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General scalar elliptic problem
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The general scalar elliptic problem in divergence form

−
d

∑

i,j=1

∂

∂xj

(

αij(x)
∂u

∂xi
(x)

)

= f(x) (1)

where the αij are given functions.

Posed with suitable boundary conditions of type
considered previously:

u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω\Γ,

Or Robin, pure Neumann, and so forth.



Ellipticity
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To be elliptic, functions αij(x) must form a postive
definite (often symmetric) matrix at almost every point x:

C−1 ≤ |ξ|−2
d

∑

i,j=1

αij(x) ξi ξj ≤ C (2)

for all 0 6= ξ ∈ R
d and “for almost all” x ∈ Ω.

• Condition ignored on sets of measure zero.
• E. g., a lower-dimensional subset of Ω.

No need for the αij
′s to be continuous.

In many physical applications they are not continuous.



Variational formulation
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Interpretation of problem in classical terms difficult when
αij ’s are not differentiable.

But variational formulation quite simple. Define

aα(u, v) :=

∫

Ω

d
∑

i,j=1

αij(x)
∂u

∂xi
(x)

∂v

∂xj
dx. (3)

Define V =
{

v ∈ H1(Ω) : v = 0 on Γ
}

and

Find u ∈ V such that

aα(u, v) = F (v) ∀v ∈ V.



Discontinuous coefficients
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Frequently coefficients in physical models vary so
dramatically that it is appropriate to model them as
discontinuous.

These often arise due to a change in materials or
material properties.

Examples can be found in the modeling of nuclear
reactors, porous media, semi-conductors, proteins in a
solvent, and on and on.

But lack of continuity of coefficients has minimal effect.



Solution regularity
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There is a subtle dependence of the regularity of the
solution in the case of discontinuous coefficients [9].

It is not in general the case that the gradient of the
solution is bounded.

However, from the variational derivation, we see that the
gradient of the solution is always square integrable.

More is true: p-th power of the solution is integrable for
2 ≤ p ≤ PC .

PC > 2 depends only on the ellipticity constant C.



Coercivity
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Assumptions (2) imply coercivity and continuity.

For each x ∈ Ω, we take ξi = v,i(x) and apply (2):

C−1

∫

Ω

|∇v(x)|2 dx = C−1

∫

Ω

d
∑

i=1

v,i(x)
2 dx

≤

∫

Ω

d
∑

i,j=1

αij(x)v,i(x)v,j(x) dx = aα(v, v).

(4)

With appropriate Dirichlet boundary conditions, this
implies coercivity.



Continuity
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Similarly, (2) implies that the bilinear form (3) is
bounded:

aα(u, v) =

∫

Ω

d
∑

i,j=1

αij(x)u,i(x)v,j(x) dx

≤ C

∫

Ω

|∇u(x)| |∇v(x)| dx

≤ C‖u‖H1(Ω)‖v‖H1(Ω),

(5)

using the Cauchy-Schwarz inequality.



Flux continuity
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Using the variational form (3) of the equation (1), it is
easy to see that the flux

d
∑

i=1

αij(x)
∂u

∂xi
(x)nj (6)

is continuous across an interface normal to n even
when the αij ’s are discontinuous across the interface.

This implies that the normal slope of the solution must
have a jump (that is, the graph has a kink).

The derivation of (6) is just integration by parts, as we
now show.



Example with a kink
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Figure 1: Scalar elliptic problem with “discontinuous” coefficient. Com-
puted using piecewise linears on a 128× 128 mesh and ǫ = 10−5.



Flux derivation
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Suppose that Ω = Ω1 ∪ Ω2 and coefficients are smooth
on each Ωi, i = 1, 2, but jump across B = Ω1 ∩ Ω2.

For simplicity, suppose that v = 0 on ∂Ω.

Define w = vα∇u.

Apply the divergence theorem on each Ωi separately to
get

∮

B

vni ·α∇u ds =

∫

Ωi

∇·w dx

=

∫

Ωi

(

α∇u) · ∇v dx+

∫

Ωi

v∇·
(

α∇u) dx
(7)



Flux derivation
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Summing this over i and using (1) we get
∮

B

v[n ·α∇u]B ds = a(u, v)−

∫

Ω

fv dx = 0, (8)

where the jump expression [φ]B is defined by

[φ(x)]B = lim
h→0

φ(x− hn)− lim
h→0

φ(x+ hn)

and n is either n1 or n2 = −n1.

