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Oscillations
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Have seen two PDE systems, wave equation and
elasticity, with governing equations of the form

utt +Au = f , (1)

where u is a vector in the discretized approximation.

Solutions oscillate as function of t.

Amplitude of oscillations can depend strongly on
frequency of oscillation of forcing function f .

Such systems exhibit resonance : amplitude becomes
arbitrarily large as the frequency of f is tuned to
characteristic frequencies of the system (1).



Resonance
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Resonance is a phenomenon that children encounter
when playing on a swing.

They learn to tune their forcing (or pumping) to a natural
frequency of the swing set.

Fortunately, there is a simple algorithm for doing this,
although some people are better at it than others.

Basically, you pump at the same place in the cycle every
time, and this makes f repeat at the natural frequency of
the swing.

Resonance is a critical factor in engineering design.



Resonance effects
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Resonance can lead to disasters such as the collapse
of the original Tacoma Narrows bridge [1].

Thus it is considered in the design of all large
structures: bridges, buildings, etc.

Resonance is also a major factor in the amplification of
the effects of earthquakes [11, 6].

Amplitude of tidal motion determined by resonance.

Resonance critical in musical instruments design.

Harmonics for string instruments are resonance.



Scalar resonance
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To begin to understand resonance quantitatively, we
simplify (1) even further by considering a scalar
equation of the form

u′′ + µu = f, (2)

where f(t) = cos(ωt) and ω is a constant.

We can solve (1) as u(t) = a cos(ωt), since for this
function

u′′(t) = −aω2 cos(ωt) = −ω2u(t).



Oscillations
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Thus

u′′(t) + µu(t) = (µ− ω2)u(t)

= a(µ− ω2) cos(ωt) = a(µ− ω2)f(t).
(3)

Therefore u(t) = a cos(ωt) solves (1) if

a =
1

µ− ω2
. (4)

The fact that the amplitude a of u goes to infinity as
ω → √

µ is called resonance .

As forcing frequency approaches critical value
√
µ,

solution gets arbitrarily big, even though f stays same.



Oscillations
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Can solve (1) when µ = ω2, although (3) no longer valid.

Instead, we find (Exercise 0.1) a solution

u(t) = t sin(ωt),

which grows without bound as time progresses.

Resonance in disasters: physical system exceeds its
design limits, and then it fails.

Must avoid forcing frequency matching this critical value.

For a single equation, easy to see what critical value is,
but for systems of equations, more notation needed.



Vector resonance
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To solve (1) with f(t) = g cos(ωt), let us try
u(t) = a cos(ωt) for some vector a to be determined.

Following the previous steps, we find

utt(t)+Au(t) = (A−ω2I)u(t) = (A−ω2I)a cos(ωt), (5)

where I is the identity matrix.

Thus we have a solution provided

(A− ω2I)a = g. (6)

So to understand resonance in this case, we need to
know how big a can be for different values of ω.



Eigenvalues
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In particular, we want to avoid situations where A− ω2I
is nearly singular.

This leads us to the study of eigenvalues .

Eigenvalues can take various forms. The simplest
context is in terms of matrices.



Eigenvalues of matrices
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The eigenvalue and eigenvector pair (λ,X) for a matrix
A is defined by the equation

AX = λX. (7)

The fine print requires X 6= 0, for otherwise (λ,0) would
always be a solution for any λ.

But moreover, X is not unique: if X is a solution so is cX
for any scalar c.

So we have to think of X as only prescribing a direction,
not a magnitude.



Eigenvalues and resonance
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Eigenvalues are ideal for answering the questions
raised about resonance in (6).

If ω2 not near an eigenvalue, then no resonance.

This is why we determine the eigenvalues of systems.

Even if we are only interested in real-valued matrices,
the eigenpair (λ,X) may be complex.

However, if A is symmetric (At = A) then both are real.

As we have seen, there are many applications for which
A is symmetric, so we focus primarily on such systems.



Variational eigenproblems
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Variational problems have eigenvalues too. They take
the form

a(u, v) = λ (u, v)L2(Ω) ∀ v ∈ V. (8)

Here u is the eigenvector and λ is the eigenvalue.

Again, u is defined only up to a constant multiple, and
so it is natural to constrain it in some way.

The variational formulation is appropriate for the
Rayleigh1 characterization of eigenvalues.

1John William Strutt, 3rd Baron Rayleigh (1842–1919) was a student of Stokes.



Rayleigh quotient
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Define the Rayleigh quotient

R(v) =
a(v, v)

(v, v)L2(Ω)
, v ∈ V, (9)

where V is one of our finite element spaces.

In particular, eigenvalues are critical points of R.

