(g1, g2, g3) is the set

ΩL =
{
y = x1g

1 + x2g
2 + x3g

3
∣∣ x ∈ R

3, 0 ≤ xi ≤ 1, i = 1, 2, 3
}
. (1.3)

The shapes of the fundamental domain of a lattice are crucial in determining certain symmetries
of crystals, and they are useful in visualizing the repeating pattern of crystals. However, these
symmetries are primarily of interest when determining the vertex positions based on X-ray data.

1.2 Crystals in R
3

A crystal is more complex than a lattice. It has a set of points P ⊂ R
3 that form the basis for the

crystal unit, and these are shifted throughout space using a lattice. Typically, P ⊂ R
3 is a finite

set.

Definition 1.2 We say that a set P ⊂ R
3 is non-degenerate with respect to a lattice L(g1, g2, g3)

if for any p, q ∈ P and xα ∈ L(g1, g2, g3), p = q + xα implies xα = 0.

Definition 1.3 Suppose g1, g2, g3 ∈ R
3 are the generators of a lattice L(g1, g2, g3), and P ⊂ R

3 is

non-degenerate with respect to L(g1, g2, g3). A crystal C in R
3 is a graph C = (V , E) whose vertices

V comprise a set of points

V =
{
xα + p

∣∣ p ∈ P , xα ∈ L(g1, g2, g3)
}
, (1.4)

and whose edges E are also generated by a finite set S ⊂ V × V of edges:

E =
{
(xα + v1, xα + v2)

∣∣ (v1, v2) ∈ S, xα ∈ L(g1, g2, g3)
}
. (1.5)

One simple crystal C(g1, g2, g3) is based on a lattice L(g1, g2, g3), with P = {(0, 0, 0) ∈ R
3} and

S =
{
(0, gi)

∣∣ i = 1, 2, 3
}
. Notice that the set S is not a set of edges based on points in P . That is,

the pair (P ,S) does not form a graph itself.
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1.3. COMPARING CRYSTALS CHAPTER 1. INTRODUCTION TO ICE

1.3 Comparing crystals

Ice forms many different crystal forms under different temperature and pressure conditions. We
would like to have ways to compare them that compare, contrast and differentiate them. We will
see that some of the commonly used concepts do not distinguish between common ice forms.

1.3.1 Quotient graph

For any crystal C = (V , E) generated from a lattice L(g1, g2, g3), the natural lattice group defined
via (1.1) acts on C in a natural way, and it leaves the crystal invariant:

xβ(xα + p) = xα + xβ + p = xα+β + p,

xβ(v
1, v2) = (xβ + v1, xβ + v2),

(1.6)

for all β ∈ Z
3. Note that we can think equivalently of (1.6) defining the action of L(g1, g2, g3) on C,

or the action of Z3 on C, where we make the obvious identification. Thus it is natural to consider
the quotient graph C/L(g1, g2, g3) with respect to this group action. Let us define this quotient
graph.

The vertices of this quotient graph are equivalence classes of vertices in V . We say two points
v1, v2 ∈ V are equivalent with respect to the group L(g1, g2, g3) if, for some β ∈ Z

3,

v1 = v2 + xβ. (1.7)

We define V/L(g1, g2, g3) to be the set of equivalence classes with respect to the equivalence relation
(1.7). Each vi = pi + xαi

, so (1.7) means that

p1 = p2 + xγ (1.8)

for some γ ∈ Z
3. Since we assume that P is non-degenerate with respect to L(g1, g2, g3), (1.8)

implies that
p1 = p2. (1.9)

Thus any [v] ∈ V/L(g1, g2, g3) can be written as p+ xα for a unique p ∈ P : [v] = [p]. Thus there is
a natural injection V/L(g1, g2, g3) ⊂ P . Since [p] ∈ V for all p ∈ P , this is an isomorphism.

