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Advection and Diffusion
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Many models balance advection and diffusion.

The basic advection-diffusion equation in a domain Ω is

−ǫ∆u+ β · ∇u = f in Ω (1)

where β is a vector-valued function indicating the
advection direction.

Assume that we have boundary conditions
u = g on Γ ⊂ ∂Ω (Dirichlet)

∂u

∂n
= 0 on ∂Ω\Γ (Neumann)

(2)

Neumann condition consistent with solution
not changing much near boundary.



Posing Boundary Conditions
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In advection-diffusion model, quantity u is advected in
direction of β.

There are in-flow and out-flow parts of boundary.

In-flow characterized by β · n < 0 on Γ.

Specify u on Γ via u = gD on Γ ⊂ ∂Ω

Out-flow boundary condition often requires modeling.

If behavior unknown at out-flow, best to do something
neutral.



Posing Boundary Conditions
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Suppose that we do nothing, in the sense that we

• use the variational space V defined for the Poisson
problem

• then use the affine variational approach for
inhomogeneous boundary conditions to define u,

• with gN = 0 since we do not know how to specify gN .

This corresponds to the boundary condition

∂u

∂n
= 0 on ∂Ω\Γ. (3)



Variational Formulation of advection-diffusion
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Defining the variational form for advection-diffusion:

as before, using the three-step recipe, we define

a(u, v) =

∫

Ω

∇u(x) · ∇v(x) dx

b(u, v) =

∫

Ω

(

β(x) · ∇u(x)
)

v(x) dx.
(4)

Alternative formulation: integrate by parts in the
advection term.

Both forms are continuous on H1(Ω).

What about coercivity?



Coercivity of the Variational Problem
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Consider coercivity of the bilinear form

aβ(u, v) = ǫ a(u, v) + b(u, v).

Since we already know that a(·, ·) is coercive on

V =
{

v ∈ H1(Ω) : v = 0 on Γ
}

,

suffices to determine conditions under which

b(v, v) ≥ 0 for all v ∈ V.

Then

aβ(v, v) = ǫ a(v, v) + b(v, v) ≥ ǫ a(v, v) ≥ cǫ ‖v‖2H1.



Positivity of the advection form
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We again invoke the divergence theorem:
∮

∂Ω

u v β · n ds =

∫

Ω

∇·
(

u v β
)

dx

=

∫

Ω

uβ · ∇v + vβ · ∇u+ u v∇·β dx,

(5)

since ∇· (wβ) = (∇w) · β + w∇·β. In particular,

b(u, v) + b(v, u) =

∮

∂Ω

u v β · n ds−

∫

Ω

u v∇·β dx. (6)

From (6), we have

2b(v, v) =

∮

∂Ω

v2β · n ds−

∫

Ω

v2∇·β dx. (7)



Coercivity of the Variational Problem
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Define

Γ0 = {x ∈ ∂Ω : β(x) · n = 0} ,

Γ± = {x ∈ ∂Ω : ±β(x) · n > 0} .
(8)

An important special case is when

β is velocity in an incompressible fluid,

meaning ∇·β = 0.

Think of β as solution of Stokes equations.



Incompressible advection
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In the case ∇·β = 0, (7) simplifies to

2b(v, v) =

∮

Γ
−
∪Γ+

v2β · n ds ≥

∮

Γ
−

v2β · n ds, (9)

since, by definition,
∮

Γ+

v2β · n ds ≥ 0.

Suppose that Γ− ⊂ Γ, meaning we impose Dirichlet
boundary conditions on all of Γ−.

Then b(v, v) ≥ 0 for all v ∈ V ,

and thus aβ(·, ·) is coercive on V .



Incompressible advection
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In this case, u can be characterized uniquely via

u ∈ V satisfies aβ(u, v) = (f, v)L2(Ω) ∀v ∈ V. (10)

If ∇·β ≤ 0, coercivity of aβ(·, ·) again follows provided
Γ− ⊂ Γ.

But for more general β, no guarantees can be made.

Now we consider an example for the problem (1):

−ǫ∆u+ β · ∇u = f in Ω

u = g on Γ.

Let Ω = [0, 1]2 and β = (1, 0). Note that ∇·β = 0.



An example
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Let uǫ denote the solution of (1), and in the case that
ǫ → 0, we denote the limiting solution by u0 (if it exists).

We can solve (1) with ǫ = 0 formally for a possible limit
u0 via

u0(x, y) =

∫ x

0

f(s, y) ds+ u0(0, y). (11)

Note that

Γ− = {(0, y) : y ∈ [0, 1]} , Γ+ = {(1, y) : y ∈ [0, 1]} ,

Γ0 = {(x, 0) : x ∈ [0, 1]} ∪ {(x, 1) : x ∈ [0, 1]} .

