
Computational Modeling Initiative 2019 1/105

Solving PDE’s with FEniCS

Heat, Wave equations
and finite differences

Chapters 10–12

Introduction to

Automated Modeling

with FEniCS
by L. Ridgway Scott

Heat transfer

Computational Modeling Initiative 2019 2/105

Heat can be exchanged between two different bodies by
diffusion, convection or radiation.

The heat equation describes diffusion of thermal
energy in a medium [7].

The simplest form of the heat equation takes the form

∂u

∂τ
(ξ, τ)− c∆u(ξ, τ) = f(ξ, τ) ∀ξ ∈ Ω̃, τ > 0

u(ξ, 0) = u0(ξ) ∀ξ ∈ Ω̃,
(1)

together with boundary conditions imposed on ∂Ω̃ that
will be discussed subsequently.

Cylinder domain

Computational Modeling Initiative 2019 3/105

Have distinguished variable τ that we think of as “time”
[8] together with the spatial variable ξ.

The natural domain for the problem is a cylinder domain
Ω× [0, T] as indicated in the figure:

x

Ω
y

t

Diffusion coefficient

Computational Modeling Initiative 2019 4/105

The diffusion coefficient, c, takes care of the mismatch
in units; c has units of length-squared divided by time.

The heat equation is more generally referred to as the
diffusion equation , and it governs the diffusion of
many materials.

Some examples of diffusion coefficients are given in
Table 1.

We see that these coefficients can differ by orders of
magnitude.

Diffusion coefficients

Computational Modeling Initiative 2019 5/105

material diffusion coefficient medium conditions
H2 1.6 cm2/sec self T = 273 K, p = 0.1 MPa

CO2 .106 cm2/sec self T = 273 K, p = 0.1 MPa
CO2 1.92× 10−5 cm2/sec water T=298 K

sucrose 0.52× 10−5 cm2/sec water T=25 C
hydrogen 1.66× 10−9 cm2/sec iron T=10 C
hydrogen 1.24× 10−7 cm2/sec iron T=100 C
aluminum 1.3× 10−30 cm2/sec copper T=20 C

Table 1: Diffusion coefficients for various materials in various media. When
the medium is “self” the coefficient is the self-diffusion constant.

Nondimensionalization

Computational Modeling Initiative 2019 6/105

It is frequently useful to remove the units in a PDE, that
is, to nondimensionalize the equation.

For the heat/diffusion equation, this allows us to develop
some useful intuition that is independent of the domain
of application.

We can do this by changing the spatial and time
variables:

x = aξ, t = bτ, a 6= 0, b 6= 0.

Change of variables

Computational Modeling Initiative 2019 7/105

With this change of variables, the first equation in (1)
becomes

b
∂u

∂t
(x, t)− ca2∆xu(x, t) = f(x, t) ∀x ∈ Ω, t > 0, (2)

where Ω =
{
x : a−1x ∈ Ω̃

}
and

we added the subscript x to ∆ to clarify that it is

∆x = ∂2/∂x21 + · · ·+ ∂2/∂x2d

as opposed to the meaning in the first equation in (1).

New coefficients

Computational Modeling Initiative 2019 8/105

Defining f̂(x, t) = b−1f(x/a, t/b), we find

∂u

∂t
(x, t)− ca2

b
∆xu(x, t) = f̂(x, t) ∀x ∈ Ω̃, t > 0. (3)

We then have wide lattitude to choose the time and/or
space coordinates so that

ca2 = b.

In such coordinates, the diffusion equation simplifies to

∂u

∂t
(x, t)−∆xu(x, t) = f̂(x, t) ∀x ∈ Ω, t > 0. (4)

We now explore this in detail in one space dimension.

One space dimension

Computational Modeling Initiative 2019 9/105

In its simplest, one-dimensional form, it may be written

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x, t) ∀x ∈ [0, 1], t > 0

u(x, 0) = u0(x) ∀x ∈ [0, 1]
(5)

where u(x, t) denotes temperature of medium at point x
and time t.

Simple example: transfer of heat across a window.

The variable x denotes the distance from one face of the
window pane to the other, in the direction perpendicular
to the plane of the window.

3D effects

Computational Modeling Initiative 2019 10/105

Near outer edges of the window, three dimensional
effects would be evident.

But in the middle of the window, equation (5) would
accurately describe the evolution of the temperature u
inside the window.

The function f is included for completeness, but in many

cases such a body source of heat would be zero.

These equations must be supplemented by boundary
contitions similar to the ones considered previously.

Boundary conditions

Computational Modeling Initiative 2019 11/105

They could be of purely Dirichlet (or essential) type, viz.

u(0, t) = g0(t), u(1, t) = g1(t) ∀t > 0, (6)

or of purely Neumann (or natural) type, viz.

∂u

∂x
(0, t) = g0(t),

∂u

∂x
(1, t) = g1(t) ∀t > 0, (7)

Or a combination of the two:

u(0, t) = g0(t),
∂u

∂x
(1, t) = g1(t) ∀t > 0. (8)

Here gi, i = 0, 1, are given functions of t.

Basic behavior

Computational Modeling Initiative 2019 12/105

The main characteristic of the heat equation is that it
smooths any roughness in the initial data.

For example, in Figure 1 we show the solution at time
t = 0.001 for the case

u0(x) =
1
2 − |x− 1

2 |. (9)

We see that the discontinuity of the derivative of u0 at
x = 1

2 is instantly smoothed.

This has a corollary for the backwards heat equation
that we will explore subsequently.

Basic behavior

Computational Modeling Initiative 2019 13/105

Figure 1: Solution of (5) with initial data (9) at time t = 0.001. Computed
with piecewise linears with 50 mesh points (uniform mesh).

Compatibility conditions

Computational Modeling Initiative 2019 14/105

One type of nonsmooth behavior stems from a
mismatch between boundary data and initial data.

This is governed by compatibility conditions.

It is interesting to note that the pure Neumann condition
(7) for the heat equation (5) does not suffer the same
limitations on the data, or nonuniqueness of solutions,
that the steady state counterpart does.

However, there are compatibility conditions required to
obtain smooth solutions, linking the boundary and initial
data for the heat equation in order to have a smooth
solution.

Compatibility conditions

Computational Modeling Initiative 2019 15/105

Compatibility conditions derived from observation that
the values of u on the spatial boundary have been
specified twice at t = 0.

Consider the case (8) of combined Dirichlet and
Neumann boundary conditions.

The first set of compatibility conditions is

u0(0) = u(0, 0) = g0(0) and u′0(1) = ux(1, 0) = g1(0).
(10)

These are obtained by matching the two ways of
specifying the solution at the boundary points
(x, t) = (0, 0) and (x, t) = (1, 0).