For edges e ∈ E , let us use the notation ei for the vertices of the edge: e = (e1, e2). We say that
e and ê are equivalent with respect to the group L(g1, g2, g3) if, for some β ∈ Z

3,

ei = êi + xβ ∀i = 1, 2. (1.10)

We define E/L(g1, g2, g3) to be the set of equivalence classes with respect to the equivalence relation
(1.10). Note that [e] = [ê] implies that [ei] = [êi] for i = 1, 2. Therefore, for each “edge” [e] ∈
E/L(g1, g2, g3), we can identify two vertices [ei] for i = 1, 2. Thus there is a natural injection

E/L(g1, g2, g3) ⊂ V/L(g1, g2, g3)× V/L(g1, g2, g3) ⊂ P × P . (1.11)

Thus we can think of E/L(g1, g2, g3) as providing edges between vertices V/L(g1, g2, g3), and this
defines the graph C/L(g1, g2, g3), called the fundamental finite graph of the crystal [12]. We will
see that this graph can distinguish between different crystal structures of ice.
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CHAPTER 1. INTRODUCTION TO ICE 1.3. COMPARING CRYSTALS

distance Nh Nc

1.7321 4 4
2.8284 12 12
2.8868 1
3.3166 9 12
4.0000 6 6
4.0415 6
4.3589 9 12
4.6188 2
4.8990 18 24
5.1962 9 16
5.4160 12
5.4467 3
5.6569 6 12
5.6862 6
5.9161 18 24
total 121 122

Table 1.1: Radial distances between oxygen centers in two different forms of ice one: ice Ih and ice
Ic. The left column is the radial distance and the second and third columns are the numbers of
water molecules at that distance: Nh for ice Ih and Nc for ice Ic.

1.3.2 Radial distribution function

The radial distribution function is one measure often used. The primary one in the context
of ice is the oxygen-oxygen radial distribution function. This is a type of probability distribution
function related to the likelihood of finding a neighboring oxygen at a given distance r.

For true crystals, such a distribution is discrete, that is, a sum of delta functions at distinct
distances, due to the fact that the positions of the atoms in (1.4) has a periodic structure. Moreover,
all crystals based on the local tetrahedral structure in Figure 1.1 have the property that the first
(smallest r) nonzero part of the radial distribution is the same, corresponding to the fact that each
oxygen has four neighbors at a distance of

√
3 in the coordinates of Figure 1.1. The second nonzero

part of the radial distribution is also the same, corresponding to the fact that the (twelve) next
nearest neighbors are at the opposite corners of a cube of side two, and thus are all at a distance of
2
√
2 in the coordinates of Figure 1.1.
There is a significant difference between the radial distribution function and the radial density

function. The latter is the former divided by 4πr2. Thus the first peak for tetrahedral water would
have a height of 1/3π and the second peak would have a height of 3/8π.

Although the first two points of the radial functions for ice Ih and Ic are the same (see Table 1.1),
their overall distributions are quite different. Ice Ic has a sparser set of distribution points than Ih
as illustrated in Table 1.1. This pattern continues for larger distances; there are 96 distances in Ic
less than twenty, but 239 distances in Ih less than twenty. (Both crystals have thirty molecules at
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1.3. COMPARING CRYSTALS CHAPTER 1. INTRODUCTION TO ICE
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Figure 1.2: The radial distribution of ice Ic (a) and ice Ih (b).

a distance of twenty.)

1.3.3 Local graph structure

In some cases, the local graph of hydrogen bonds can be instructive. For crystals, this structure is
repeated, so we can look at a single instance. In Figure 1.3, we show the water molecules (vertices
indicated by circles) surrounding the central green water, together with the hydrogen bonds (edges).
The blue waters are the nearest neighbors, magenta waters are next-nearest neighbors, and the black
circles indicate next-next-nearest neighbors. Notice that four of them are marked in red because
they are involved in a cycle.
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Figure 1.3: The local graph of hydrogen bonds in both forms of ice I.
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Chapter 2

Ice I structures

The most common phase of ice on earth is Ih, the hexagonal form of ice [6, 11]. However, another
form (Ic) also occurs in the atmosphere [10]. Both of these have what we call exact tetrahedral
structure, as depicted in Figure 1.1. In this structure, one water molecule is in the center of a square
cube, and it is hydrogen bonded to four water molecules at four corners of the cube, as depicted in
Figure 1.1.