[n ·α∇u]B is the same whether n = n1 or n = n2.

[n ·α∇u]B is the jump in the flux (6) across B.



Flux derivation
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Since
∮

B

v[n ·α∇u]B ds = 0

holds for all v vanishing on ∂Ω, we conclude that

[n ·α∇u]B = 0

everywhere on B.

This completes the proof of flux continuity.



Piecewise constant example
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Take α to be a scalar function times the identity matrix:

αij(x) = δijα(x),

where δij is the Kronecker delta and

(1/C) ≥ α(x) ≥ C > 0

for all x ∈ Ω. Let Ω = [0, 1]2, with

Ω1 = [0, 1/2]× [0, 1] and Ω2 = [1/2, 1]× [0, 1].

Thus
B =

{

(x, y) : x = 1
2

}

.



Piecewise constant bilinear form

Computational Modeling Initiative 2019 15/59

Define

a(u, v) =

∫

Ω

α∇u · ∇v dx,

where we take

α(x, y) =

{

1 x < 1/2

3 x > 1/2.
(9)

Consider the problem (1), posed variationally, with
f ≡ −6 and with Dirichlet boundary conditions u = 0 on
{(0, y) : y ∈ [0, 1]} and u = 3/2 on {(1, y) : y ∈ [0, 1]}.



Piecewise constant example
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Thus the variational space is

V =
{

v ∈ H1(Ω) : v(x, y) = 0 if x = 0 or x = 1, ∀y ∈ [0, 1]
}

.

The exact solution u satisfies

u(x, y) =

{

3x2 x < 1/2
1
2 + x2 x > 1/2.

(10)

Note that α∂u
∂x = 6 for all x 6= 1

2.

The solution is depicted in Figure 1, and the “kink” in the
solution across B is evident.



Example with a kink
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Piecewise constant example
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To render the computational problem simpler, we
defined α(x) = 2 + tanh(M(x− 0.5)).

The computation represented in Figure 1 was done with
M = 105.

This definition of α is consistent with many applications
where coefficient is smooth but changes abruptly over a
length scale of O(M−1).

It is significant that the computations do not depend
significantly on M .



Dielectric models
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Discontinuous coefficients appear in a model for
dielectric behavior of protein in water of the form

−∇ · (E∇u) =
N
∑

i=1

ci δxi
in R

3

u(x) → 0 as x → ∞,

(11)

Dielectric constant E small inside the protein (domain Ω)
and large outside.

Point charges at xi modeled via Dirac δ-functions δxi
.

Constants ci corresponds to the charge at xi.



Error estimators
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Confusion was caused about error estimators due to the
need for resolving point singularities [8].

Limited use of error estimators for such models.

Subsequently [5] shown that a splitting improves
efficacy of error estimators.

Error estimators necessarily indicate large errors
anywhere there are fixed charges, thus throughout the
protein, not primarily at the interface.

Singularity due to point charges is more severe than
that caused by jump in dielectric coefficient E .



Using a splitting
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Consider a splitting u=v+w where

v(x) =
N
∑

i=1

ci
|x− xi|

. (12)

Assume units chosen so that fundamental solution of
−E0∆u = δ0 is 1/|x|, where E0 is dielectric constant in Ω.

By definition, w is harmonic in both Ω and R
3\Ω, and

w(x) → 0 as x → ∞.

But the jump in the normal derivative of w across the
interface B = ∂Ω is not zero.



Equation for w
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Define
[

E
∂w

∂n

]

B
= E0

∂w

∂n

∣

∣

B−
− E∞

∂w

∂n

∣

∣

B+
,

where

• B− denotes the inside of the interface,
• B+ denotes the outside of the interface,
• and n denotes the outward normal to Ω.

The solution u of (11) satisfies
[

E ∂u
∂n

]

B
= 0, so

[

E
∂w

∂n

]

B
= (E∞ − E0)

∂v

∂n

∣

∣

B
.