Neumann conditions

Computational Modeling Initiative 2019 16/105

In the case of pure Dirichlet conditions (6) the
compatibility conditions become

u0(0) = u(0, 0) = g0(0) and u0(1) = u(1, 0) = g1(0). (11)

In the case of pure Neumann conditions (7) the
compatibility conditions become

u′0(0) = ux(0, 0) = g0(0) and u′0(1) = ux(1, 0) = g1(0).
(12)

Conditions involving derivatives (Neumann boundary
conditions) are higher-order than those for function
values (Dirichlet boundary conditions).

They affect bounds of higher-order derivatives.

Incompatible heat

Computational Modeling Initiative 2019 17/105

Figure 2: Heat equation with incompatible data after one time step with
∆t = 10−5; degree = 1, 20 mesh intervals. Initial values u0 = 0.5.

Incompatible heat

Computational Modeling Initiative 2019 18/105

Figure 3: Heat equation with incompatible data after one time step with
∆t = 10−5; degree = 2, 10 mesh intervals. Initial values u0 = 0.5.

Higher order conditions

Computational Modeling Initiative 2019 19/105

For an abritrary order of smoothness, there are infinitely
many compatibility conditions.

Second set of conditions uses differential equation
uxx = ut to trade spatial derivatives for temporal ones,
then applying this at t = 0 and x = 0:

Dirichlet case:

u′′0(0) = uxx(0, 0) = ut(0, 0) = g′0(0).

Neumann case:

u′′′0 (1) = uxxx(1, 0) = uxt(1, 0) = g′1(0).

Compatibility implications

Computational Modeling Initiative 2019 20/105

If compatibilities are not satisfied by data, oscillations
will result near t = 0 and x = 0, 1.

In nonlinear problems, this can cause completely wrong
results to occur.

Compatibility conditions do not have to be satisfied for
heat equation (5) to be well posed.

There is a unique solution in any case, but the physical
model may be incorrect as a result if it is supposed to
have a smooth solution.

Compatibility Conditions

Computational Modeling Initiative 2019 21/105

Compatibility conditions are a subtle form of constraint
on model quality.

In many problems they can be described in terms of
local differential-algebraic constraints.

However, such compatibility conditions for the
Navier-Stokes equations can lead to global constraints
that are hard to verify or satisfy in practice.

Variational form of the heat equation

Computational Modeling Initiative 2019 22/105

It is possible to derive a vatiational formulation involving
integration over both x and t, but it is more common to
use a variational formulation based on x alone.

We seek a function ũ(t) of time with values in V such
that ũ(0) = u0

(ũ′(t), v)L2(Ω) + a(ũ(t), v) = F (v) ∀v ∈ V, t ≥ 0, (13)

where Ω = [0, 1] and a(w, v) =
∫ 1

0 w′(x)v′(x) dx.

Since it is a bit awkward to work with a function of one
variable (t) which is a function of another (x), we often
write (13) in terms of u(x, t) = ũ(t)(x).

Variational form of the heat equation

Computational Modeling Initiative 2019 23/105

Using subscript notation for partial derivatives, it
becomes

(ut(·, t), v)L2(Ω) + a(u(·, t), v) = F (v) ∀v ∈ V. (14)

for all t. If we remember the dependence on t, we can
write this as

(ut, v)L2(Ω) + a(u, v) = F (v) ∀v ∈ V. (15)

A stability estimate follows immediately from the
variational formulation.

For simplicity, suppose that the right-hand-side form
F ≡ 0 and that the boundary data vanishes as well (i.e.,
only the initial data is non-zero).

Variational form of the heat equation

Computational Modeling Initiative 2019 24/105

Using v = u (at fixed t, i.e., v = u(·, t)) in (15), we find

1

2

∂

∂t
‖u‖2L2(Ω) = (ut, u)L2(Ω) = −a(u, u) ≤ 0 ∀t ≥ 0, (16)

where Ω denotes the spatial interval [0, 1]. From this, it
follows by integrating in time that

‖u(·, t)‖L2(Ω) ≤ ‖u(·, 0)‖L2(Ω) = ‖u0‖L2(Ω) ∀t ≥ 0. (17)

This result is independent of any compatibility
conditions.

However, all it says is that the mean-square of the
temperature u remains bounded by its initial value.

Variational form of the heat equation

Computational Modeling Initiative 2019 25/105

If F is nonzero but bounded on V , i.e.,

|F (v)| ≤ ‖F‖H−1(Ω)‖v‖H1(Ω) ∀v ∈ V, (18)

then we retain a bound on ‖u(·, t)‖L2(Ω):

1

2

∂

∂t
‖u‖2L2(Ω) = (ut, u)L2(Ω) = F (u)− a(u, u)

≤ ‖F‖H−1(Ω)‖u‖H1(Ω) − a(u, u).
(19)

The form a(·, ·) always satisfies at least a weak type of
coercivity of the form

‖v‖2H1(Ω) ≤ γ1a(v, v) + γ2‖v‖2L2(Ω) ∀v ∈ V, (20)

known as Gårding’s inequality .

Variational form of the heat equation

Computational Modeling Initiative 2019 26/105

For example, this holds for the pure Neumann problem
(7) with V = H1(Ω) whereas the stronger form of
coercivity we saw earlier does not in this case.

Applying (20) in (19) gives

∂

∂t
‖u‖2L2(Ω) ≤ 2‖F‖H−1(Ω)‖u‖H1(Ω) −

2

γ1
‖u‖2H1(Ω)

+
2γ2
γ1
‖u‖2L2(Ω).

(21)

The arithmetic-geometric mean inequality

2rs ≤ δr2 +
1

δ
s2 (22)

holds for any δ > 0 and any real numbers r and s.

Variational form of the heat equation

Computational Modeling Initiative 2019 27/105

Using the arithmetic-geometric mean inequality we find

2‖F‖H−1(Ω)‖u‖H1(Ω) ≤
γ1
2
‖F‖2H−1(Ω) +

2

γ1
‖u‖2H1(Ω).

Thus

∂

∂t
‖u‖2L2(Ω) ≤

γ1
2
‖F‖2H−1(Ω) +

2γ2
γ1
‖u‖2L2(Ω) (23)

Gronwall’s Lemma [10] implies

‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω) + et(γ2/γ1)‖F‖H−1(Ω) ∀t ≥ 0.
(24)

Stability of gradient

Computational Modeling Initiative 2019 28/105

Another stability result can be derived by using v = ut
(assuming F ≡ 0 and the boundary data are zero) in
(15), to find

‖ut‖2L2(Ω) = −a(u, ut) = −1
2

∂

∂t
a(u, u). (25)

From (25), it follows that

∂

∂t
a(u, u) = −2‖ut‖2L2(Ω) ≤ 0 ∀t ≥ 0. (26)

Again integrating in time and using (17), we see that

‖u(·, t)‖H1(Ω) ≤ ‖u(·, 0)‖H1(Ω) = ‖u0‖H1(Ω) ∀t ≥ 0. (27)

Variational form of the heat equation

Computational Modeling Initiative 2019 29/105

This result requires first-order compatibility conditions.