It is surprising that two different crystaline structures can be formed from this basic unit. One
objective here is to examine mathematical tools that can describe how they differ. In addition,
other forms of ice form nearly tetrahedral structures that have four bonds, although not with the
same lengths and angles as depicted in Figure 1.1.

2.1 Ice Ih

The crystal structure of ice Ih is identical to the hexagonal diamond structure of carbon, known
as Lonsdaleite [8]. This structure is also known as wurtzite [5]. The structure can be visualized in
several ways. It can be viewed as parallel sheets made of a hexagonal network of hydrogen bonds,
as shown in Figure 2.1. This figure provides the top view of a single sheet in the crystal and depicts
three of the hydrogen bonds formed by each water molecule, each of which is represented by a
vertex in Figure 2.1(a). There are alternating colors because the water molecules make alternating
hydrogen bonds with either the sheet above or the sheet below. In our rendering, the red waters
make bonds with waters directly above them, and the magenta waters make bonds with waters
directly below them. Obscured in Figure 2.1(a) are the vertical undulations in the sheets. This is
made clear when we realize that the hydrogen bonds around each vertex must form exact tetrahedral
bonds with their neighbors, as depicted in Figure 1.1. Thus the red waters, which make bonds with
waters directly above them, have all of the hydrogen bonds in Figure 2.1(a) projecting down. Thus
the red waters are at the top of the undulations in the sheets. The reverse is true for the magenta
waters.

We can complete the picture by considering neighboring sheets and their interconnecting hydro-
gen bonds, as shown in Figure 2.1(b). We have drawn the neighboring sheets with blue and green
waters to make them distinct from the red and magenta ones. We have depicted in Figure 2.1(b)
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2.1. ICE IH CHAPTER 2. ICE I STRUCTURES

(a) (b) (c)

Figure 2.1: The hexagonal structure of ice Ih. (a) Top view of a single layer. The red water oxygens
are located above the plane of the figure. In addition to the three hydrogen bonds depicted by
lines, they are also hydrogen bonded to waters in another layer above the plane. The magenta
water oxygens are located below the plane of the figure and are hydrogen bonded to waters in a
layer below the plane. (b) Side view of the hexagonal structure of ice Ih. Hydrogen bond inkages
between the red-magenta and the blue-green layers are shown using a thicker line. (c) Fundamental
finite graph [12, 13] of the hydrogen bond linkages.

the edge view of a vertical slice through the crystal sheets. Now we see the undulations of the sheets
that were obscured in Figure 2.1(a). We can also see that we can view the blue-green sheets as a re-
flection of the red-magenta sheets. The newly revealed hydrogen bonds are depicted in Figure 2.1(b)
via darker lines; the lighter lines indicate hydrogen bonds already seen in Figure 2.1(a).

In Figure 2.1(c), the fundamental finite graph (Section 1.3.1) of the connections [13] is depicted.
This reflects the fact that each water is connected to three waters within its horizontal sheet and
one water in a neighboring sheet. For example, there are three different ways for a magenta water
to be hydrogen bonded to a red water, and one way for it to be bonded to a green water.

The amplitude of the wiggles in Figure 2.1(b) can be obtained by reference to Figure 1.1. The
plane of the green points passes through the points (0, 2, 2), (2, 0, 2), (2, 2, 0), and the center of the
triangle generated by these points is (4/3)(1, 1, 1). Thus the distance from the blue water and
the green plane is

√
3/3 = 1/

√
3. Thus the wiggles above and below a mean plane are ±c where

c = 1/2
√
3 = (1/6)

√
3.

