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Consider the two-point boundary value problem

−d
2u

dx2
= f in (0, 1)

u(0) = g0, u′(1) = g1.
(1)

The solution can be determined from f via two
integrations.

First of all, we can write

du

dx
(t) =

∫ 1

t

f(s) ds+ g1

using the boundary condition at x = 1.



Exact solution
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Integrating again shows that

u(x) =

∫ x

0

∫ 1

t

f(s) ds dt+ g1x+ g0

using the boundary condition at x = 0.

In particular, this shows that (1) is well posed.

Not so easy to check well-posedness in general, but

every investigation should (in principle)

begin with this step.

Integral representations often used to do this.



Weak Formulation of Boundary Value Problems
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Suppose that u is the solution of (1) with g0 = 0. Let v be
any (sufficiently regular) function such that v(0) = 0.
Then integration by parts yields

(f, v)L2([0,1]) =

∫ 1

0

f(x)v(x)dx =

∫ 1

0

−u′′(x)v(x)dx

=

∫ 1

0

u′(x)v′(x)dx− g1v(1).

Define
a(u, v) :=

∫ 1

0

u′(x)v′(x)dx (2)

and

V =
{

v ∈ L2([0, 1]) : a(v, v) <∞ and v(0) = 0
}

. (3)



Variational Formulation of Boundary Value Problems
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Then we can say that the solution u to (1) is
characterized by

u ∈ V such that

a(u, v) = (f, v)L2([0,1]) + g1v(1) ∀v ∈ V,
(4)

which is called the variational formulation or weak
formulation of (1).

The relationship (4) is called “variational” because the
function v is allowed to vary arbitrarily.

It has a natural interpretation in the setting of Hilbert
spaces [1].



Variational Formulation of Boundary Conditions
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The Dirichlet boundary condition u(0) = 0 is called an
essential boundary condition because it appears in
the variational space.

The Neumann boundary condition u′(1) = 0 is called an
natural boundary condition because it does not
appear in the variational space but rather is implied in
the formulation.

Inhomogeneous Dirichlet boundary conditions are
handled as follows in the variational formulation.

Let u0 be some function satisfying the inhomogeneous
Dirichlet boundary conditions (but not necessarily the
Neumann boundary conditions).



Inhomogeneous Boundary Value Problems
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Then

u− u0 ∈ V such that

a(u, v) = (f, v)L2([0,1]) + g1v(1) ∀v ∈ V.
(5)

Equivalently, this can be written as u = w + u0 where
w ∈ V such that

a(w, v) = (f, v)L2([0,1]) + g1v(1)− a(u0, v) ∀v ∈ V. (6)

Note that the general problem (5) can be written

w ∈ V such that a(w, v) = F (v) ∀v ∈ V (7)

where F denotes a linear functional on the space V .



Linear functionals
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A function F defined on V is called a linear functional if

it is a linear function defined for any v ∈ V having

a real number as its value.

The right-hand side of (6) can be written succintly as

F (v) = (f, v)L2([0,1]) + g1v(1)− a(u0, v) ∀v ∈ V.

The expression F is called a linear functional because
(a) it is linear and (b) it has scalar values.

By linear, we mean that

F (u+ av) = F (u) + aF (v)

for any scalar a and any u, v ∈ V .



Continuous linear functionals
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Critical condition on a linear functional for success in a
variational formulation: bounded or continuous.

A linear functional F is bounded (equivalently
continuous) on a normed space V if

|F (v)| ≤ CF‖v‖V ∀v ∈ V. (8)

A natural norm ‖·‖V for the space V defined in (3) is

‖v‖a =
√

a(v, v).

The smallest possible constant CF for which

(8) holds is called the dual norm of F .



Dual norm
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The dual norm of F is defined by

‖F‖V ′ := sup
0 6=v∈V

|F (v)|
‖v‖V

.

The main point is that all the linear forms considered so
far are bounded

In particular the Dirac δ-function, defined by δ(v) = v(1).

But also easy to think of others which are not, such as

F (v) := v′(x0)

for some x0 ∈ [0, 1]. This form is linear, but consider
what it should do for the function v(x) := |x− x0|2/3.