Presupposes that u0 ∈ V , and this may not hold.

Says mean-square of gradient of temperature u also
remains bounded by its initial value.

Moreover, if the data F is not zero, this result will not
hold.

In particular, if the compatibility condition (10) does not
hold, then u0 6∈ V and ‖u(·, t)‖H1(Ω) will not remain
bounded as t→ 0.

Discretiztion for heat equation

Computational Modeling Initiative 2019 30/105

Simplest discretization uses a finite element method for
spatial differential equation and a finite difference
method for the temporal part.

Allows us to reuse existing software already
developed for the spatial problem.

Many time dependent problems can be treated in the
same manner. This technique goes by many names:

• (time) splitting since the time and space parts are
separated and treated by independent methods

• the method of lines since the problem is solved on
a sequence of lines (copies of the spatial domain),
one for each time step.

Explicit Euler Time Discretization

Computational Modeling Initiative 2019 31/105

The simplest time discretization method for the heat
equation uses the forward (or explicit) Euler difference
method. It takes the form

un+1(x) = un(x) + ∆t
∂2un

∂x2
(x) ∀x ∈ [0, 1],

u0(x) = u0(x) ∀x ∈ [0, 1]

un(0) = g0(n∆t) and un(1) = g1(n∆t) ∀n > 0

(28)

where un(x) denotes an approximation to u(x, n∆t).

Applying the finite difference or finite element
approximation to (28) yields a simple algorithm.

For simplicity, we begin with the case that g0 = g1 = 0.

Implicit Euler Time Discretization

Computational Modeling Initiative 2019 32/105

The difficulty with this simple algorithm is that it is
unstable unless dt is sufficiently small.

The simplest implicit time discretization method for the
heat equation uses the backward (or implicit) Euler
difference method. It takes the form

un+1(x) = un(x) + ∆t
∂2un+1

∂x2
(x) ∀x ∈ [0, 1],

u0(x) = u0(x) ∀x ∈ [0, 1]

un(0) = g0(n∆t) and un(1) = g1(n∆t) ∀n > 0

(29)

where un(x) again denotes an approximation to
u(x, n∆t).

Implicit Euler Time Discretization

Computational Modeling Initiative 2019 33/105

Applying the finite difference or finite element
approximation to (29) yields now a system of equations
to be solved at each time step.

For simplicity, we begin with the case that g0 = g1 = 0.

This algorithm is stable for all dt, but now we have to
solve a system of equations instead of just multiplying
by a matrix.

Note however that the system to be solved is just the
same as in the ODE boundary value problems studied
earlier, so the same family of techniques can be used.

Variational form of the time discretization

Computational Modeling Initiative 2019 34/105

Explicit Euler time stepping method is written in
variational form as

(un+1, v)L2(Ω) = (un, v)L2(Ω)

+∆t (F (v)− a(un, v)) ∀v ∈ V.
(30)

Solving for un+1 requires inverting the mass matrix.

Implicit Euler time stepping method is written in
variational form as

(un+1, v)L2(Ω) +∆t a(un+1, v) = (un, v)L2(Ω)

+∆t F (v) ∀v ∈ V.
(31)

Variational form of the time discretization

Computational Modeling Initiative 2019 35/105

Solving for un+1 requires inverting linear combination of
stiffness and the mass matrices.

This is now in the familiar form: find un+1 ∈ V such that

a∆t(u
n+1, v) = F n

∆t(v) ∀v ∈ V,

where

a∆t(v, w) =

∫

Ω

vw +∆t v′w′ dx, and

F n
∆t(v) = (un, v)L2(Ω) +∆tF (v) ∀v, w ∈ V.

(32)

Backwards differentiation formulæ

Computational Modeling Initiative 2019 36/105

A popular way to achieve increased accuracy in time-dependent
problems is to use a backwards differentiation formula (BDF)

du

dt
(tn) ≈

1

∆t

k∑

i=0

anun−i, (33)

where the coefficients {ai : i = 0, . . . k} are given in Table 2.

k a0 a1 a2 a3 a4 a5 a6 a7
1 1 −1
2 3/2 −2 1/2

3 11/6 −3 3/2 −1/3
4 25/12 −4 6/2 −4/3 1/4

5 137/60 −5 10/2 −10/3 5/4 −1/5
6 49/20 −6 15/2 −20/3 15/4 −6/5 1/6

7 363/140 −7 21/2 −35/3 35/4 −21/5 7/6 −1/7
Table 2: Coefficients of the BDF schemes of degree k.

The BDF for k = 1 is the same as implicit Euler.

Backwards differentiation formulæ

Computational Modeling Initiative 2019 37/105

The BDF formulæ satisfy [9]

k∑

i=0

aiun−i =
k∑

j=1

(−1)j
j

∆jun, (34)

where ∆un is the sequence whose n-th entry is
un − un−1.

The higher powers are defined by induction:
∆j+1un = ∆(∆jun).

For example, ∆2un = un − 2un−1 + un−2, and in general

∆j has coefficients given from Pascal’s triangle.

Backwards differentiation formulæ

Computational Modeling Initiative 2019 38/105

We thus see that a0 6= 0 for all k ≥ 1; a0 =
∑k

i=1 1/i.
Similarly, a1 = −k.

For j ≥ 2, jaj is an integer conforming to Pascal’s
triangle.

Given this simple definition of the general case of BDF, it
is hard to imagine what could go wrong regarding
stability.

Unfortunately, the BDF method of order k = 7 is
unconditionally unstable and hence cannot be used.

Exercise: explore the use of BDF schemes.

The backwards heat equation

Computational Modeling Initiative 2019 39/105

The heat equation is reversible with respect to time, in
the sense that if we let time run backwards we get an
equation that takes the final values to the initial values.

More precisely, let u(x, t) be the solution to (5) for
0 ≤ t ≤ T . Let v(x, t) := u(x, T − t). Then v solves the
backwards heat equation

∂v

∂t
(x, t) +

∂2v

∂x2
(x, t) = 0 ∀x ∈ [0, 1], t > 0

v(x, 0) = v0(x) = u(x, T) ∀x ∈ [0, 1]

v(0, t) = g0(T − t), v(1, t) = g1(T − t) ∀t > 0

(35)

and v(x, T) will be the same as the initial data u0 for (5).

Nonsmooth initial data

Computational Modeling Initiative 2019 40/105

With nonsmooth initial data, unreliable results occur.