The basic symmetry of Ih ice is known as monoclinic. The top view of the crystal unit domain is
a simple parallelogram, as shown in Figure 2.2(a). In Figure 2.2(b), data is provided to determine
the dimensions of the crystal unit. The parameter a =

√
2, since the distance between two next-

nearest neighboring water oxygens, e.g., two blues in Figure 2.2(b), is 2
√
2. The blue waters fall in

a plane parallel to the plane of Figure 2.2, so the three dimensional distance is the same as the two
dimensional distance. The parameter b is the side length of a 60 degree right triangle, where the
other side length is a =

√
2. Thus b =

√
6.

We recall the parameter c = (1/6)
√
3 for the amplitude of the ‘wiggle’ below and above the

plane of the figure in Figure 2.2. Thus the points in the unit cell in the plane of the figure in
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CHAPTER 2. ICE I STRUCTURES 2.1. ICE IH

(a) (b)

b

a a (c)

Figure 2.2: The monoclinic symmetry of ice Ih. (a) The repeating crystal unit in the (x, y)-plane,
generated by g1 and g2. (b) Notation to determine the distance a; note that b =

√
3 a. (c) Three-

dimensional unit cell.

Figure 2.2 are (p0 is green, p1 is blue)

p0 =(a, b/3, c) = (
√
2,
√
2/
√
3, (1/6)

√
3),

p1 =(2a, 2b/3,−c) = (2
√
2, 2

√
2/
√
3,−(1/6)

√
3).

(2.1)

We can check the values of a, b, c by using the fact that the distance between oxygen centers is
√
3,

that is, ‖p1 − p0‖ =
√
3. Thus

‖p1 − p0‖2 = 2 +
2

3
+

1

3
= 3.

The remaining points in the unit cell (p2 is magenta, p3 is red) are

p2 =(
√
2,
√
2/
√
3, (7/6)

√
3),

p3 =(2
√
2, 2

√
2/
√
3, (3/2)

√
3),

(2.2)

which can be determined as follows. Green and magenta waters (p0 and p2) are hydrogen bonded,
and thus they are at a distance

√
3, and moreover their x and y coordinates are the same. Thus

p2−p0 = (0, 0,
√
3). The red waters are above the magenta waters by an amount 2c = 1/

√
3 =

√
3/3.

Note that

‖p3 − p1‖2 = 3

(
3

2
+

1

6

)2

= 3

(
5

3

)2

=
25

3
, (2.3)

so that ‖p3 − p1‖ = 5/
√
3 ≈ 2.89, slightly larger than the next-nearest neighbor distance of 2

√
2.

The generators of the lattice for the infinte crystal as in Definition 1.3 for the ice Ih crystal are
therefore

g1 = (2a, 0, 0) = (2
√
2, 0, 0), g2 = (a, b, 0) = (

√
2,
√
6, 0), g3 = (0, 0, (8/3)

√
3), (2.4)

where the z-axis translation is easily determined from Figure 2.1(b), as follows. The crystal unit
repeat distance in the z-direction consists of two componenents: one is the distance between oxygen
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2.2. ICE IC CHAPTER 2. ICE I STRUCTURES

(a) (b)

Figure 2.3: Crystal structure of ice Ic. (a) Cubic lattice unit of ice Ic. (b) Fundamental finite graph
[12] of the hydrogen bond linkages.

centers
√
3 and the other is the oscillation in the layer, which has magnitude c = 1/2

√
3. Both of

these elements get repeated twice in the crystal unit. Thus g33 = 2
√
3 + 2/

√
3 = 8/

√
3. An internal

check is available regarding the volume of the unit cell,

2a · b · g33 = (2
√
2)(

√
6)(8/

√
3) = 32. (2.5)

This means that the water density is one water per 8 cubic units. We will see that this matches
exactly the density of ice Ic.

