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There is a strong analogy between models for fluids and
solids.

The model equations for all solids take the form

ρutt = ∇·T+ f ,

where u is the displacement of the solid, T is called the
Cauchy stress and f is externally given data.

The divergence operator on a matrix function is defined
by

(∇·T)i =
d∑

j=1

Tij,j
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The models differ based on the way the stress T

depends on the displacement u.

Time-independent models take the form

−∇·T = f . (1)

The simplest expression for the stress is linear:

T = C : ǫ,

where C is a material tensor, the constituitive matrix ,
and ǫ = 1

2

(
∇u+∇u

t
)
.

Such solids are called elastic.
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For isotropic models,

Cijkl = Kδijδkl + µ
(
δikδjl + δilδjk −

2
3δijδkl

)
,

for i, j, k, l = 1, 2, 3,
(2)

where δij is the Kronecker-δ, K is the bulk modulus (or

incompressibility) and µ is the shear modulus .

The tensor contraction C : ǫ is defined by

(C : ǫ)ij =
d∑

kl=1

Cijklǫkl.



Elasticity variational formulation
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Carrying out the tensor contraction T = C : ǫ, we have

Tij = Kδijǫkk + 2µ
(
ǫij −

1
3δijǫkk

)
= λδijǫkk + 2µǫij

= λδij∇·u+ µ
(
∇u+∇u

t
)
ij

= λδij∇·u+ µ
(
ui,j + uj,i

)
,

(3)

where λ(= K − 2
3µ) and µ are known as the

Lamé parameters

and the Einstein summation convention was used, e.g.,

ǫkk =
3∑

k=1

ǫkk = ∇·u.



Elasticity variational formulation
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The variational formulation of (1) takes the form:
Find u ∈ V + γ such that

aC (u,v) = F (v) ∀v ∈ V , (4)

where aC(·, ·) and F (·) are given by

aC(u,v) :=

∫

Ω

T : ∇v dx

= λ

∫

Ω

(∇·u)(∇·v) dx+ µ

∫

Ω

(
∇u+∇u

t
)
: ∇v dx,

(5)

and

F (v) :=

∫

Ω

f · v dx. (6)



Elasticity variational formulation
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Derivation: multiply (3) by v with a “dot” product,
integrate by parts.

The space V consists of the d-fold Cartesian product of
the subset of H1(Ω) of functions vanishing on the
boundary.

Now let us consider some special cases.

Several cases arise where the three-dimensional
problem has a symmetry that reduces the model
to a two-dimensional one, as follows.



A dimensional reduction
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Idealized state when dimension of Ω is large in
z = x3-direction.

x

z

y

Figure 1: A two-dimensional reduction. Ω = Ω̂× [0, Z].

Two applications:

• Anti-plane strain
• Plane strain



Anti-plane strain
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In anti-plane strain [4], component of strain normal to a
(x1, x2) plane is the only non-zero displacement, that is,
u1 = u2 = 0, and thus u = (0, 0, w).

x

z

y force 

displacement

Figure 2: Anti-plane strain

The applied force is in that direction only, that is,
f = (0, 0, f).



Anti-plane strain is Laplace
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It is assumed that the displacement w = u3 is
independent of x3, although it does depend on (x1, x2).

In particular, ∇·u = 0.
Thus

∇u =




0 0 0
0 0 0
w,1 w,2 0


 and ǫ = 1

2




0 0 w,1

0 0 w,2

w,1 w,2 0


 .

Therefore

T = µ




0 0 w,1

0 0 w,2

w,1 w,2 0


 .



Anti-plane strain is Laplace

Computational Modeling Initiative 2019 11/44

Thus

∇·T = µ




0
0

w,11 + w,22


 = µ




0
0

∆w


 .

Therefore (1) becomes

−µ




0
0

∆w


 =



0
0
f


 .

Thus anti-plane strain reduces to equation,

−µ∆w = f.

So our many techniques for the Laplace equation apply.



Plane strain
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In plane strain [4], component of strain normal to (x, y)
plane) is zero.

displacement
z

y

x
force 

Figure 3: A two-dimensional reduction. Ω = Ω̂× [0, Z].

Applied forces in the z-direction are zero.
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Thus u = (u, v, 0), ∇u =



u,x u,y 0
v,x v,y 0
0 0 0


 and

ǫ =




u,x
1
2(u,y + v,x) 0

1
2(u,y + v,x) v,y 0

0 0 0


 .

Thus variational problem (4) applies where integration in
(5) and (6) over two-dimensional domain.