Figure 4: Two solutions of the backwards heat equation with hat-function
initial data at time t = 0.001, computed with piecewise linears with 50 mesh
points (uniform mesh). (left) One time step with ∆t = 0.001. (right) Two
time steps with ∆t = 0.0005.

The backwards heat equation

Computational Modeling Initiative 2019 41/105

Although (35) has a well-defined solution in many
cases, it is not well posed in the usual sense.

It only has a solution starting from solutions of the heat
equation.

Moreover, such solutions may exist only for a short time,
and then blow up.

Thus great care must be used in attempting to solve the
backwards heat equation.

Finite Difference Methods

Computational Modeling Initiative 2019 42/105

Now we consider briefly

finite difference methods

Allows direct comparison with FEM

Provides some explicit formulas
for heat equation approximation

Finite Difference Methods

Computational Modeling Initiative 2019 43/105

Consider the two-point boundary-value problem

−d
2u

dx2
= f in (0, 1)

u(0) = g0, u′(1) = g1.
(36)

FDM: differential operator −→ difference operator.

In this way we get the approximation for (36)

−u(x− h) + 2u(x)− u(x+ h) ≈ h2f(x) (37)

where h > 0 is the mesh size to be used.

Finite Difference Equations

Computational Modeling Initiative 2019 44/105

Choosing x = xn := nh for n = 0, 1, . . . , N = 1/h, we get
a system of linear equations

−un−1 + 2un − un+1 = h2f(xn) (38)

where un ≈ u(xn).

Same as piecewise linear finite element discretization.

Boundary condition at x = 0 translates into u0 = g0.

Thus equation (38) for n = 1 becomes

2u1 − u2 = h2f(x1) + g0. (39)

But derivative boundary conditions more complex.

Derivative boundary conditions

Computational Modeling Initiative 2019 45/105

Derivative boundary condition at x = 1 must be
approximated by a difference equation.

A natural one to use is
uN+1 − uN−1 = 2hg1 (40)

using a difference over an interval of length 2h centered
at xN .

Using (40), equation (38) for n = N becomes

−2uN−1 + 2uN = h2f(xN) + 2hg1. (41)

Now we summarize these equations as a matrix
equation.

Finite Difference Methods

Computational Modeling Initiative 2019 46/105

Algebraically, we can express the finite difference
method as

AU = F (42)

where

• U is the vector with entries un and
• F is the vector with entries h2f(xn)
• appropriately modified at n = 1 and n = N using

boundary data.

Finite difference matrix A has very regular pattern.

• appropriately modified at n = 1 and n = N

as we now describe.

Finite Difference Matrix

Computational Modeling Initiative 2019 47/105

Finite difference matrix A diagonal entries equal to 2.

First sub- and super-diagonal entries equal to −1

A =




2 −1 0 0 0 · · ·
−1 2 −1 0 0 · · ·
...
· · · −1 2 −1 0 · · ·
· · · 0 −1 2 −1 · · ·
...
0 0 · · · 0 −2 2




except the last sub-diagonal entry, which is −2.

Matrix A created in octave by various techniques.

octave Implementation

Computational Modeling Initiative 2019 48/105

For simplicity, we us consider the case where the
differential equation to be solved is

−u′′(x) = sin(x) for x ∈ [0, π]

u(0) = u(π) = 0.
(43)

Then u(x) = sin(x) for x ∈ [0, π].

To create difference operator A in a sparse format, must
specify only the non-zero entries of the matrix, that is,
you give a list of triples: (i, j, Aij).

Operation sparse amalgamates these triples into a
sparse matrix.

octave code for solving (43)

Computational Modeling Initiative 2019 49/105

dx=pi/(N+1);
i(1:N)=1:N;
j(1:N)=1:N;
v(1:N)= 2/(dx*dx);
i(N+(1:(N-1)))=(1:(N-1));
j(N+(1:(N-1)))=1+(1:(N-1));
v(N+(1:(N-1)))= -1/(dx*dx);
i((2*N-1)+(1:(N-1)))=1+(1:(N-1));
j((2*N-1)+(1:(N-1)))=(1:(N-1));
v((2*N-1)+(1:(N-1)))= -/(dx*dx);
A=sparse(i,j,v);
F(1:N)=sin(dx*(1:N));

octave code for solving (43)

Computational Modeling Initiative 2019 50/105

In octave, the solution to (42) can be achieved simply
by writing

U=A\F

Critical to use vector constructs in octave to insure
optimal performance.

Code executes much more rapidly, but code is not

shorter, more readible, or less prone to error.

Reality Checks

Computational Modeling Initiative 2019 51/105

For the approximation (un) (38) of the solution u of
equation (38) it can be shown [5] that

max
1≤n≤N

|u(xn)− un| ≤ Cfh
2

(
h
∑

n

(u(xn)− un)
2
)1/2

≤ Cfh
2

(44)

where Cf is a constant depending only on f .

Experiment with a known u can determine if relationship
(44) holds as h is decreased.

If log eh is plotted as a function of log h, then the
resulting plot should be linear, with a slope of two.

Reality Checks

Computational Modeling Initiative 2019 52/105

Consider the boundary value problem (43), that is,
−u′′ = f on [0, π] with f(x) = sin x and u(0) = u(π) = 0.

Mean-squared error plotted in Figure 5.

The line eh = 0.1h2 has been added for clarity.

Thus we see for h ≥ 10−4, the error diminishes
quadratically.

However, when mesh size is much less than 10−4,
round-off error causes accuracy to diminish, and error
even increases as mesh size is further decreased.

Reality Checks

Computational Modeling Initiative 2019 53/105

Figure 5: Error in L2([0, π]) for the finite difference approximation of the
boundary value problem for the differential equation −u′′ = sin(x) on the
interval [0, π], with boundary conditions u(0) = u(π) = 0, as a function of
the mesh size h. The solid line has a slope of 2 as a reference.

Limits of finite precision arithmetic

Computational Modeling Initiative 2019 54/105

All discretization methods can suffer from the effects of
finite precision arithmetic.

Typical cause is increasing condition number of linear
system A as h tends to zero.

Condition number grows proportional to N 2 ≈ h−2.

of grid points 10 100 1000 10000
mesh size 2.9e-01 3.1e-02 3.1e-03 3.1e-04
condition # 4.8e+01 4.1e+03 4.1e+05 4.1e+07

Table 3: Condition number as a function of N (mesh size h = π/(N + 1)).

Pitfall: Low Accuracy

Computational Modeling Initiative 2019 55/105

Error decreases quadratically to a point, then hits wall.

Accuracy then behaves randomly and even decreases
as the mesh size is further descreased.

Greatest accuracy achieved is
condition number multiplied by
machine ǫ = 2.22× 10−16.

Thus with N = 10, 000, we cannot expect accuracy
better than about 10−9.