Generators for the edges for the infinte crystal as in Definition 1.3 for the ice Ih crystal are

(p0, p1), (p0, p2), (p0, p1 − g1), (p0 + g2, p1), (p1 − g3, p1). (2.6)

2.2 Ice Ic

The location of water molecules in the ice Ic lattice is the same as the diamond (carbon) lattice. The
placement of waters in a cube is indicated in Figure 1.1. In Figure 2.3, we depict water molecules
in a cube of side four. This has four sub-cubes of size two each, each containing a molecule at its
center, as well as four void cubes. The symmetry of the diamond (ice Ic) crystal is often called
face-centered cubic, since there are atoms at each corner of the cube of side four at and at the center
of each face.

The location of the waters P in the unit cube that can be used to generate the infinte crystal
as in Definition 1.3 are

p0 = 000, p1 = 111, p2 =220, p3 = 022, p4 = 202,

p5 =331, p6 = 133, p7 = 313,
(2.7)

where we use the abbreviation xyz to stand for (x, y, z) for vectors in R
3, in keeping with the

notation in Figure 1.1. Notice that the last three vectors, which correspond to the subcube centers
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CHAPTER 2. ICE I STRUCTURES 2.2. ICE IC

in Figure 2.3 other than 111, can be written as the vector sum of 111 and the third, fourth and
fifth vectors, the positions of the waters at the corners of the subcube in Figure 1.1. That is,

pi = pi−3 + p1, i = 5, 6, 7. (2.8)

The generators of the lattice for the infinte crystal as in Definition 1.3 for the ice Ic crystal are

g1 = 400, g2 = 040, g3 = 004. (2.9)

The density of of ice Ic is eight molecules in 64 units cubed, or one molecule per 8 cubic units.
The relation (2.8) suggests that the diamond (ice Ic) crystal can be generated by a smaller

number of generators [12, 13]. So we consider crystal generators

P0 = 000, P1 = 111, (2.10)

together with lattice generators

G1 =220, G2 = 022, G3 = 202. (2.11)

Then (2.8) implies that
pi+3 = Gi + p1, i = 2, 3, 4. (2.12)

Of course we also have
pi+1 = Gi + p0, i = 1, 2, 3. (2.13)

Similarly, we have

g1 = G1 −G2 +G3, g2 = G1 +G2 −G3, g3 = −G1 +G2 +G3, (2.14)

Thus we have shown that the set of crystal vertices generated from (2.11) and (2.10) contain all of
the crystal vertices generated from (2.9) and (2.7).

The fact that the crystal with a smaller number of generators does not generate more points can
be proved by a density argument. The volume of the fundamental domain of the diamond crystal
can be computed as follows. We use the change of variables (2.14), which we can write as



g1

g2

g3


 =




1 −1 1
1 1 −1
−1 1 1






G1

G2

G3


 . (2.15)

Thus the fundmental domain for the lattice L(G1, G2, G3) has volume 16 = 64/4, since

det




1 −1 1
1 1 −1
−1 1 1


 = 4. (2.16)

Thus the density of molecules in the crystal generated from (2.11) and (2.10) is again one molecule
per eight cubic units. Therefore the two crystals are the same.

This confirms that the fundamental finite graph of the diamond (ice Ic) crystal is as shown in
Figure 2.3(b) [12, 13].
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(a) (b)

(−1,0,−1) (1,0,−1)
(0,0,0)

(0,1,1)

(0,−1,1)

Figure 2.4: The hexagonal view of the ice Ic crystal structure. (a) Overlay of two layers. The bottom
blue-green layer is shifted so that only the green waters lie directly below (and are hydrogen bonded
to) the magenta waters. The blue waters are not hydrogen bonded to any of the waters in the red-
magenta layer shown, but rather are hydrogen bonded to waters in a layer (not shown) below the
blue-green layer. (b) The basic tetrahedral unit. The blue triangles indicate hydrogen bonds, and
the direction of the triangle indicates the direction in or out of the plane.