Equivalence of formulations
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The general variational formulation (7) can be shown to
be completely equivalent to the orignal differential
equation (see Theorem 0.1.4 of [1]).

A key tool is the following: suppose that f is continuous
and

∫ 1

0

f(x)v(x) dx = 0 for all v ∈ V.

Then f ≡ 0.

Moreover, the variational formulation provides a
framework that allows less regular data (arbitrary
continuous linear functionals for F ) as required by
important physical applications.



One detail
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The expression a(·, ·) is called a bilinear functional on
the space V , since it is a bilinear function defined on the
Cartesian product V × V having a single real number as
its value.

If we fix one of the variables of a bilinear form, it yields a
linear form in the remaining variable.

Recall that we have proved the Cauchy-Schwarz
inequality

|a(u, v)| ≤ ‖u‖a‖v‖a. (9)

where ‖v‖a =
√

a(v, v).



Another detail
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Consider the linear form F (v) = v(x0) for some
x0 ∈ [0, 1].

We want to prove that this is bounded on V .

We write a function as the integral of its derivative and
begin to estimate:

v(t) =

∫ t

0

v′(x) dx =

∫ 1

0

v′(x)w′(x) dx = a(v, w), (10)

where the function w ∈ V is defined by

w(x) =

{

x 0 ≤ x ≤ t

t x ≥ t



Side benefits
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One benefit of our loosened notion of derivative is that
such functions are indeed in V , even though the
derivative of w is discontinuous.

By the Cauchy-Schwarz inequality (9), for all t ∈ [0, 1],

|v(t)| = |a(v, w)| ≤ ‖v‖a‖w‖a =
√
t‖v‖a ≤ ‖v‖a. (11)

Inequality (11) is called Sobolev’s inequality, and V is an
example of a Sobolev space.

Note that the first step in (10) uses the fact that for
v ∈ V , v(0) = 0.

This subtle point is nevertheless essential, since (11) is
clearly false if this boundary condition is not available.



Sobolev’s inequality
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In particular, if v is a constant function, then the
right-hand-side of (11) is zero for this v whereas the
left-hand-side is not (unless v ≡ 0).

Sobolev’s inequality holds in a more general setting, not
requiring boundary conditions, but only when the
bilinear form is an inner-product.

What Sobolev’s inequality inequality tells us is that,

• even though the functions in V are not smooth in the
classical sense

• (derivatives can even be infinite at isolated points),
• they nevertheless have some type of classical

regularity, namely continuity in this case.



Natural boundary conditions
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We saw that the ‘natural’ boundary condition, e.g.,
u′(1) = 0 in (1) when g1 = 0, disappears in the
variational formulation (4).

But if these are in some sense equivalent formulations
(they are), then the natural boundary condition must be
encoded in the variational formulation is some way.

We can see this by reversing the process used to go
from (1) to (4).

So suppose that u satisfies (4), and also assume that
it is smooth enough for us to integrate by parts:



Equivalence proof

Computational Modeling Initiative 2019 17/65

(f, v)L2([0,1]) =

∫ 1

0

u′(x)v′(x) dx

=

∫ 1

0

−u′′(x)v(x) dx+
(

u′v
)
∣

∣

1

0

=

∫ 1

0

−u′′(x)v(x) dx+ u′(1)v(1).

(12)

Choosing first v ∈ V that vanishes at x = 1, we conclude
that

∫ 1

0

(

f + u′′(x)
)

v(x) dx = 0

for all such v.



Equivalence proof
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From this, one can show that we necessarily have
−u′′ = f .

E.g., suppose
(

f + u′′
)

(x) 6= 0 at some x. Then choose
v supported near x to be of one sign, yielding a
contradition.

Inserting this fact in (12), we conclude that u′(1) = 0
simply by taking a single v such that v(1) 6= 0, e.g.,
v(x) = x.

Thus the natural boundary condition emerges from the
variational formulation “naturally.”
And as an intermediate step, we see that u satisfies the
first equation in (1), proving equivalence of (1) and (4).