The simple way to avoid this difficulty is to avoid very
small h values.

Finite element methods

Computational Modeling Initiative 2019 56/105

The equivalent accuracy can be achieved by using a
larger h and a more accurate discretization method.

Indeed, “spectral” methods rely entirely on increasing
the degree of approximation on a fixed mesh.

degree number of grid intervals error time
1 10000 1.20e-08 0.137
2 1000 1.14e-09 0.083
4 100 9.57e-11 0.079
8 50 4.08e-10 0.079

16 2 1.02e-09 0.076

Table 4: Error in L2 norm for the problem −u′′ = π2 sin(πx) on [0, 1] with
boundary conditions u(0) = u(1) = 0 as a function of degree, number of
grid points. Time is in seconds.

Two-dimensional problems

Computational Modeling Initiative 2019 57/105

Same as seen in two-dimensional problem.

degree mesh number L2 error time (s)
1 1024 2.07e-06 22.5
2 512 2.11e-09 18.4
4 128 4.95e-12 3.0
8 8 3.98e-12 0.13

Table 5: Computational experiments with solving two-
dimensional problem. Degree refers to the polynomial
degree, mesh number indicates the number of edges
along each boundary side, L2 error is the error measured
in the L2([0, 1]2) norm.

Pitfall: Low Accuracy

Computational Modeling Initiative 2019 58/105

Higher-order methods do not solve the problem of
round-off error.

Maximum accuracy about same independent of degree
of approximation.

Condition number is linked to the accuracy of the
approximation.

The condition number of the linear system depends on
the largest eigenvalue of the PDE that is resolved.

The better the resolution, the larger the condition
number.

Pitfall: Low Accuracy

Computational Modeling Initiative 2019 59/105

This is a feature of elliptic systems, like Poisson’s
equation, whereas in time-stepping methods increasing
the accuracy always reduces the effects of round-off
errors.

On the other hand, higher-order methods do reduce the
run time required to achieve maximal accuracy, as
indicated in Table 5.

For this reason, higher-order methods would allow the
use of more accurate precision arithmetic at a
manageable cost.

Explicit Euler time discretization

Computational Modeling Initiative 2019 60/105

Simplest time discretization method for heat equation
uses forward (or explicit) Euler difference method:

un+1(x) = un(x) + ∆t
∂2un

∂x2
(x) ∀x ∈ [0, 1],

u0(x) = u0(x) ∀x ∈ [0, 1]

un(0) = g0(n∆t) and un(1) = g1(n∆t) ∀n > 0

(45)

where un(x) denotes an approximation to u(x, n∆t).

Applying the finite difference or finite element
approximation (38) to (45) yields a simple algorithm.

Difficulty: unstable unless ∆t is sufficiently small.

Review of the heat equation

Computational Modeling Initiative 2019 61/105

Using the approximations (45) and (37), we get the
following finite difference method for the heat equation:

un+1
j = unj +

∆t

∆x2
(
unj−1 − 2unj + unj+1

)

= runj−1 + (1− 2r)unj + runj+1,
(46)

where r = ∆t/∆x2.

Here u(j∆x, n∆t) ≈ unj .

Very appealing since there are no equations to solve.

However, there is a strict stability limitation.

Stability limitation

Computational Modeling Initiative 2019 62/105

Start with the initial condition u0j = (−1)j.

Although this is a rough function, we know that the heat
equation should smooth it out.

For the moment, let us ignore boundary conditions and
assume that (46) holds for all j and n.

This is equivalent to assuming that Ω = R.

Then we will prove by induction that

unj = (1− 4r)n(−1)j. (47)

First, by assumption this holds for n = 0.

Stability limitation

Computational Modeling Initiative 2019 63/105

Using (46) and the induction hypothesis, we have

un+1
j = runj−1 + (1− 2r)unj + runj+1

= r(1− 4r)n(−1)j−1 + (1− 2r)(1− 4r)n(−1)j
+ r(1− 4r)n(−1)j+1

= (1− 4r)n(−1)j(−r + (1− 2r)− r)

= (1− 4r)n+1(−1)j,

(48)

completing the induction step. So (47) holds ∀n, j.

r = ∆t/∆x2 > 0 so |1− 4r| ≤ 1 only for r ≤ 1/2.

For r < 1/2, then unj decreases rapidly to zero.

Approximation blow up

Computational Modeling Initiative 2019 64/105

If r > 1/2, then |1− 4r| > 1, and (47) blows up
exponentially. Most insideously, we have

u(x, t) = u(j∆x, n∆t) ≈ unj = (1− 4r)t/∆t(−1)j,

so the blow up accelerates as ∆t→ 0.

Thus the explicit method (46) for the heat equation is
restricted by the stringent requirement

∆t ≤ ∆x2

2
.

Therefore the implicit methods are more efficient in
many cases, allowing larger time steps.

Nonlinear finite differences

Computational Modeling Initiative 2019 65/105

The solution of the Jeffrey-Hamel problem can be
effected using a difference method for the differential
operator as before:

−un−1 + 2un − un+1 + 4h2un + 6h2u2n = h2C (49)

where un ≈ u(xn).

Since this system of equations is nonlinear, we cannot
solve it directly.

A standard algorithm to use is Newton’s method, which
can be written as follows.

Newton’s method

Computational Modeling Initiative 2019 66/105

First, we write the system of equations as F ((ui)) = 0
where

fn := −un−1 + 2un − un+1 + 4h2un + 6h2u2n − h2C (50)

Newton’s iteration takes the form

u← u− Jf(u)
−1f(u) (51)

where Jf(u) denotes the Jacobian of the mapping f
evaluated at u.

This can be written in octave as follows.

Pitfall: Low Accuracy

Computational Modeling Initiative 2019 67/105

Suppose that A is defined as before.

Then f can be written

delta=((n+1)/alf)*((n+1)/alf);
f=delta*A*uhf-4*uhf-6*ujh.*ujh+cvec;

where

cvec=C*ones(n,1);

The Jacobian J of f is

J = delta*A - 4*eye(n) - 12*diag(ujh,0);

Newton’s method

Computational Modeling Initiative 2019 68/105

Newton’s method takes the following form in octave.

JA = delta*A - 4*eye(n);
ujh =- JA\cvec;
enorm = 1;
while (enorm >> .0000000000001)
f = JA*ujh - 6*ujh.*ujh + cvec;
J = JA - 12*diag(ujh,0);
x = ujh - J\f;
enorm = norm(ujh-x)/(norm(ujh)+norm(x));
ujh=x;
end

Jeffrey-Hamel solution

Computational Modeling Initiative 2019 69/105

Solution of the Jeffrey-Hamel equation with C = 0.1 .

Jeffrey-Hamel solution

Computational Modeling Initiative 2019 70/105

Solution of the Jeffrey-Hamel equation with C = 0.01.