Variational problem (10) well posed provided Γ− ⊂ Γ
(and provided ǫ > 0).



Asymptotic solution
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Then (11) implies that the likely limit would be

u0(x, y) =

∫ x

0

f(s, y) ds+ g(0, y). (12)

For example, if f ≡ 1, then

u0(x, y) = x+ g(0, y) for all x, y ∈ [0, 1]2.

This solution persists for ǫ > 0 if, for example,
g(x, y) = a+ by, since ∆u0 = 0.

However, we need to pick the right boundary conditions
if we want to get this solution.



Boundary conditions
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If we expect to converge to the limit

u0(x, y) = x+ g(y) = x+ a+ by,

then boundary conditions should hold on u0.

We assume that u0(0, y) = g(y) is imposed on Γ−.

But on Γ+, we have (u0),x(1, y) = 1, so we would need
inhomogeneous Neumann data there.

On Γ0, we have (u0),y(x, 0) = g′(0) = b and
(u1),y(x, 0) = g′(1) = b.

So inhomogeneous Neumann data needed there, too.



Asymptotic solution
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On the other hand, a Neumann condition ∂u0

∂x
(1, y) = 0

holds if f(1, y) = 0, e.g., if f(x, y) = 1− x.

Then
u0(x, y) = x− 1

2x
2 + g(0, y)

when ǫ = 0.

If in addition, ∂g
∂y
(0, 0) = ∂g

∂y
(0, 1) = 0, then u0 satisfies a

Neumann condition on the top and bottom of Ω = [0, 1]2.

For example, we can take

g(x, y) = y2
(

1−
2

3
y
)

. (13)



Appropriate natural boundary conditions
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In this case, we take Γ = Γ− and

u0(x, y) = x− 1
2x

2 + y2
(

1−
2

3
y
)

. (14)

When ǫ is small, uǫ should be a small perturbation of
this.

From Table 1, we see that indeed this is the case.

But if we also take Γ+ ⊂ Γ then we potentially obtain a
constraint.



Compuational data
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degree mesh number ǫ ǫ−1‖uǫ − u0‖L2(Ω)

4 8 1.0e+00 0.27270
4 8 1.0e-01 0.71315
4 8 1.0e-02 0.86153
4 8 1.0e-03 0.87976
4 8 1.0e-04 0.88172
4 8 1.0e-05 0.88190
4 8 1.0e-06 0.88191
4 8 1.0e-07 0.88192
4 8 1.0e-08 0.88192

Table 1: The diffusion advection problem (1)–(2) defines uǫ. u0 is given in
(14).



Advection equation code
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Code to generate the data in Table 1.

# Define boundary condition
gee = Expression("x[1]*x[1]*(1.0-(2.0/3.0)*x[1])")
uex = Expression("(x[0]-(1.0/2.0)*x[0]*x[0])+ \

(x[1]*x[1]*(1.0-(2.0/3.0)*x[1]))")
bee = Constant((1.0,0.0))
bc = DirichletBC(V, gee, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("1.0-x[0]")
a = (acoef*inner(grad(u), grad(v))+inner(bee,grad(u))*v)*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)



A constraint
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Equation (12) implies g(1, y) =
∫ 1

0 f(s, y) ds+ g(0, y), i.e.,
∫ 1

0

f(s, y) ds = g(1, y)− g(0, y) for all y ∈ [0, 1]. (15)

If the data does not satisfy the constraint (15), we might
expect some sort of boundary layer for ǫ > 0.

In the case that g is given in (13) and f(x, y) = 1− x,
such a constraint holds, and we see in Figure 1(right)
that there is a sharp boundary layer for ǫ = 0.001.

For ǫ = 0.1, Figure 1(left) shows that the solution
deviates from u0 over a broader area.



Boundary layer
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Figure 1: Diffusion-advection problem (1)–(2) with Γ = Γ−∪
Γ+ and g given in (13) and f(x, y) = 1−x. Left: ǫ = 0.1, uǫ
computed using piecewise linears on a 100 × 100 mesh.
Right: ǫ = 0.001, uǫ computed using piecewise linears on
a 1000× 1000 mesh.



Numerical pollution
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Middle ground (ǫ = 0.01), boundary layer is still localized, Figure 2(left).

If we attempt to resolve this problem with too few grid points, as shown in
Figure 2(right), then we get spurious oscillations on the scale of the mesh.