Galerkin Approximation
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Let Vh ⊂ V be any (finite dimensional) subspace. Let us
consider (4) with V replaced by Vh, namely

uh ∈ Vh such that a(uh, v) = (f, v)L2([0,1]) ∀v ∈ Vh. (13)

Then (13) represents a square, finite system of
equations for uh which can easily be seen to be
invertible [1].

Note how easily a discrete scheme for approximating (1)
can be defined.

A matrix equation is derived by writing (13) in terms of a
basis {φi : 1 ≤ i ≤ n} of Vh.



Galerkin Algebra
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Write uh in terms of this basis, i.e.,

uh =
n

∑

j=1

Ujφj

where the coefficients Uj are to be determined. Define

Aij = a(φj, φi), Fi = (f, φi) for i, j = 1, ..., n.

Set U = (Uj),A = (Aij) and F = (Fi).

Then (13) is equivalent to solving the (square) matrix
equation

AU = F. (14)



Galerkin matrices
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The matrix A is often referred to as the stiffness
matrix , a name coming from corresponding matrices in
the context of structural problems.

Another important matrix is the mass matrix , namely

Mij = (φj, φi)L2([0,1]) for i, j = 1, ..., n.

If f ∈ V with f =
∑

F̃jφj then (13) is equivalent to
solving the matrix equation

AU = MF̃.



Piecewise Polynomials – Finite Elements
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We now construct the finite element space Vh, including
the mesh.

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1], and

let Vh be the linear space of functions v such that

• v is continuous everywhere
• v|[xi−1,xi] is a linear polynomial, i = 1, ..., n, and
• v(0) = 0.

The function space just defined can be described as the
set of continuous piecewise linear functions with
respect to the mesh (xi).



Piecewise linear basis
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For each i = 1, .., n define φi by the requirement that

φi(xj) = δij

the Kronecker delta. Then

• {φi : 1 ≤ i ≤ n} is called a nodal basis for Vh, and
• {v(xi)} are the nodal values of a function v.

The points {xi} are called the nodes .

A function space consisting of continuous piecewise
quadratic functions, with respect to the mesh (xi), can
be defined similarly.



Piecewise Polynomials – Finite Elements
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Let Vh be the linear space of functions v such that

• v is continuous everywhere
• v|[xi−1,xi] is a quadratic polynomial, i = 1, ..., n, and
• v(0) = 0.

However, now there are additional nodes in the middle
of each element [xi−1, xi], i.e., at (xi + xi−1)/2.

Now the nodal numbering gets a bit complicated.

Let y2i = xi and let y2i−1 = (xi − xi−1)/2 for i = 1, . . . , n.

Then the nodal basis is defined by φi(yj) = δij for
i, j = 1, . . . , 2n



Galerkin matrix entries
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The Galerkin method using piecewise polynomials
spaces described in terms of nodal values is called the
finite-element method.
The stiffness matrix A as defined in (14), using the
Kronecker basis {φi}, can be interpreted as a difference
operator.

Let hi = xi − xi−1.

Then the matrix entries Aij = a(φi, φj) can be easily
calculated to be Ann = h−1n , for i = 1, ..., n− 1

Aii = h−1i + h−1i+1, Ai,i+1 = Ai+1,i = −h−1i+1, (15)

with the rest of the entries of A being zero.



Galerkin matrix equations

Computational Modeling Initiative 2019 26/65

Similarly, the entries of F can be approximated if f is
sufficiently smooth:

(f, φi) =
1

2
(hi + hi+1)(f(xi) +O(h))

where h = max hi.

Thus, the i− th equation of AU = F (for 1 ≤ i ≤ n− 1)
can be written as

−2
hi + hi+1

[

Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

]

=
2(f, φi)

hi + hi+1

= f(xi) +O(h).
(16)



Relationship to Difference Methods
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The difference operator on the left side of this equation
can be seen to be an O(h) accurate approximation to
the differential operator −d2/dx2.
But showing that it is O(h2) accurate is not easy [3].

For a uniform mesh, the equations reduce to the familiar
difference equations

−Ui+1 − 2Ui + Ui−1
h2

= f(xi) +O(h2).

Thus the finite difference and finite element
discretization techniques can be seen to produce
essentially the same set of equations in many cases.