Classification of PDEs

Computational Modeling Initiative 2019 71/105

There are two major classifications of PDEs, one for
nonlinearities and one for linear PDEs.

The latter is based on an algebraic trichotomy for
second-order differential operators D in two dimensions:
elliptic, parabolic, and hyperbolic.

This arises from the analogy with conic sections and
their algebraic equations, as indicated in Table 6.

formula classification example equation variable substitution
x2 + y2 = 1 elliptic Laplace u,xx + u,yy none

x = y2 parabolic diffusion/heat u,t − u,yy x→ t
x2 − y2 = 1 hyperbolic wave u,tt − u,yy x→ t

Table 6: Classification of linear PDEs. “formula” is name for a conic section.

Classification of PDEs: hyperbolic

Computational Modeling Initiative 2019 72/105

Examples of elliptic equations are the Laplace/Poisson
equations and the variants considered so far.

Heat equation is the prototypical parabolic equation.

In the classification in Table 6, this leaves hyperbolic
equations.

Switching variables from y to x, such an equation takes
the form

utt − uxx = 0, (52)

in one space dimension.

The wave equation

Computational Modeling Initiative 2019 73/105

More generally, what is called The wave equation is

utt − c2∆u = 0, (53)

in multiple space dimensions, where c is the wave
speed and ∆ is the Laplacean.

The speed c may always be taken to be 1 in suitable
coordinates.

For example, the speed of light in a vacuum is
approximately 299792458 metres per second.

Choice of units

Computational Modeling Initiative 2019 74/105

A meter is about 3.28084 feet.

So the speed of light in a vacuum is approximately
9.8357e+08 feet per second.

Define big foot to be 1.0167 feet (about 12.2 inches),
then speed of light is one big foot per nanosecond.

Approximately one giga-big-feet per second.

In either of these units, c = 1.

In one of them, time unit is small, and in other length
unit is big.

Understanding units

Computational Modeling Initiative 2019 75/105

Assume now that units are chosen so that c = 1.

Grace Hopper1 famously displayed in her talks a piece
of copper wire whose length corresponded to the
distance an electrical signal traveled in a nanosecond.

Her point was to emphasize the need for careful
programming, but it also showed that c = 1 makes
sense in a computer.

1Grace Brewster Murray Hopper (1906–1992) was an early advocate for automating
programming via the use of compilers to translate human-readable descriptions into ma-
chine code.

Other wave equations

Computational Modeling Initiative 2019 76/105

There are other equations of higher order that do not fit
the classification in Table 6, such as the dispersive Airy
equation ut + uxxx = 0.

Using a more sophisticated classification [1], the Stokes
equations are an elliptic system.

So we must consider Table 6 as just a starting point for
understanding the differences between different PDEs.

But it does suggest a new equation to consider which is
intimately related to wave motion.

The wave equation in one space dimension

Computational Modeling Initiative 2019 77/105

The one-dimensional wave operator factors, so that (52)
can be written

0 = utt − uxx =
(∂
∂t
− ∂

∂x

)(∂
∂t

+
∂

∂x

)
u

=
(∂
∂t
− ∂

∂x

)(
ut + ux

)
.

(54)

In particular, u(x, t) = f(t− x) solves (54) for any
function f of one variable, since ut(x, t) = f ′(t− x) and
ux(x, t) = −f ′(t− x), and thus ut + ux = 0.

Thus solutions are constant on lines x(t) = t.

Consist of just translating f to right at constant speed.

Waves go in both directions

Computational Modeling Initiative 2019 78/105

Similarly, by re-ordering the factorization (54), we
conclude that another family of solutions consist of
translations to the left, without change of shape.

Such solutions are easy to visualize, and are markedly
different from the behavior for the heat equation, or
elliptic equations.

In particular, it appears at least formally that
smoothness of f does not matter, and that even
discontinuous solutions would be allowed.

d’Alembert

Computational Modeling Initiative 2019 79/105

d’Alembert’s formula for solutions of wave equation:

u(x, t) = 1
2f(t− x) + 1

2f(t+ x) +
1

2

∫ x+t

x−t
g(s) ds, (55)

where g(x) = ut(x, 0) and f(x) = u(x, 0).

The contributions of d’Alembert are memorialized in the
name the wave operator

�u = utt −∆u,

known as the d’Alembertian operator .

Light cone

Computational Modeling Initiative 2019 80/105

d’Alembert draws information from the light cone :

u(x, t) = 1
2f(t− x) + 1

2f(t+ x) +
1

2

∫ x+t

x−t
g(s) ds,

(x,t)t

x
(x−t,0) (x+t,0)

Figure 6: The light cone for the wave equation.

Using the light cone

Computational Modeling Initiative 2019 81/105

Although corresponding relationship between data and
solution is more complex in higher spatial dimensions,
concept of light cone generalizes naturally.

Since waves tend to propagate without change of
shape, the spatial domain Ω is often infinite.

In such cases, we truncate Ω for computational
purposes.

The fact that information comes only from the light cone
allows us to estimate the required size of the
computational domain accurately.

One-way propagation

Computational Modeling Initiative 2019 82/105

d’Alembert formula seems to imply waves always
propagate in both directions.

But our splitting of the wave operator implied that there
are solutions of the form u±(x, t) = f(x± t).

Suppose that v(x, t) = f(x+ t).

Then vt(x, 0) = f ′(x).

So now consider the case where f is given and
g(x) = f ′(x) for all x.

Either-way propagation

Computational Modeling Initiative 2019 83/105

For g(x) = f ′(x) for all x, (55) gives

2u(x, t) = f(x− t) + f(x+ t) +

∫ x+t

x−t
f ′(s) ds

= f(x− t) + f(x+ t) + (f(x+ t)− f(x− t)) = 2f(x+ t).

Thus u = v as expected. Similarly, if g(x) = f ′(−x), then

2u(x, t) = f(x− t) + f(x+ t) +

∫ x+t

x−t
f ′(−s) ds

= f(x− t) + f(x+ t) + (f(x− t)− f(x+ t)) = 2f(x− t).

So we get the expected one-way solutions by adjusting
the initial impulse g.

Variational form of wave equation

Computational Modeling Initiative 2019 84/105

Since waves tend to propagate without change of
shape, the spatial domain Ω is often infinite.

We truncate Ω for computational purposes.

Using standard algorithm, following heat equation, we
obtain the variational expression

(utt, v)L2(Ω) + a(u, v) = 0 ∀v ∈ H1(Ω), (56)

where

a(v, w) =

∫

Ω

v′(x)w′(x) dx. (57)

What is different is second-order time derivative.