Figure 2: Diffusion-advection problem (1)–(2) with Γ = Γ
−
∪Γ+ and g given

in (13) and f(x, y) = 1 − x. Left: ǫ = 0.01, uǫ computed using piecewise
linears on a 100× 100 mesh. Right: ǫ = 0.01, uǫ computed using piecewise
linears on a 15× 15 mesh.



Wrong boundary conditions
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Let us now ask the question:

what happens if Γ− 6⊂ Γ?

Take Γ = Γ+ and consider (1)–(2) with g given in (13)
and f(x, y) = 1− x.

Numerical solutions for (10) depicted in Figure 3.

These look at first to be reasonable.

At least the case ǫ = 1.0 looks plausible.

Reducing ǫ by a factor of 10 produces something
like the boundary layer behavior we saw previously.



Wrong boundary conditions
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Figure 3: Diffusion-advection problem (1)–(2) with Γ = Γ+

and g given in (13) and f(x, y) = 1 − x. Solution uǫ
computed using piecewise linears on 100 × 100 mesh.
Left: ǫ = 1.0, Right: ǫ = 0.1.



Don’t be fooled
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But look at the scale.

Solution is now extremely large.

If we continue to reduce ǫ (exercise) the solution size
becomes disturbingly large.

Picking different orders of polynomials and values for
ǫ gives random, spurious results.

Thus we conclude that the coercivity condition provides

good guidance regarding how to proceed.



Crazy results

Computational Modeling Initiative 2019 24/32

Figure 4: Diffusion-advection problem (1)–(2) with Γ = Γ+

and g given in (13) and f(x, y) = 1− x and ǫ = 0.01 on a
100×100. The solution uǫ was computed using piecewise
linears (left) and piecewise quadratics (right).



Transport equation
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In some cases, there is no natural diffusion in a system,
and we are left with pure advection.

The resulting equation is often called a transport
equation.

Such equations play a major role in non-Newtonian fluid
models.

As a model equation of this type, we consider

τu+ β · ∇u = f in Ω. (16)

Without a diffusion term, it is not possible to pose
Dirichlet boundary conditions arbitrarily.



Transport equation
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In the case where β · n = 0 on ∂Ω, the flow stays
internal to Ω, and it has been shown [3, Proposition 3.7]
that there is a unique solution u ∈ L2(Ω) of (16) for any
f ∈ L2(Ω), provided that β ∈ H1(Ω).

Such results are extended in [1, 2] to the general case
in which boundary conditions are posed on Γ−.

The variational formulation of (16) involves the bilinear
form

aτ(u, v) =

∫

Ω

τuv + (β · ∇u)v dx. (17)

In this case, u can be characterized uniquely via

u ∈ V satisfies aτ(u, v) = (f, v)L2(Ω) ∀v ∈ V. (18)



Transport equation
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In our simple example with β = (1, 0), (16) can be
written

τu(x, y) + u,x(x, y) = f(x, y) ∀y ∈ [0, 1].

Fix y ∈ [0, 1] and write v(x) = eτxu(x, y). Then

v′(x) = eτx
(

τu(x, y) + u,x(x, y)
)

= eτxf(x, y),

so that

v(x) = v(0) +

∫ x

0

v′(s) ds = v(0) +

∫ x

0

eτsf(s, y) ds.



Transport equation
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Therefore

u(x, y) = e−τxv(x)

= e−τx
(

u(0, y) +

∫ x

0

eτsf(s, y) ds
)

∀(x, y) ∈ [0, 1]× [0, 1].

(19)

For example, if we take f(x, y) = e−τx, then
u(x, y) = g(y) + xe−τx, where g represents the Dirichlet
data posed on Γ = Γ−.

We leave as an exercise the development of a code for
this problem.



Transport equation code

Computational Modeling Initiative 2019 29/32

Code to implement the transport problem

acoeff=3.0
# Define boundary condition
gee = Expression("x[1]*x[1]*(1.0-(2.0/3.0)*x[1])")
uex = Expression("(x[0]+(x[1]*x[1]*(1.0-(2.0/3.0)*x[1]))) \

*exp(-ac*x[0])",ac=acoef)
bee = Constant((1.0,0.0))
bc = DirichletBC(V, gee, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("exp(-ac*x[0])",ac=acoef)
a = (acoef*u*v+inner(bee,grad(u))*v)*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)



Right boundary conditions
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Figure 5: Transport problem with τ = 3.0, with f = e−τx1 , computed using
piecewise linears on a 20 × 20 mesh. The boundary data g given in (13)
was imposed on Γ

−
.



Wrong boundary conditions
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Figure 6: Transport problem with τ = 3.0, with f = e−τx1 , computed using
piecewise linears on a 20 × 20 mesh. The boundary data g given in (13)
was imposed on Γ+.
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