Plane strain variational form
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In particular,

T = λ∇·u



1 0 0
0 1 0
0 0 1


+ µ




u,x
1
2(u,y + v,x) 0

1
2(u,y + v,x) v,y 0

0 0 0


 ,

where ∇·u = u,x + v,y.

Choosing test functions v = (v1, v2, 0) in (5), we reduce

to a two-dimensional problem of the same form as (5).



Plane strain variational formulation
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Find u such that u− γ ∈ V such that

aC (u,v) = F (v) ∀v ∈ V , (7)

where aC(·, ·) and F (·) are given by

aC(u,v) := λ

∫

Ω

(∇·u)(∇·v) dx

+ µ

∫

Ω

(
∇u+∇u

t
)
: ∇v dx,

(8)

and

F (v) :=

∫

Ω

f · v dx, (9)

and all functions and integration are in 2-D only.



Plate-Bending
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Plates are thin, planar structures.

force 

y

z

x

Figure 4: Another two-dimensional reduction. Ω = Ω̂× [−τ, τ ].



The Kirchhoff hypothesis
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Suppose that Ω̂ is some domain in the x, y plane, and

Ω =
{
(x, y, z) : (x, y) ∈ Ω̂, z ∈ [−τ, τ ]

}
,

where τ is small compared to dimensions of Ω̂.

When the structure is deformed, the behavior is different
on each side of the midsurface τ = 0.

expansion

midsurface

compression



The Kirchhoff hypothesis
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Using the Kirchhoff hypothesis , the displacement
u = (u, v, w) satisfies

u ≈ −zw,x, v ≈ −zw,y.

midsurface

Figure 5: Relation between out-of-plane dispalcement and in-plane dis-
placement leading to the Kirchhoff hypothesis.



The Kirchhoff hypothesis
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Another view of the Kirchhoff hypothesis :

u ≈ −zw,x, v ≈ −zw,y.

x

wz
u

u

Figure 6: Relation between out-of-plane dispalcement and in-plane dis-
placement leading to the Kirchhoff hypothesis.



Plate-Bending simplification
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Equations of elasticity can be written as equation for just
deflection w normal to plane of plate:

∇u =



u,x u,y u,z
v,x v,y v,z
w,x w,y w,z


 =



−zw,xx −zw,xy −w,x

−zw,xy −zw,yy −w,y

w,x w,y 0


 ,

ǫ =



−zw,xx −zw,xy 0
−zw,xy −zw,yy 0

0 0 0


 ,

and T = −zλ∆w



1 0 0
0 1 0
0 0 0


+ µ



−zw,xx −zw,xy 0
−zw,xy −zw,yy 0

0 0 0


 .



Deriving plate-bending variational form
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Multiplying by v = −z∇φ where φ depends only on x, y,
integrating over Ω and integrating by parts, we find

λ

∫

Ω

z2∆w∆φ dx+ µ

∫

Ω

z2
(
w,xx w,xy

w,xy w,yy

)
:

(
φ,xx φ,xy

φ,xy φ,yy

)
dx

=

∫

Ω

f · v dx.

For simplicity, we consider the case where the body
force f = 0. We can expand to get
(
w,xx w,xy

w,xy w,yy

)
:

(
φ,xx φ,xy

φ,xy φ,yy

)
= w,xxφ,xx + 2w,xyφ,xy + w,yyφ,yy

= ∆w∆φ− w,xxφ,yy − w,yyφ,xx + 2w,xyφ,xy.



Removing z dependence
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Note that the integral of z2 with respect to z over the
plate thickness is equal to 2

3τ
3.

Then the above becomes

2
3τ

3

∫

Ω̂

(λ+ µ)∆w∆φ+µ(−w,xxφ,yy−w,yyφ,xx+2w,xyφ,xy) dxdy =

Let aP (·, ·) be bilinear form defined on H2(Ω) given by

aP (u, v) :=

∫

Ω

∆u∆v dx dy

− (1− ν)

∫

Ω

2uxxvyy + 2uyyvxx − 4uxyvxy dx dy.
(10)



Poisson’s ratio ν
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The constant ν in (10) is a physical constant known as
Poisson’s ratio, and 2(1− ν) = µ/(λ+ µ).

In the model for the bending of plates, ν is restricted to
the range [0, 12 ].

However, aP (·, ·) is known [1] to satisfy a Gårding-type
inequality,

aP (v, v) +K‖v‖2L2(Ω) ≥ α‖v‖2H2(Ω) ∀v ∈ H2(Ω) , (11)

where α > 0 and K < ∞, for all −3 < ν < 1.

For ν = 1, such an inequality cannot hold as aP (v, v)

vanishes in that case for all harmonic functions, v.