Relationship to Difference Methods
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Even though the difference method (16) is formally only
first order accurate, the variational framework [1] shows
that the resulting error is second order accurate:

eh := max
1≤i≤2n

|u(yn)− un| ≤ Cfh
2

Useful to view a difference method as a variational
method (if possible) for the purposes of analysis.

Because the variational form a(·, ·) is symmetric, the
Galerkin method will always yield a symmetric matrix.

In applying boundary conditions with finite difference
methods, care must be exercised to retain the symmetry
of the original differential equation.



Relationship to Difference Methods
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The system of equations obtained for the nodal
variables (un) in the case of the Galerkin method using
continuous piecewise quadratics does not look like a
conventional finite difference method.

The equations associated with the internal nodes are
different from the ones associated with the subdivision
points.

On the other hand, they yield a more accurate method,
satisfying

eh := max
1≤i≤2n

|u(yn)− un| ≤ Cfh
3.



Coercivity of the Variational Problem
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The variational form a(·, ·) introduced in (2) is coercive
on the corresponding spaces V (see [1]):

there is a constant γ depending
only on Ω and Γ such that

‖v‖2H1(Ω) ≤ γa(v, v) ∀v ∈ V. (17)

The proof of this is elementary.

All we need to show is that

‖v‖2L2(Ω) ≤ Ca(v, v) ∀v ∈ V, (18)

from which (17) follows with constant γ = C + 1.



Proof of coercivity
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To prove (18), we apply Sobolev’s inequality (11), which
says

|v(t)| ≤
√
t‖v‖a.

Thus
∫ 1

0

v(t)2 dt ≤ a(v, v)

∫ 1

0

t dt ≤ 1
2a(v, v)

which completes the proof of (18), with C = 1/2.

Note that our proof of Sobolev’s inequality (9) uses the
fact that for v ∈ V , v(0) = 0.

If v is a constant function, then the right-hand-side of
(17) is zero for this v whereas the left-hand-side is not
(unless v ≡ 0).



Application of coercivity
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From (17), it follows that the problem (7) is well posed.

In particular, we easily see that the solution to the
problem must be unique, for if F is identically zero then
so is the solution.

In the finite-dimensional case, this uniqueness also
implies existence, and a similar result holds in the
setting of infinite dimensional Hilbert spaces such as V .
Moreover, the coercivity condition immediately implies a
stability result, namely

‖u‖H1(Ω) ≤
γa(u, u)

‖u‖H1(Ω)
= γ

F (u)

‖u‖H1(Ω)
≤ γ‖F‖H−1(Ω).



Lipschitz continuity of solution operator
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Here we are using the notation ‖F‖H−1(Ω) for the dual
norm of F in the dual space of H1(Ω), i.e.,
H−1(Ω) :=

(

H1(Ω)
)′

[1].

The same result holds for a discrete approximation as
well.

As a byproduct, coercivity proves continuity of the
solution as a function of the data since the problem is
linear.

In particular, if Fi, i = 1, 2, are two bounded linear forms,
and ui denotes the corresponding solutions to (7), then

‖u1 − u2‖H1(Ω) ≤ γ‖F1 − F2‖H−1(Ω).



More Variational Formulations
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Consider the two-point boundary value problem

−d
2u

dx2
+ α(x)

du

dx
+ β(x)u = f in (0, 1)

u(0) = g0, u′(1) = g1.

Then integration by parts can again be used to derive
the variational formulation

a(u, v) = (f, v)L2([0,1]) ∀v ∈ V

where

a(u, v) :=

∫ 1

0

u′(x)v′(x)+α(x)u′(x)v(x)+β(x)u(x)v(x) dx.

(19)



More Variational Formulations
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Variational problem requires use of quadrature to
integrate the expressions involving α and β.

The question of coercivity of the form (19) can be
addressed in at least simple cases.

If β ≡ 0 and α is constant, then

a(v, v) =

∫ 1

0

v′(x)2 + 1
2α(v

2)′(x) dx

=

∫ 1

0

v′(x)2 dx+ 1
2αv(1)

2 ∀v ∈ V.

If α > 0, then this is coercive.
Exercise: determine conditions needed on β to retain
coercivity.