Splitting oundary condition
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Intergrating by parts, we have

a(w, φ) =

∮

B

[

E
∂w

∂n

]

B
φ ds = (E∞ − E0)

∮

B

∂v

∂n
φ ds

for all test functions φ.

The linear functional F defined by

F (φ) = (E∞ − E0)

∮

B

∂v

∂n
φ ds (13)

is well defined for any test function, since v is smooth
except at singular points xi, which we assume are in
interior of Ω, not on boundary B = ∂Ω.



Domain truncation
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Thus w is defined by standard variational formulation
but need to truncate the infinite domain

For example, we can define

BR =
{

x ∈ R
3 : |x| < R

}

,

and define
aR(φ, ψ) =

∫

BR

E∇φ · ∇ψ dx,

and solve for wR ∈ H1
0(BR) such that

aR(wR, ψ) = F (ψ) ∀ψ ∈ H1
0(BR), (14)

where F is defined in (13). Then wR → w as R → ∞.



Point-charge example
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Consider a single point charge at the origin of a
spherical domain of radius ρ > 0:

Ω =
{

x ∈ R
3 : |x| < ρ

}

Let E0 denote the dielectric constant in Ω

and E∞ denote the dielectric constant in R
3\Ω.

Then the solution to (11) is

u(x) =

{

1
|x| −

c
ρ |x| ≤ ρ

1−c
|x| |x| ≥ ρ,

(15)

where c = 1− E0/E∞.



Point-charge verification
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The verification is as follows.

In Ω, we have ∆u = δ0.

In R
3\Ω, we have ∆u = 0.

At the interface B = ∂Ω =
{

x ∈ R
3 : |x| = ρ

}

,

∂u

∂n

∣

∣

B−
=
∂u

∂r
(ρ−) =

−1

ρ2
,

∂u

∂n

∣

∣

B+
=
∂u

∂r
(ρ+) =

−(1− c)

ρ2
,

where

B− denotes the inside of the interface and

B+ denotes the outside of the interface.



Model problem

Computational Modeling Initiative 2019 27/59

Thus the jump is given by
[

E
∂u

∂n

]

B
= E0

∂u

∂n

∣

∣

B−
− E∞

∂u

∂n

∣

∣

B+
=

−E0 + (1− c)E∞
ρ2

= 0.

In this case, v(x) = 1/|x|, so

w(x) = −c

{

1
ρ |x| ≤ ρ
1
|x| |x| ≥ ρ.

(16)

Thus if we solve numerically for w, we have a much
smoother problem.

But as ρ→ 0, w becomes more singular.



Mixed formulations
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Name “mixed method” applied to a variety of finite
element methods having more than one approximation
space.

Typically one or more of the spaces play the role of
Lagrange multipliers which enforce constraints.

Name and many concepts originated in solid mechanics
[1] where desirable to have more accurate
approximation of derivatives of the displacement.

But for the Stokes equations for viscous fluid flow, the
natural Galerkin approximation is a mixed method.



Mixed-method features
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Mixed methods have features that make them attractive.

• For problems like (1), emphasis switches from
approximating solution to approximating its gradient.

• Role of essential and natural boundary conditions is
reversed.

With mixed methods for scalar elliptic problems (1),

• the Neumann condition becomes essential, whereas
• the Dirichlet condition is imposed only weakly

through the variational equation.

But not all choices of finite element spaces converge.

Approximability alone insufficient to guarantee success.



Coercivity
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We will focus on mixed methods in which there are two
bilinear forms and two approximation spaces.

There are two key conditions that lead to the success of
a mixed method.

Both are in some sense coercivity conditions for the
bilinear forms.

One of these will look like a standard coercivity
condition, while the other, often called the inf-sup
condition, takes a new form.



Miscible displacement in a porous medium
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To motivate the mixed method, we take a particular
application in which the mixed method arises naturally.

A simplified model [6] for miscible displacement of a
fluid in a porous medium, occupying a domain Ω, takes
the form

−
d

∑

i,j=1

∂

∂xi

(

αij(x)
∂p

∂xj
(x)

)

= f(x) in Ω, (17)

where p is the pressure (we take an inhomogeneous
right-hand-side for generality).