2.3 Second view of the Ic crystal structure

The ice Ic (diamond) crystal structure is closely related to the Ih structure of ice. It involves the
same hexagonal sheets as indicated in Figure 2.1. In this case, there are three such sets of parallel
layers, running in transverse directions. So to be precise, we must pick one normal direction for
definiteness, which we will call the z axis. In the case of ice Ih, there is only one normal direction
to the parallel sheets determined by the direction of the regular hexagonal holes.

For ice Ic, instead of hydrogen bonding to reflected layers above and below, they are hydrogen
bonded to layers above and below that are shifted, as is shown in Figure 2.4(a) for two layers. We
imagine that the blue-green layer is below the red-magenta layer. Thus we see the green waters
below the magenta waters. The red waters in the red-magenta layer are also hydrogen bonded to
blue waters in an unseen blue-green layer above. Thus the two blue-green layers are shifted as well
and do not lie on top of each other from this perspective.

There is also another description of the ice Ic (diamond) crystal, involving a smaller set of
generators and lattice unit domain. We pick a set of coordinates (x̂, ŷ, z) rotated by 45 degrees in
the plane perpendicular to the z-axis. In these coordinates, the location of the waters P in the unit
cube that can be used to generate the infinte crystal as in Definition 1.3 are

p̂0 = (0, 0, 0), p̂1 = (
√
2, 0, 1), p̂2 = (

√
2,
√
2, 2), p̂3 = (0,

√
2, 3). (2.17)

The generators of the lattice for the infinte crystal as in Definition 1.3 for the Ic crystal in these
coordinates are

ĝ1 = (2
√
2, 0, 0), ĝ2 = (0, 2

√
2, 0), ĝ3 = (0, 0, 4). (2.18)

The relation between the coordinates in Figure 1.1 and the points in (2.18) and (2.17) is given
by

x =
x̂− ŷ√

2
, y =

x̂+ ŷ√
2

. (2.19)
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Thus the (x, y, z) coordinates qi of p̂i compare with the points pi of (2.7) as follows:

q0 =(0, 0, 0) = p0, q1 = (1, 1, 1) = p1, q2 = (0, 2, 2) = p3,

q3 =(−1, 1, 3) = (3, 1, 3)− (4, 0, 0) = p7 − g1.
(2.20)

Similarly, the (x, y, z) coordinates hi of the lattice vecotrs ĝi are

h1 = (2, 2, 0) = 1

2
(g1 + g2), h2 = (−2, 2, 0) = 1

2
(−g1 + g2), h3 = g3. (2.21)

Inverting these relations, we find

g1 = h1 − h2, g2 = h1 + h2, g3 = h3. (2.22)

Thus any point of the form in the ice Ic crystal can be written as

pj +
3∑

i=1

mig
i = pj + (m1 +m2)h

1 + (m2 −m1)h
1 +m3h

3. (2.23)

To see that this is in the crystal described by (2.17) and (2.18), we have to relate the rest of the
pi’s to the qi’s. Thus we collect all of the relationships here, some of which have previously been
derived:

p0 =q0

p1 =q1

p2 =(2, 2, 0) = h1 = q0 + h1

p3 =q2

p4 =(2, 0, 2) = q2 − h2

p5 =(3, 3, 1) = q1 + h1

p6 =(1, 3, 3) = q3 + h1

p7 =q3 + g1 = q3 + h1 − h2.