Other Galerkin Methods
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Spectral Elements – P Method

Use of high-order piecewise polynomials in Galerkin
approximations goes by various names.

Degree P used as approximation parameter

Convergence achieved by letting P increase

Often called the ‘P’ method.

Also goes by the name “spectral element” method
because of similarities with spectral methods

with possibility of subdividing domain using “elements.”



More Galerkin Methods
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Trigonometric Polynomials – Spectral Methods

Trigonometric polynomials in Galerkin approximation
useful for square domains

Discretizations popularly known as Spectral Methods.

Fast Fourier transforms used to solve discrete equations

Lageurre funtions

Useful for infinite domains

and the list goes on



Nonlinear example
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Consider the following problem:

−d
2u

dξ2
(ξ) + 4u(ξ) + 6u(ξ)2 = f(ξ) for ξ ∈ (0, θ)

u(0) = 0, u′(θ) = 0.

(20)

With f = C (= constant), this describes the profile of
radial component of fluid flow in converging channel
(a.k.a. Jeffrey-Hamel flow).

In (20), differentiation is with respect to the polar angle ξ
and θ is half of the angle (in radians) of convergence of
the channel.



Jeffrey-Hamel flow
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Given a solution u of (20), one can show that

u(x, y) := ν
u(atan(y/x))

x2 + y2
x , x = (x, y) ∈ Ω

solves the steady Navier-Stokes equations with
kinematic viscosity ν over a wedge domain Ω (cf. [2]).

θ
x = 0

Figure 1: Interpretation of solutions of Jeffrey-Hamel equation.



Jeffrey-Hamel flow
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radial velocity amplitude for Jeffrey-Hamel flow at r=1

angular variable

Figure 2: Solutions of Jeffrey-Hamel equation with C = 10k for k = 1, 2, 3, 4.



Reality checks: large C
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With nonlinear problems, difficult to derive synthetic
solutions using method of manufactured solution.

But nonlinear problems allow useful asymptotic
estimates.

In the Jeffrey-Hamel problem (20), if solution u becomes
large, then quadratic term u2 will be even larger.

Dropping smaller terms in −u′′ + 4u+ 6u2 = C we get

6u2 ≈ C,

so that u ≈
√

C/6, with boundary layer near ξ = 0.



Reality checks: small C
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When u is small, u2 is smaller than u, so can drop
quadratic term u2 in (20) to get −u′′ + 4u = C.

Let v be the solution of

−d
2v

dξ2
+ 4v = 1 in (0, θ)

v(0) = 0, v′(θ) = 0.

(21)

Then for small C we expect that

u ≈ Cv.



Exact solution
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In this case, we can go one step further since it is
possible to solve (21) exactly:

v(ξ) =
1

4
− e−2(θ−ξ) + e2(θ−ξ)

4(e−2θ + e2θ)

Therefore we can compute ‖u− Cv‖L2(Ω) to see if it
goes to zero as C → 0.

Thus there are useful tests that can be done for
nonlinear problems that can determine whether or not
the code is producing reasonable answers.



Nonlinear Variational Formulations
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Nonlinear problems such as (20) can also be formulated
variationally, as

a(u, v) + n(u, v) = (f, v)L2([0,1]) ∀v ∈ V

where a(·, ·) is as in (19) with α ≡ 0 and β(x) ≡ 4.

The nonlinearity has been separated for convenience in
the form

n(u, v) = 6

∫ 1

0

u(x)2v(x) dx = 6 (u2, v)L2([0,1]).

Define a nonlinear form F by

F (u, v) = a(u, v) + n(u, v)− (f, v)L2([0,1]) ∀v ∈ V (22)



Nonlinear problems in matrix form
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A Galerkin method for a space with a basis
{φi : i = 1, . . . , n} can be written as a system of
nonlinear equations

Fi(u) := a(u, φi) + n(u, φi)− (f, φi)L2([0,1]) = 0

Writing u =
∑

j Ujφj, Newton’s method for this system of
equations for (Uj) can be derived.

However, can also be cast in variational form as follows.

Instead of using a basis function, define a functional F
with coordinates parametrized by an arbitrary v ∈ V :

Fv(u) := a(u, v) + n(u, v)− (f, v)L2([0,1])



Nonlinear variational formulations
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If v = φi then of course we have the previous function.