Darcy’s Law
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Darcy’s Law postulates that the fluid velocity u is related
to the gradient of p by

ui(x) =
d

∑

j=1

αij(x)
∂p

∂xj
(x) ∀i = 1, . . . , d. (18)

Using matrix and vector notation, u = α∇p.

Coefficients αij, assumed to form a symmetric,
positive-definite matrix α (almost everywhere) are
related to the porosity of the medium

Frequently coefficients are discontinuous where
materials change.



Mixed variational form

Computational Modeling Initiative 2019 33/59

Combining (17) and Darcy’s Law (18), we find

−∇·u = f in Ω.

Variational formulation for (17) derived by letting

A(x) = inverse of the coefficient matrix α = (αij)

and by writing ∇p = Au.

Define

a(u,v) :=
d

∑

i,j=1

∫

Ω

Aij(x)ui(x)vj(x) dx. (19)



Mixed derivation
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Multiply (dot product) equation

∇p = Au

by v, and integrate over Ω, to get
∫

Ω

∇p(x) · v(x) dx =

∫

Ω

(

A(x)u(x)
)

· v(x) dx

= a(u,v).

(20)

Define

b(w, q) =

∫

Ω

(

∇·w(x)
)

q(x) dx. (21)



Mixed derivation
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From the divergence theorem:
∫

Ω

∇·
(

w(x)q(x)
)

dx =

∮

∂Ω

q(x)w(x) · n(x) dx,

together with the product formula

∇·
(

w(x)q(x)
)

= w(x) · ∇q(x) +∇·w(x) q(x),

and using b(w, q) =
∫

Ω

(

∇·w(x)
)

q(x) dx, we get
∫

Ω

w(x) · ∇q(x) dx

= −b(w, q) +

∮

∂Ω

q(x)w(x) · n(x) dx.
(22)



Model problem
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Combining (20) and (22), we get

a(u,v) + b(v, p) =

∮

∂Ω

p(x)v(x) · n(x) dx.

Define a new space
∼

V by

∼

V :=
{

v ∈ L2(Ω)d : ∇·v ∈ L2(Ω), v · n = 0 on ∂Ω\Γ
}

.

Also define Π = L2(Ω).



Mixed formulation of (17)
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Then the solution of (17) with the boundary conditions

u · n = 0 on ∂Ω\Γ and p = g on Γ

satisfies u ∈
∼

V , p ∈ Π, and solves

a(u,v) + b(v, p) =

∮

Γ

g(x)v(x) · n(x) dx ∀v ∈
∼

V,

b(u, q) = F (q) ∀q ∈ Π ,

(23)

where F (q) = −
∫

Ω f(x) q(x) dx.

Dirichlet condition p = g on Γ appears as a
natural boundary condition, imposed variationally.

(Essential boundary condition in a standard variational approach.)



Mixed formulation of (17)

Computational Modeling Initiative 2019 38/59

The space
∼

V is based on the space called

Hdiv(Ω) [10, Chapter 20, page 99]

that has a natural norm given by

‖v‖2Hdiv(Ω)
= ‖v‖2L2(Ω)d + ‖∇·v‖2L2(Ω) ; (24)

Hdiv(Ω) is a Hilbert space with inner-product given by

(u,v)H(div;Ω) = (u,v)L2(Ω)d + (∇·u,∇·v)L2(Ω).

The trace v · n = 0 on ∂Ω is well defined for v ∈ Hdiv(Ω)
[10], but the tangential derivatives of a general function
v ∈ Hdiv(Ω) are not well defined.



Meaning of Dirichlet condition
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The meaning of the boundary condition p = g on Γ must
be interpreted carefully.

If p is smooth enough, it will be defined pointwise.

But otherwise its meaning is like that of the

Neumann condition for the Laplace equation.

Will be enforced only weakly.



Coercivity
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The bilinear form a(·, ·) is not coercive on all of
∼

V , but it
is coercive on the subspace Z of divergence-zero
functions, since on this subspace the inner-product
(·, ·)H(div;Ω) is the same as the L2(Ω) inner-product.