Plate-bending coercivity
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Coercivity estimate for 0 < ν < 1: Write

aP (v, v)=

∫

Ω

ν (vxx + vyy)
2+(1− ν)

(
(vxx − vyy)

2 + 4v2xy
)
dxdy

≥ min{ν, 1− ν}

∫

Ω

(vxx + vyy)
2 + (vxx − vyy)

2 + 4v2xy dxdy

Thus

aP (v, v) ≥ = 2min{ν, 1− ν}

∫

Ω

v2xx + v2yy + 2v2xy dxdy

= 2min{ν, 1− ν}|v|2H2(Ω).

So aP (·, ·) is coercive over any closed subspace,
V ⊂ H2(Ω), such that V ∩ P1 = Ø (see [5]).



Plate-vending variational problem
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Thus, there is a constant α > 0 such that

aP (v, v) ≥ α‖v‖2H2(Ω) ∀v ∈ V. (12)

For F ∈ H2(Ω)
′ and V ⊂ H2(Ω), consider

find u ∈ V such that

aP (u, v) = F (v) ∀v ∈ V. (13)

Following is consequence of Lax-Milgram Theorem.

Theorem 0.1 If V ⊂ H2(Ω) satisfies V ∩ P1 = Ø and
0 < ν < 1, then (13) has a unique solution.



Plate-bending biharmonic problem
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When integrating by parts, all terms multiplied by 1− ν
cancel, as they yield cross derivative uxxyy.

Thus corresponding PDE is

∆2u = f,

independent of Poisson’s ration ν.

But natural boundary conditions do depend on ν.

Two essential boundary conditions are of physical
interest.

One has natural boundary condition that depends on ν.



Clamped plate
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The “clamped” plate model consists of choosing
V c = H̊2(Ω), the subset of H2(Ω) consisting of functions
which vanish to second order on ∂Ω:

V c =

{
v ∈ H2(Ω) : v =

∂v

∂n
= 0 on ∂Ω

}
.

Rotation of plate also prescribed at boundary.

Figure 7: Plate clamped on right and free on left.



Simply-supported plate
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Let V ss denote the subset of H2(Ω) consisting of
functions which vanish (to first-order only) on ∂Ω, i.e.,

V ss =
{
v ∈ H2(Ω) : v = 0 on ∂Ω

}
.

Resulting model is “simply-supported” plate model.

Displacement, u, is held fixed (at a height of zero), yet
the plate is free to rotate at the boundary.

Figure 8: Simply supported plate.



Natural boundary condition
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In simply-supported case (V = V ss), there is another,
natural boundary condition that holds.

Mixture of essential and natural boundary conditions
hold on same part of ∂Ω.

Natural boundary condition found using integration by
parts, with v having nonzero normal derivative on ∂Ω.

Then the “bending moment”

∆u+ (1− ν)utt

must vanish on ∂Ω [Bergman and Schiffer 1953]

utt = second derivative in tangential direction.



The plate-bending biharmonic problem
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Theorem 0.2 Suppose that V is any closed subspace
satisfying H̊2(Ω) ⊂ V ⊂ H2(Ω). If f ∈ L2(Ω), and if
u ∈ H4(Ω) satisfies (13) with F (v) = (f, v), then u
satisfies

∆2u = f

in the L2(Ω) sense. For V = V c, u satisfies

u =
∂u

∂n
= 0 on ∂Ω

and for V = V ss, u satisfies

u = ∆u+ (1− ν)utt = 0 on ∂Ω.



Approximation of plate-bending
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To approximate (13), we need a subspace Vh of H2(Ω).

For example, we could take a space based on the
Argyris elements [5].

With either choice of V as above, if we choose Vh to
satisfy the corresponding boundary conditions, we
obtain the following.

Theorem 0.3 If Vh ⊂ V is based on Argyris elements of
order k ≥ 5 then there is a unique uh ∈ Vh such that

aP (uh, v) = F (v) ∀v ∈ Vh satisfying

‖u− uh‖H2(Ω) ≤ C inf
v∈Vh

‖u− v‖H2(Ω)

≤ Chk−1‖u‖Hk+1(Ω).
(14)



More on plate-bending
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For more details regarding the biharmonic equation
model for plate bending, see the survey [18].

Several mixed methods reducing the biharmonic
problem to a system of second-order problems have
been developed [9, 11, 10].



The Babu ška paradox
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The Babuška Paradox relates to the limit of polygonal
approximations to a smooth boundary.

For example, let Ω be the unit disc, and let Ωn denote
regular polygons inscribed in Ω with n sides.