Newton’s method requires computing derivatives of F
with respect to “coordinates” (elements of V ).

Derivative of Fv at u in direction of w ∈ V is, as always,
a limit of a difference quotient,

Fv(u+ ǫw)− Fv(u)

ǫ
,

as ǫ→ 0. Expanding, we find that

Fv(u+ ǫw)− Fv(u) = ǫa(w, v) + 6
(

(u+ ǫw)2 − u2, v
)

L2([0,1])

= ǫa(w, v) + 6
(

2ǫuw + ǫ2w2, v
)

L2([0,1])
.



Newton variational formulation
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Fv(u+ ǫw)−Fv(u) = ǫ
(

a(w, v)+6
(

2uw + ǫ w2, v
)

L2([0,1])

)

Therefore

lim
ǫ→0

Fv(u+ ǫw)− Fv(u)

ǫ
= a(w, v) + 12 (uw, v)L2([0,1])

for any w ∈ V .

Then Newton’s method characterized by

u← u− w where w solves

a(w, v) + 12 (uw, v)L2([0,1]) = a(u, v) + n(u, v)− (f, v)L2([0,1])

= Fv(u)

= F (u, v) ∀v ∈ V



Newton automated
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Fortunately, dolfin automates all of this.

With F as defined in (22),

F (u, v) = a(u, v)+n(u, v)− (f, v)L2([0,1]) ∀v ∈ V

we just say

solve(F==0, u, bc)

dolfin will normally report (exhaustively)
on the convergence of Newton’s method.



Hierarchy of nonlinear problems
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Different levels of difficulty for nonlinear problems.

The lowest level have no nonlinearity: they are linear.

Next level are semilinear equations: nonlinearities do
not appear in leading-order parts of the equation.

Example: the Jeffrey-Hamel flow problem

Equation is of the form
∑

|α|=k

cα(x)D
αu+ c0(x,∇k−1u, . . . ,∇u, u) = 0.

k is highest order of derivative in PDE.



Nonlinear hierarchy continued
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For the Laplacian, k = 2.

Will see equations of order 3 and 4.

Next, quasilinear equations have nonlinear coefficients
in the highest-order terms, but they cannot depend on
the highest-order derivatives:

∑

|α|=k

cα(x,∇k−1u, . . . ,∇u, u)Dαu

+ c0(x,∇k−1u, . . . ,∇u, u) = 0.

An example of this is p-Lapalcean



Fully nonlinear problems
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Finally, fully nonlinear equations can be of the form
∑

|α|=k

cα(x,∇ku, . . . ,∇u, u)Dαu

+ c0(x,∇k−1u, . . . ,∇u, u) = 0.

An example is the Monge-Ampère equation.

These are beyond our scope.



A quasi-linear problem

Computational Modeling Initiative 2019 52/65

The p-Laplacian is a widely studied equation that
illustrates many interesting features of nonlinear PDEs.

It is defined for p > 1 and takes the form

−∇·
(

|∇u|p−2∇u
)

= f in Ω, (23)

with a mix of Dirichlet and Neumann boundary
conditions possible on ∂Ω.

When p = 2, we obtain the standard Poisson equation.

The variational form for the p-Laplacian is

ap(u, v) =

∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx.



p-Laplacean problem
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ap(u, v) =
∫

Ω |∇u(x)|p−2∇u(x) · ∇v(x) dx

For p < 2, coefficient |∇u|p−2 misbehaves:

• |∇u|p−2 →∞ if ∇u→ 0, and
• |∇u|p−2 → 0 if ∇u→∞.

Latter can happen for nonconvex polygonal domains.

p-Laplacian of interest in image processing for p < 2.

For p > 2, coefficient |∇u|p−2 misbehaves:

• |∇u|p−2 →∞ if ∇u→∞, and
• |∇u|p−2 → 0 if ∇u→ 0.

p-Laplacian models granular materials (sand) for p > 2.



Computational example of p-Laplacean
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Solution of the p-Laplacian on a unit square

with f ≡ 1 and u = 0 on ∂Ω,

computed using piecewise linears on a 128× 128 mesh.