For example, the smallest eigenvalue is given by

λmin = min
0 6=v∈V

R(v). (10)



Rayleigh quotient homogeneity
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Here the notation 0 6= v ∈ V means that v ∈ V is not
identically zero, so in particular ‖v‖L2(Ω) > 0.

Note that R(cv) = R(v) for any scalar c, due to the
homogeneity of R (it is quadratic in both the numerator
and denominator).

Thus it is equivalent to write

λmin = min
v∈V, ‖v‖

L2(Ω)=1
R(v). (11)



Rayleigh quotient as a lower bound
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Writing out the Rayleigh quotient, we have

λmin = min
0 6=v∈V

a(v, v)

(v, v)L2(Ω)
= min

0 6=v∈V

a(v, v)

‖v‖2
L2(Ω)

.

Thus

λmin ≤
a(v, v)

‖v‖2
L2(Ω)

∀ 0 6= v ∈ V.

Multiplying by ‖v‖L2(Ω), we find

λmin‖v‖2L2(Ω) ≤ a(v, v) ∀ v ∈ V. (12)

Note that this holds trivially for v ≡ 0.



Rayleigh quotient and coercivity
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We recognize (12) as a statement of coercivity if
λmin > 0.

This demonstrates a theoretical role for eigenvalues, in
addition to the phenomenological role with regard to
resonance discussed earlier.



Computing eigenproblems
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One simple algorithm for approximating eigenvalues is
Rayleigh quotient iteration :

a(wk, v)− λk(wk, v)L2(Ω) = (uk, v)L2(Ω) ∀ v ∈ V,

uk+1 = ‖wk‖−1
L2(Ω)w

k,

λk+1 = R
(

uk+1
)

.

(13)

Note that
‖uk+1‖L2(Ω) = ‖wk‖−1

L2(Ω)‖wk‖L2(Ω) = 1,

so that R
(

uk+1
)

= a(uk+1, uk+1).

Need to start with some u0 and λ0; quality of guesses
will affect efficiency of the algorithm.



Algorithm details
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Some care needs to be taken regarding solving for wk

since the system used is approaching singularity.

However, this is part of the magic of the algorithm [9,
Section 15.2.1].

If we know that a(v, v) ≥ 0 for all v ∈ V , then we could
take any λ0 < 0 to approximate the lowest eigenvalue.

For the lowest eigenvalue, the corresponding
eigenvector is often nonnegative, so that information
could also be used.

For example, we might take u0 ≡ 1.



Characteristic values
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The eigenvalues of a given operator, such as the
Laplacian, will depend on the domain.

Moreover, they can be characteristic of the domain,
allowing the identification of the domain from the
eigenvalues [5].

The word “eigen” is German for “characteristic,” and one
thus often sees the term characteristic values instead
of eigenvalues.



Review of the Helmholtz problem
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The Helmholtz problem involves solving

−k2u(x)−∆u(x) = f(x). (14)

But we know that there can be eigenvalues λ = k2

where the corresponding eigenvector uλ satisfies

−∆uλ(x) = λuλ(x), (15)

leading to a null solution uλ of (14).



Expected resonance
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For k near
√
λ we thus expect a resonance

phenomenon, and if λ = k2 the character of the solution
can change completely.

In particular, f must satisfy constraints.

If λ is a simple eigenvalue [10], then the constraint is
that (f, uλ)L2(Ω) = 0.



Meaning of G årding’s inequality
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Gårding’s inequality (10.21) can be interpreted as
follows. Let ρ = γ2/γ1. Then dividing by γ1, (10.21) can
be rewritten

γ−1
1 ‖v‖2H1(Ω) ≤ a(v, v) + ρ‖v‖2L2(Ω) ∀v ∈ V.

This is the coercivity inequality for the new bilinear form

aρ(u, v) := a(u, v) + ρ(u, v)L2(Ω) ∀u, v ∈ V.

If λ is an eigenvalue for aρ(·, ·), then λ− ρ is an
eigenvalue for a(·, ·) (Exercise 0.4). Since coercivity is a
statement about positivity of eigenvalues, this means
that the eigenvalues of a(·, ·) are bounded below by −ρ.



Estimating the inf-sup constant
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Several papers have addressed the issue of estimating
computationally the inf-sup constant for various spaces
and variational problems [7, 8, 2].

We show here that this can be thought of as an
eigenvalue problem [4].

Define κ by

κ = min
0 6=v∈Vh, v⊥aZh

(∇· v,∇· v)L2

a(v, v)
= min

0 6=v∈Z⊥

h

(∇· v,∇· v)L2

a(v, v)
,

(16)
where Z⊥

h = {v ∈ Vh : a(v,w) = 0 ∀w ∈ Zh}.