Then the Paradox [12, Chapter 18, Volume II] is that

solutions wn of simply supported plate problems on Ωn

converge to solution w of clamped plate problem on Ω
as n → ∞



Paradox basis
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The reason for the paradox is that, at each vertex of Ωn,
the gradient of v must vanish for any sufficiently smooth
function v that vanishes on ∂Ωn.

This is illustrated in Figure 9.

Figure 9: Polygonal approximation in the Babuška Paradox. At a vertex,
the gradient of the simply supported solution must vanish as its tangential
derivatives are zero in two independent directions.



Limits
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In particular, ∇wn must vanish at all vertices of the
polygon Ωn.

Thus in the limit, ∇w = 0 at all points on the boundary,
where w = limn→∞wn and wn denotes the solution of
simply supported plate problem on Ωn.

A corollary of this paradox is the following.



Discrete Babu ška paradox
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Suppose we approximate a smooth domain Ω by
polygons Ωn and form finite element approximation wn,h

of simply supported plate problem with h = 1/n.

Then as n → ∞ (equivalently, h → 0), we expect that
wn,h will converge to the solution w of the clamped plate
problem on Ω, not the simply supported problem.

This numerical error is most insidious possible, in that
convergence is likely to be quite stable.

No red flags to indicate that something is wrong.



Babu ška Paradox history
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Babuška Paradox widely studied [2, 14, 15, 16].

Now known as Babuška-Sapondzhyan Paradox
[7, 13, 17].

Since the biharmonic equation arises in other contexts,
including the Stokes equations, this paradox is of
broader interest [20, 19, 8, 6].



Membranes
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Membranes are thin elastic media that do not resist
bending.

Their models are similar in form to that of anti-plane
strain, but for different reasons.

Membranes are similar to plates in that they are thin, but
only the vertical deformation plays a role.

Thus we assume that

∇u ≈




0 0 0
0 0 0
w,1 w,2 0


 and ǫ = 1

2




0 0 w,1

0 0 w,2

w,1 w,2 0


 .



Derivation of membrane equation
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Therefore

T = µ




0 0 w,1

0 0 w,2

w,1 w,2 0


 .

and so

∇·T = µ




0
0

w,11 + w,22


 = µ




0
0

∆w


 .

Thus the membrane problem reduces to the familiar
Laplace equation,

−µ∆w = f.



Locking in elasticity
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Locking is a numerical defect that can occur when
Poisson’s ratio ν → 1

2 [3, 5].

The variational form for elasticity

λ

∫

Ω

(∇·u)(∇·v) dx+ µ

∫

Ω

(
∇u+∇u

t
)
: ∇v dx,

corresponds to iterated penalty method for Stokes with

ρ =
2λ

µ
=

4ν

1− 2ν
=

2ν
1
2 − ν

,

using physical constants conversions in Table 1.

Thus ρ → ∞ when ν → 1
2 .



Elasticity
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system K = µ = λ = µ = E = ν =

K,µ K µ K − 2
3
µ µ 9Kµ

3K+µ

3K−2µ
2(3K+µ)

λ, µ λ+ 2
3
µ µ λ µ µ3λ+2µ

λ+µ
λ

2(λ+µ)

E, ν E
3(1−2ν)

E
2(1+ν)

Eν
(1+ν)(1−2ν)

E
2(1+ν)

E ν

Table 1: Conversion guide for elasticity constants. E is Young’s modulus.
The shear modulus µ is sometimes denoted by G. Note that λ → ∞ and
K → ∞ as ν → 1

2 .

It follows from the Stokes results that, if

κ = min
0 6=v∈Vh, v⊥aZh

(Dv,Dv)Π
a(v, v)

> 0, (15)

then u
ρ
h → u

∞
h as ρ → ∞ (ν → 1

2).



Elasticity
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Of course, κ can depend on the mesh size h, so we
write κh to indicate this.

More precisely, it follows that

‖uρ
h − u

∞
h ‖a ≤

1

1 + ρκh

‖u∞
h ‖a.

Here u
∞
h ∈ Vh satisfies ∇·u∞

h = 0 and

1
2µaǫ(u

∞
h ,v) = F (v) for all v ∈ Vh,

which we recognize as an approximation to the solution
of a Stokes system.



Elasticity
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Thus locking does not occur if the constant κh in (15)
satisfies

κh > κ0, (16)

where κ0 > 0 is independent of h.

For example, we know that (16) holds for Lagrange
elements of sufficiently high degree, as discussed in
Stokes chapter.

We leave as an exercise the exploration of the locking
phenomenon.
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87(12):1443–1460, 2008.
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