(left) p = 2 and (right) p = 1.15.



p-Laplacian variational form

Computational Modeling Initiative 2019 55/65

The variational form for the p-Laplacian is

ap(u, v) =

∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx.

Thus we seek u such that

ap(u, v) = F (v)

for all v in a suitable space V .

Note that continuity and coercivity are problemmatic:

ap(v, v) =

∫

Ω

|∇v(x)|p dx.



p-Laplacean theory
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Standard Lax-Milgram theory fails for p-Laplacean since

ap(v, v) =

∫

Ω

|∇v(x)|p dx.

Need to work with spaces of functions whose gradients
are p-th power integrable.

Fortunately, not a restriction for finite element spaces.

Applications of the p-Laplacian are abundant.

There are even applications where p is allowed to be a
function of x and vary over the domain Ω.



p-Laplacian asymptotics
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Useful to examine what happens in some limits.

Let us consider a particular problem: Ω = [0, 1]2,
F (v) =

∫

Ω v(x) dx (f ≡ 1).

In addition, we choose homogeneous Dirichlet
boundary conditions (u = 0) on ∂Ω.

By symmetry, ∇u = 0 at the middle of the square, so

if p < 2, the expression |∇u|p−2 is infinite there.

if p > 2, the expression |∇u|p−2 is zero there.



p-Laplacian computation
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To avoid computational difficulties, we redefine

ap(u, v) =

∫

Ω

(

ǫ2+ |∇u(x)|2
)(p−2)/2∇u(x) ·∇v(x) dx, (24)

where ǫ is a small parameter to mollify computations.

Needed for p < 2 when ∇u = 0 because

• coefficient of ∇u(x) · ∇v(x) would be infinite if we did
not,

• fractional power not differntiable there, so Newton’s
method could misbehave.

Now coefficient is just very large when ∇u is small.



p-Laplacian asymptotics
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When ∇u is small, size of u is depressed, as follows.

When ∇u is small, equation looks like

−ǫp−2∆u = f

so −∆u = ǫ2−pf .

For p < 2, ǫ2−p is small and u will be proportional to ǫ2−p.

Making u smaller flattens u because u = 0 on ∂Ω.

If we flatten u, region where ∇u is small increases.

A vicious cycle.



p-Laplacian computation

Computational Modeling Initiative 2019 60/65

This analysis is born out in the figure and Table 1.

As p decreases, u becomes both smaller and flatter.

(left) p = 2 and (right) p = 1.15.



p-Laplacian asymptotics
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ǫ p L2norm
1.00e-05 2.00 4.13e-02
1.00e-06 1.80 2.78e-02
1.00e-06 1.60 1.45e-02
1.00e-06 1.40 4.07e-03
1.00e-06 1.30 1.17e-03
1.00e-07 1.20 1.02e-04
1.00e-07 1.15 9.36e-06
1.00e-07 1.10 1.03e-07

Table 1: L2(Ω) norm of solution of the p-Laplacian problem
for various exponents p. The fudge factor ǫ appears in
the mollified form (24). Computed with piecewise linears
on a 128× 128 mesh.



Nonlinear solvers
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Newton’s method has many benefits.

It converges rapidly, and it has a functorial definition that
allows it to be applied automatically and very generally.

However, it is essentially a local method.

It performs well when it is started near a solution.

But it may behave badly otherwise.

Thus other nonlinear solvers are of interest to provide a
more global approach to nonlinear PDEs.



Continuation method
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One simple approach is called continuation .

Method applied to problems with a natural parameter.

For the p-Laplacian, p is the parameter.

To solve for large p, we can start with p = 2 (a linear
problem) and then increase p, using solution for lower
values of p as starting guesses for larger values of p.

Fortunately, in dolfin, the solver syntax
solve(F == 0, u, bc)
is interpreted to mean that if u is defined before the
solve call, then it will be used as the initial guess.



Continuation method
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Thus we can embed solve in a loop to generate a
sequence of solutions.

For the p-Laplacian problem these solutions actually
converge as p increases, so the Newton method gets
faster and faster.

Other problems tend to get harder as the parameter is
increased, but continuation is still a very useful
algorithm.
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