Time discretization of wave equation

Computational Modeling Initiative 2019 85/105

We can approximate this, for example, via

utt ≈
un+1 − 2un + un−1

τ 2
,

where τ > 0 is the time step, and uj denotes an
approximation to u(jτ). We can use this to define the
vatiational formulation

(un+1, v)L2(Ω)−2(un, v)L2(Ω)+(un−1, v)L2(Ω)+τ 2a(un+1, v) = 0,

where τ is the time step. Thus we solve

(un+1, v)L2(Ω) + τ 2a(un+1, v) = 2(un, v)L2(Ω)

− (un−1, v)L2(Ω) ∀v ∈ H1(Ω).
(58)

Time discretization of wave equation

Computational Modeling Initiative 2019 86/105

We immediately see that we can not solve the wave
equation knowing just the initial conditions u(x, 0).

In addition, we need to know ut(x, 0) and we can use
this to get a good approximation to u−1.

Unfurtunately, the time-stepping scheme (58) is only
first-order accurate in time.

Higher accuracy

Computational Modeling Initiative 2019 87/105

Another time-stepping scheme, advocated in [6], is

(un+1, v)L2(Ω) − 2(un, v)L2(Ω) + (un−1, v)L2(Ω)

= −τ 2
(
θa(un+1, v) + (1− 2θ)a(un, v) + θa(un−1, v)

)
,

(59)

where θ ∈ [0, 1]. Thus we solve

(un+1, v)L2(Ω) + θτ 2a(un+1, v) = 2(un, v)L2(Ω) − (un−1, v)L2(Ω)

− τ 2
(
(1− 2θ)a(un, v) + θa(un−1, v)

)
, ∀v ∈ H1(Ω).

(60)

We can see the rationale for this approach by doing a
Taylor expansion.

Taylor expansion

Computational Modeling Initiative 2019 88/105

u((n± 1)τ) = u(nτ)± τut(nτ) +
1
2τ

2utt(nτ)

± τ 3

6
uttt(nτ) +O

(
τ 4
)
.

(61)

Adding terms and dividing by τ 2, and again making the
correspondence uj ≈ u(jτ), we find

un+1 − 2un + un−1

τ 2
= utt(nτ) +O

(
τ 2
)
.

Similarly, multiplying (61) by θ and adding gives

θu((n+ 1)τ) + (1− 2θ)u(nτ) + θu((n− 1)τ)

= u(nτ) + θτ 2utt(nτ) +O
(
τ 4
)
.

(62)

Theta schemes

Computational Modeling Initiative 2019 89/105

Thus for any value of θ we get a second-order
approximation:

un+1 − 2un + un−1

τ 2
+ θun+1 + (1− 2θ)un + θun−1

= utt(nτ) + u(nτ) +O
(
τ 2
)
,

(63)

and truncation error is decreasing in θ.

If we take θ = 0 we get an explicit scheme with time-step
restrictions.

In [6], the choice θ = 1/4 was advocated for stability
reasons.

Higher accuracy

Computational Modeling Initiative 2019 90/105

Figure 7: Error in L2(Ω) as function of time for θ scheme with θ = 1/4,
∆t = 0.05, L = 10, T = 5, M = 2000 mesh points, using piecewise linears.

Computational example

Computational Modeling Initiative 2019 91/105

Start the simulation (in one space dimension) with

u0(x) = e−x
2

on domain Ω = [−L,L]. Take L as large as necessary.

Take ut(x, 0) = 0. Then the exact solution follows from
d’Alembert’s formula:

u(x, t) = 1
2e
−(t−x)2 + 1

2e
−(t+x)2. (64)

Error as a function of time is indicated in Figure 7.

Error increases rapidly initially but then decreases.

Higher dimensions

Computational Modeling Initiative 2019 92/105

The conversion to higher space dimensions is
notationally trivial.

We have written our bilinear form

a(u, v) =

∫

Ω

∇u · ∇v dx

which makes sense in any number of dimensions.

Thus it is just a matter of defining the spatial domain to
be multi-dimensional and waiting a bit longer for the
answers to appear.

Helmholtz equation

Computational Modeling Initiative 2019 93/105

Consider solutions U of wave equation (53) given by

U(x, t) = u(x)eιkt,

where k ∈ R and ι =
√
−1. Then

∆U(x, t) = (∆u(x))eιkt and Utt(x, t) = −k2u(x)eιkt.

Thus the wave equation

Utt(x, t)−∆U(x, t) = f(x)eιkt

is satisfied if

−k2u(x)−∆u(x) = f(x). (65)

Helmholtz equation

Computational Modeling Initiative 2019 94/105

Equation (65) is known as Helmholtz equation .

Solving this (with boundary conditions) can be touchy
since corresponding variational form not coercive.

If bothered by complex varaible ansatz for U , replace it
with real counterparts, e.g.,

U 1(x, t) = u(x) cos(kt), U 2(x, t) = u(x) sin(kt),

but the conclusion is the same:

U i’s solve the wave equation if (65) holds.

Dispersive waves

Computational Modeling Initiative 2019 95/105

Many types of wave behavior can be characterized as
dispersive .

One example is water waves.

These are the waves that a child first sees.

The main characteristic of these waves is the way that
they spread as time evolves.

Unlike the behavior we saw for The wave equation
where waveforms just translate linearly in time as
indicated in (55).

Dispersive waves

Computational Modeling Initiative 2019 96/105

When the wave length λ is long and the amplitude a is
small, compared to the water depth, approximate
equations can be derived for surface wave behavior.

More precisely, define the Stokes parameter S = aλ2/d3,
where d is the (assumed uniform) depth of the water.

When S = O (1), then models for one-way propagation
include the KdV equation [11, 3]

ut + ux + 2uux + uxxx = 0,

where u is the wave height.

Dispersive waves

Computational Modeling Initiative 2019 97/105

The waves are assumed to be propagating in the
x-direction, and constant in the y-direction.

We see that this equation is a nonlinear perturbation of
the one-way wave equation ut + ux = 0.

Another, equivalent [3], model is

ut + ux + 2uux − uxxt = 0. (66)

The two equations related as perturbations of the basic
wave equation ut + ux = 0.

Suggests the substitution ut ≈ −ux, leads to
uxxt ≈ −uxxx.

Dispersive waves

Computational Modeling Initiative 2019 98/105

Simulations using equation (66) have been compared
with laboratory experiments [2].

Solutions of (66) can be approximated numerically [4] by
writing it in the form

(
I − ∂2

∂x2

)
ut = −ux − 2uux = −

(
u+ u2

)
x
, (67)

where I denotes the identity operator.

Dispersive waves

Computational Modeling Initiative 2019 99/105

The left-hand side is a familiar elliptic operator, so we
can write a variational equation

a(ut, v) = −(ux + 2uux, v)L2(Ω)

= −((1 + 2u)ux, v)L2(Ω),
(68)

where

a(v, w) =

∫

Ω

v(x)w(x) + v′(x)w′(x) dx. (69)

A variety of time-stepping schemes can be used to
discretize (68).