(2.24)

This proves that

V(p0, . . . , p7; g1, g2, g3) ⊂ V(q0, . . . , q3;h1, h2, h3) = V̂(p̂0, . . . , p̂3; ĝ1, ĝ2, ĝ3). (2.25)

The fact that

V(p0, . . . , p7; g1, g2, g3) = V(q0, . . . , q3;h1, h2, h3) = V̂(p̂0, . . . , p̂3; ĝ1, ĝ2, ĝ3) (2.26)

is a simple consequence of a density argument. The former crystal has eight points per cube of size
43 = 64 units-cubed, whereas the latter has four points per box of volume 2

√
2 × 2

√
2 × 4 = 32

units-cubed. Thus they both have the same density of one point per eight units-cubed, and hence
they must be equal. If some point were in the latter and not in the former, this would happen
consistently (periodically) and this would violate the equality of densities.
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(a) (b)

Figure 2.5: Comparison of the hexagonal views of the ice Ih (a) and Ic (b) crystal structures. In
both structures, the blue waters are not hydrogen bonded to any of the waters in the red-magenta
layer shown, but rather are hydrogen bonded to waters in a layer (not shown) below the blue-green
layer. The magenta and green waters are hydrogen bonded.

2.4 Alternating Ih/Ic layered structures

The two ice I structures are compared and contrasted in Figure 2.5. Since both the Ih and Ic
crystals can be constructed one layer at a time, it is clear that layered structures can be built with
arbitrary alternations between Ih and Ic layers. More precisely, when adding an additional layer,
a choice can be made to add a reflection (Ih) or shift (Ic) of the previous layer. This construction
preserves the exact local tetrahedral structure depicted in Figure 1.1 or Figure 2.4(b).
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Ice II structure

The structure of ice II [7] is different from the ice I structures in several ways, but it can also be
compared with ice Ih in useful ways. It is useful to think of ice II as being derived from ice Ih in
terms of hexagonal columns, each of which is formed of an alternating structure of hexagonal rings
as depicted in Figure 3.1. The columns themselves no longer form simple hexagonal attachments,
however. Note that the alternating hexagons are not perfectly aligned in ice II, cf. Figure 1 in [2]
or Figure 2a in [4].

Thus there are two types of rings: the blue-green rings form hydrogen bonds to the red-magenta
rings above and below, much like the connections formed between layers in ice Ih. However, the
layers in this case are quite different, as the red-magenta rings do not make hydrogen bonds with
the blue-green rings directly above or below them. Instead, the red-magenta rings form hydrogen
bonds with neighboring hexagonal columns, as depicted in Figure 3.2.

Unlike ice Ih and Ic, ice II is hydrogen-ordered (or proton-ordered). This means there is exactly
one prescribed direction for each of the hydrogen bonds formed at each oxygen center. Thus we
can depict the hydrogen bonds via an oriented graph, as indicated in Figure 3.2. Also, the local
structure of ice II is significantly altered from the perfect tetrahedral structure of ice Ih and Ic.
This is consistent with the fact that water is itself not tetrahedral in structure [3]; it is trigonal, but
the flexibility of hydrogen bonds allows the formation of both perfect and approximate tetrahedral
structures.

For ice II, the hexagonal columns are somewhat free-standing, connected by hydrogen bonds
to other hexagons, but the connections themselves do not form a hexagonal structure as in ice Ih.
Each of the hexagonal columns is constructed using alternating layers of hexagons as depicted in
Figure 3.1. Thus there are green-blue hexagons and red-magenta hexagons which stack on top of
each other. Oscillations in the water heights around the mean are indicated for the blue-green
hexagon; the solid line hexagon depicts the mean height. The units used in [7] are based on the unit
of repeat in the direction orthogonal to the plane of Figure 3.2, which is the same as the direction
parallel to the center of the hexagonal columns in Figure 3.1 (i.e., the horizontal axis); one of these
units is approximately 6.25 Å. The length of the hydrogen bonds shown in Figure 3.1 corresponds
to about 0.57 units in the direction parallel to the center of the hexagonal columns, whereas the
distances between nonbonded oxygens is only 0.43 units. In Figure 3.2, which is a caricature of
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Figure 3.1: The structure of the hexagonal columns in ice II. Side view of hydrogen bond structure
between the two types of rings in ice II. Oscillations in the oxygen displacements from the mean
are indicated for the blue-green hexagon; the solid line hexagon depicts the mean position along
the axis of the hexagonal column.
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u