In particular, this proves uniqueness of solutions.

Suppose that F and g are zero.

Then u ∈ Z and a(u,u) = 0.

Thus ‖u‖L2(Ω) = 0, that is, u ≡ 0.

To show that p = 0, we need to invoke the inf-sup
condition.



Existence and stability
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Existence and stability follows from inf-sup condition.

Recall the space Π0 =
{

q ∈ L2(Ω) :
∫

Ω q(x) dx = 0
}

.

There is a constant C such that for all q ∈ Π0

‖q‖L2(Ω) ≤ C sup
0 6=v∈H1

0
(Ω)

b(v, q)

‖v‖H1(Ω)

≤ C ′ sup
0 6=v∈

∼

V

b(v, q)

‖v‖H(div;Ω)
,

(25)

where first inequality is same as Stokes and second
follows from the inclusion H1(Ω)d ⊂ H(div; Ω) and the
less restrictive boundary conditions on v ∈

∼

V .



Determining the constant
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Means that inf-sup condition determines solution p in
the mixed formulation (23) up to a constant.

Could not expect more, since solution of pure Neumann
problem can be determined only up to a constant.

Mixed formulation of pure Neumann case has Γ = Ø.

Thus
∫

Ω∇·v dx = 0 for all v ∈
∼

V .

For well posed problem, must have Γ 6= Ø.

This restriction is easy to motivate, as follows.



Constant null solution
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If
∼

V = {v ∈ Hdiv(Ω) : v · n = 0 on ∂Ω}, then the
divergence theorem implies that

∫

Ω

∇·v(x) dx = 0 ∀v ∈
∼

V.

Thus b(v, p) = 0 for any constant p. Therefore

(u, p) = (0, constant)

solves variational formulation (23) for F = 0 and g = 0.

Thus it is essential to have Γ 6= Ø.



inf-sup revisited
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When Γ 6= Ø, we can take any w such that

w · n = 1 on Γ

and by the divergence theorem we are assured that
∫

Ω

∇·w(x) dx = |Γ|.

Let q = 1
|Ω|

∫

Ω q(x) dx. Then

‖q − q‖L2(Ω) ≤ C sup
0 6=v∈H1

0
(Ω)

b(v, q − q)

‖v‖H1(Ω)

= C sup
0 6=v∈H1

0
(Ω)

b(v, q)

‖v‖H1(Ω)

(26)



inf-sup revisited
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Define B by

B = sup
0 6=v∈

∼

V

b(v, q)

‖v‖H1(Ω)

So we have
‖q − q‖L2(Ω) ≤ CB.

Therefore

‖q‖L2(Ω) ≤ ‖q − q‖L2(Ω) + ‖q‖L2(Ω) ≤ CB + ‖q‖L2(Ω).

Also

‖q‖L2(Ω) = |Ω|1/2 |q| = |Ω|1/2|Γ|−1|b(w, q)|

≤ |Ω|1/2|Γ|−1
∣

∣b(w, q)− b(w, q − q)
∣

∣.
(27)



inf-sup revisited
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Let c = |Ω|1/2|Γ|−1. Then

‖q‖L2(Ω) ≤ c
(

|b(w, q)|+ ‖∇·w‖L2(Ω)‖q − q‖L2(Ω)

)

≤ c|b(w, q)|+ c‖∇·w‖L2(Ω)CB.
(28)

Therefore

‖q‖L2(Ω) ≤ CB
(

1 + c‖∇·w‖L2(Ω)

)

+ c|b(w, q)|. (29)

Clearly
|b(w, q)| ≤ ‖w‖H1(Ω)B

So
‖q‖L2(Ω) ≤ C ′B.



Discrete mixed formulation
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Now let
∼

Vh ⊂
∼

V and Πh ⊂ Π.

Consider variational problem to find uh ∈
∼

Vh and ph ∈ Πh

such that

a(uh, v) + b(v, ph) = F (v) ∀v ∈
∼

Vh ,

b(uh, q) = 0 ∀q ∈ Πh . (30)

Case of inhomogeneous right-hand-side in second
equation is considered in [2, Section 10.5].