Relating β and κ
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We have β ≥ √
κ, where β is the constant in the inf-sup

condition provided we define ‖v‖V =
√

a(v, v).

LEMMA: Suppose ‖v‖V =
√

a(v, v) and Qh = ∇·Vh.
Then

β = inf
0 6=q∈Qh

sup
0 6=v∈Vh

b(v, q)

‖v‖V ‖q‖L2

= inf
0 6=q∈Qh

sup
0 6=v∈Z⊥

h

b(v, q)

‖v‖V ‖q‖L2

≥
√
κ,

(17)

where κ is defined in (16).



The proof
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Proof. Take q = ∇·w where w ∈ Z⊥
h . Then

inf
0 6=w∈Z⊥

h

sup
0 6=v∈Z⊥

h

(∇· v,∇·w)L2

‖∇·w‖L2‖v‖V
≥ inf

0 6=w∈Z⊥

h

(∇·w,∇·w)L2

‖∇·w‖L2‖w‖V

= inf
0 6=w∈Z⊥

h

‖∇·w‖L2

‖w‖V
=

√
γ

(18)

by taking v = w.



Converse lemma
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On the other hand, [3, (13.1.16)] implies that
√
κ ≥ β

( α

α + Ca

)

.

With the choice of norm ‖v‖V =
√

a(v, v), then
Ca = α = 1.

Thus β and
√
κ are essentially equivalent parameters

measuring the stability of the Stokes approximation.



An eigenproblem
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Consider the eigenproblem: find 0 6= uh ∈ Z⊥
h such that

(∇·uh,∇·v) = λa(uh,v) ∀v ∈ Z⊥
h .

Let λmin be the smallest eigenvalue, which is given by
the Rayleigh quotient

λmin = min
v∈Z⊥

h

(∇·v,∇·v)
a(v,v)

> 0. (19)

Note that λmin > 0 since λ = 0 leads to the contradiction
∇·uh = 0, that is, uh ∈ Zh ∩ Z⊥

h .

Now solve for uh via Rayleigh quotient iteration (RQI).



Solve by RQI
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Find uk ∈ Z⊥
h such that

(∇·uk−1,∇·v) = λka(uk,v) ∀v ∈ Z⊥
h

λk+1 =
(∇·uk,∇·uk)

a(uk,uk)
≥ λmin.

(20)

Now we consider how to compute this despite the fact
that the space Z⊥

h is not explicitly known.

In the case that a(·, ·) is coercive on all of Vh, we can
implement (20) by solving

a(uk,v) = (λk)−1(∇·uk−1,∇·v) ∀v ∈ Vh.

Then a(uk,v) = 0 for all v ∈ Zh, so uk ∈ Z⊥
h for all k > 0.



Comparison with earlier techniques
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The approach advocated in [7, 8, 2] requires working
with a larger space than ∇·Vh, and it thus finds spurious
modes in addition to estimating the constant κ = λmin.

By contrast, our approach has no spurious modes,
since κ = λmin > 0, and it identifies concretely an
approximation of the extrema of (16).

Thus there is a fundamental philosophical difference
regarding spurious modes.

Using our approach, the concept of spurious modes
itself becomes spurious.



Exercises
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Exercise 0.1 Consider (2) in the case that ω =
√
µ. In

this case, the formula (3) is no longer valid. Show that
instead, there is a solution of the form

u(t) =
t

2ω
sin(ωt).

(Hint: write u = tv and show that u′′ = 2v′ + tv′′. Be sure
to say what the formula for v is. Next show that
tv′′ = −ω2u, so that u′′ + ω2u = 2v′. Finally, verify that
2v′ = cos(ωt).)



Exercises continued
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Exercise 0.2 Consider the Laplacian on the square
with homogeneous Dirichlet conditions. Show that it has
an eigenvalue 2π2 with corresponding eigenvector
u(x, y) = (sin πx)(sin πy).

Exercise 0.3 Consider the Laplacian on the square.
Approximate its lowest eigenvalue using the Rayleigh
quotient iteration starting with λ0 = 0 and u0 ≡ 1.
Compare your answer with λ = 2π2. Do you get close if
you take the degree of approximation high enough and
the mesh fine enough?



Exercises continued
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Exercise 0.4 Suppose that a(·, ·) is a bilinear form on a
space V and ρ ∈ R. Define a new bilinear form

aρ(u, v) := a(u, v) + ρ(u, v)L2(Ω) ∀u, v ∈ V.

Suppose λ is an eigenvalue for aρ(·, ·). Show that λ− ρ
is an eigenvalue for a(·, ·)
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