Time-stepping schemes

Computational Modeling Initiative 2019 100/105

One family of schemes that work well [4] is the
Runge-Kutta schemes.

These schemes can be high order yet not require
previous time values of the solution.

Often used as start-up schemes for other schemes that
do utilize previous values, as do the θ schemes (59).

Simplest is modified Euler scheme: ∀v ∈ V

a(ûn+1, v) = a(un, v)−∆t ((1 + 2un)unx, v)L2(Ω)

a(un+1, v) = a(un, v)− 1
2∆t

(
((1 + 2un)unx, v)L2(Ω)

+ ((1 + 2ûn+1)ûn+1
x , v)L2(Ω)

)
.

(70)

Time-stepping schemes

Computational Modeling Initiative 2019 101/105

An example

Computational Modeling Initiative 2019 102/105

The first step in (70) is called the predictor step and
the second step in (70) is called the corrector step .

Figure presents example of this scheme with piecewise
linear approximation in space.

The initial data u(x, 0) = e−x
2

evolves into a complex
wave form that spreads out as it travels to the right, and
even has a part that moves slowly to the left.

The wave speed is approximately 1 + 2u, and in 25 time
units the leading wave moves over 60 units to the right.

A linear wave (that is, if u were small) would have
moved only 25 units to the right.

An example

Computational Modeling Initiative 2019 103/105

A common measure of wave length for a complex wave
shape is its width at half height.

For the function f(x) = e−x
2

, this is the point x where
e−x

2

= 1/2.

Thus −x2 = log(1/2), so x =
√
log 2 = 0.83

Thus the initial wave length is less than 2, whereas the
leading wave at T = 25 has a width that is about 7 units,
over 4 times larger.

The dispersion causes the initial narrow wave to spread.

Solitary waves

Computational Modeling Initiative 2019 104/105

Despite the fact that there is both dispersion and
nonlinearity in (67), it is possible to find special wave
forms that propagate without change of shape.

These are called solitary waves .

For the equation (67), they take the form

u(x, t) =
3

2
A sech2

(
1

2

√
A

A+ 1
(x− (1 + A)t)

)
, (71)

where A > 0 can be any positive value. Recall that

sech(z) =
2

ez + e−z
=

1

cosh(z)
.

References

Computational Modeling Initiative 2019 105/105

[1] Shmuel Agmon, Avron Douglis, and Louis Nirenberg. Estimates near the boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions II. Communications on Pure and Applied Mathematics, 17(1):35–92, 1964.

[2] J. L. Bona, W. G. Pritchard, and L. R. Scott. An evaluation of a model equation for water waves. Philos. Trans. Roy. Soc. London
Ser. A 302, pages 457–510, 1981.

[3] J. L. Bona, W. G. Pritchard, and L. R. Scott. A comparison of solutions of two model equations for long waves. In Fluid Dynamics
in Astrophysics and Geophysics, N. R. Lebovitz, ed.,, volume 20, pages 235–267. Providence, Rhode Island: American
Mathematical Society, 1983.

[4] J. L. Bona, W. G. Pritchard, and L. R. Scott. Numerical schemes for a model for nonlinear dispersive waves. J. Comp Phys.,
60:167–186, 1985.

[5] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, third edition,
2008.

[6] Todd Dupont. L2-estimates for Galerkin methods for second order hyperbolic equations. SIAM Journal on Numerical Analysis,
10(5):880–889, 1973.

[7] Jean Baptiste Joseph Fourier. Théorie analytique de la chaleur. Firmin Didot, Paris, 1822.

[8] Stephen W. Hawking and Michael Jackson. A brief history of time. Bantam New York, NY, 2008.

[9] L. Ridgway Scott. Numerical Analysis. Princeton Univ. Press, 2011.

[10] V. Thomee. Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, 1997.

[11] J. Yan and C.W. Shu. A local discontinuous galerkin method for kdv type equations. SIAM Journal on Numerical Analysis, pages
769–791, 2003.

	
	Heat transfer
	Cylinder domain
	Diffusion coefficient
	Diffusion coefficients
	Nondimensionalization
	Change of variables
	New coefficients
	One space dimension
	3D effects
	Boundary conditions
	Basic behavior
	Basic behavior
	Compatibility conditions
	Compatibility conditions
	Neumann conditions
	Incompatible heat
	Incompatible heat
	Higher order conditions
	Compatibility implications
	Compatibility Conditions
	Variational form of the heat equation
	Variational form of the heat equation
	Variational form of the heat equation
	Variational form of the heat equation
	Variational form of the heat equation
	Variational form of the heat equation
	Stability of gradient
	Variational form of the heat equation
	Discretiztion for heat equation
	Explicit Euler Time Discretization
	Implicit Euler Time Discretization
	Implicit Euler Time Discretization
	Variational form of the time discretization
	Variational form of the time discretization
	Backwards differentiation formulæ
	Backwards differentiation formulæ
	Backwards differentiation formulæ
	The backwards heat equation
	Nonsmooth initial data
	The backwards heat equation
	Finite Difference Methods
	Finite Difference Methods
	Finite Difference Equations
	Derivative boundary conditions
	Finite Difference Methods
	Finite Difference Matrix
	octave Implementation
	octave code for solving (43)
	octave code for solving (43)
	Reality Checks
	Reality Checks
	Reality Checks
	Limits of finite precision arithmetic
	Pitfall: Low Accuracy
	Finite element methods
	Two-dimensional problems
	Pitfall: Low Accuracy
	Pitfall: Low Accuracy
	Explicit Euler time discretization
	Review of the heat equation
	Stability limitation
	Stability limitation
	Approximation blow up
	Nonlinear finite differences
	Newton's method
	Pitfall: Low Accuracy
	Newton's method
	Jeffrey-Hamel solution
	Jeffrey-Hamel solution
	Classification of PDEs
	Classification of PDEs: hyperbolic
	The wave equation
	Choice of units
	Understanding units
	Other wave equations
	The wave equation in one space dimension
	Waves go in both directions
	d'Alembert
	Light cone
	Using the light cone
	One-way propagation
	Either-way propagation
	Variational form of wave equation
	Time discretization of wave equation
	Time discretization of wave equation
	Higher accuracy
	Taylor expansion
	Theta schemes
	Higher accuracy
	Computational example
	Higher dimensions
	Helmholtz equation
	Helmholtz equation
	Dispersive waves
	Dispersive waves
	Dispersive waves
	Dispersive waves
	Dispersive waves
	Time-stepping schemes
	Time-stepping schemes
	An example
	An example
	Solitary waves
	References