d
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d

U

D

U

U

D

Figure 3.2: Hydrogen bond structure in the two types of rings in ice II. The dashed lines in the
dashed box indicate the hydrogen bonds made perpendicular to the plane of the figure, whose
directions are indicated by U and D (up and down). The lower case letters ‘u’ and ‘d’ (up and
down) indicate the orientation of the hydrogen bond acceptor regions on the oxygens. The dotted
lines indicate hydrogen bonds made between two different hexagonal columns. The graph to the
right depicts the topology of the hydrogen bond connections [12].
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Figure 2 in [7], the top view of each of these hexagons is shown, together with the hydrogen bonds
made between two different hexagonal columns, indicated by a dotted line.

The alternating colors mark the alternating directions of the hydrogen bonds (from the oxygen
center towards the two hydrogens in each water molecule). In the left hexagon, only one of the
hydrogen bonds is seen as the other is (alternately) going out of the page or into the page; the
directions for these hydrogen bonds are indicated by capital letters for Up and Down. The pattern
of these hydrogen bonds is indicated by the dashed lines in the dashed box: e.g., green waters
have hydrogens below the plane of the page making a hydrogen bond with magenta oxygens. The
small letters indicating ‘u’ and ‘d’ in the red-magenta hexagons also indicate the directions of the
hydrogen bonds, but in this case in reverse. These hydrogen bonds are depicted by arrows that are
visible in the plane of the page; the larger arrows indicate ones coming up out of the page, and the
smaller arrows indicate ones going down. Thus the letter ‘u’ does not indicate the direction of this
hydrogen bond, but rather the direction of the donor pair for the hydrogen bond connecting to it.
Thus the magenta water oxygen is the acceptor for the hydrogen bond to the green water above it.
Note that the ‘u’ does indicate the position of the acceptor, which is up since the hydrogen bond
emanating from the magenta water is down. So the capital letters U and D indicate directions of
the hydrogen bond donor pairs, whereas the lower case letters indicate the orientation of the oxygen
acceptor region.

The red-magenta hexagons are very nearly planar, but the green-blue hexagons are less so. This
allows the out-of-plane hydrogen bonds to be more nearly orthogonal to the plane of Figure 3.2.
The units used in [7] are based on the unit of repeat in the direction orthogonal to the plane of
Figure 3.2. In these units, the oscillation of the red and magenta oxygen centers is about ±0.02
around the mean plane, whereas the green and blue oxygen centers are about ±0.05 from the mean
plane. The greens and reds are below their means, and the magentas and blues are above their
means.

The dotted lines in Figure 3.2 indicate the sideways connections between hexagonal tubes. To
clarify the picture, we indicate all the sideways hydrogen bonds emanating from one hexagon on
the left in Figure 3.3. To complete the picture, we have indicated all of the acceptors of hydrogen
bonds for the green-blue waters. These cannot be easily combined in a planar plot, one key feature
of ice II. It is worth noting that Figure 2b in [4] indicates only one direction for the linkages between
hexagonal columns, whereas Figure 3.3 shows that they go both up and down (if they did not go
both ways, there would be significant compressibility of the ice II hexagonal columns).

In Figure 3.3, we have indicated the mean height of the various hexagons in the units just
introduced. We see that there is an oscillation in mean heights of the connected hexagons. The
alternation in elevation between hexagonal columns is depicted in Figure 3.4, which shows the
elevations of nearby blue-green hexagons. For every hexagon at elevation 2/3, there is one below it
at elevation −1/3. Thus we can view the variation as an oscillation of size ±1/3.
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Figure 3.3: Schematic of one class of hydrogen bonds that link different hexagonal columns. The
fractions in each hexagon indicate the mean elevation of the hexagon.
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Figure 3.4: Top view of alternating elevations of nearby blue-green hexagons. For every hexagon
at elevation 2/3, there is one below it at elevation −1/3.
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