Spaces to consider:

Taylor-Hood, Scott-Vogelius, BDM.



Taylor-Hood review
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W k
h denotes space of continuous piecewise polynomials

of degree k (with no boundary conditions imposed).

Let the space
∼

Vh be defined by

∼

Vh =
{

v ∈ W k
h ×W k

h : v = 0 on ∂Ω
}

. (31)

and the space Πh be defined by

Πh =

{

q ∈ W k−1
h :

∫

Ω

q(x) dx = 0

}

. (32)

“converges but with a loss of convergence order and
without convergence of divergence of velocities” [4].

For some computational experiments, see [7].



Taylor-Hood issues
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Taylor-Hood satisfies the inf-sup condition on H(div; Ω)

Proof is similar to proof for conintuous problem.

So the problem with Taylor-Hood must be lack of
uniform coercivity.

To approximate the scalar elliptic problem (17) by a
mixed method, have to contend with the fact that the
corresponding form

a(·, ·) is not coercive on all of
∼

V .



Coercivity problem
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a(·, ·) is clearly coercive on the space

Z = {v ∈ Hdiv(Ω) : ∇·v = 0}

so that (23) is well-posed.

However, some care is required to assure that it is
well-posed as well on

Zh =
{

v ∈
∼

Vh : b(v, q) = 0 ∀q ∈ Πh

}

.

One simple solution is to insure that Zh ⊂ Z, and there
are many ways this can be done.



Choice of spaces: Scott-Vogelius
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Let
∼

Vh be as given in (31) and let Πh = ∇·
∼

Vh.

Then (under certain mild restrictions on the mesh these
spaces can be used.

The iterated penalty method can be used to solve the
linear system using Πh = D

∼

Vh without having explicit
information about the structure of Πh.

Another pair of spaces of interest is BDM [3] for
∼

Vh and
DG (discontinuous Galerkin) for Πh.

More precisely, the inf-sup stable pair of spaces is
BDM(k) for u and DG(k − 1) for p.



BDM and DG
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The space DG(k) consists of discontinuous polynomials
of degree k.

The BDM spaces are defined by

BDM(k) = DG(k)∩Hdiv(Ω).

The BDM spaces are the largest subset of DG(k) which
are suitable for the mixed method.

The BDM spaces are more complicated to describe, so
we limit our description to BDM(1).



BDM(1) description
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The space BDM(1) consists of piecewise linear,
vector-valued functions.

We require that BDM(1)⊂ Hdiv(Ω), so we must have the
normal components of v ∈ BDM(1) continuous across
edges.

Thus we can define BDM(1) as

subset of vector-valued functions in DG(1)×DG(1)

with normal components continuous across edges.

Remains to determine what this means in terms of
nodal parameters to represent functions locally.



BDM nodal parameters
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On each triangle, a linear, vector-valued function has 6
degrees of freedom (3 for each component of the
vector-valued function).

On the other hand, continuity of the normal components
of a linear function requires two constraints per edge.

Thus we have 6 constraints and 6 degrees of freedom.

Of course, this alone does not mean that the
corresponding system of equations is invertible, but this
can be proved as follows.



BDM confirmation
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Let v be a linear, vector-valued function such that
v · n = 0 on each edge of a triangle.

Then by divergence theorem, ∇·v = 0 in the triangle.

Thus we can write v = curl q for a quadratic (scalar)
function q.

But since v · n = 0 on each edge of the triangle,
∇q · t = 0 on each edge where t is tangent.

Thus q is constant on each edge, and thus it must be
constant on the entire triangle.

Thus we conclude that v = 0.



Test solution
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Figure 2: Mixed method using the spaces BDM(1) for
∼

Vh and DG(0) for Πh

to approximate the boundary value problem (33).



Test problem
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Let Ω = [0, 1]2, and let

Γ = {(x, y) ∈ ∂Ω : x = 0 or x = 1} .

Consider the problem

−∆p = 2π2(cos πx)(cos πy)

∂p

∂n
= 0 on ∂Ω\Γ

p = (1− 2x)(cos πy) on Γ

(33)

whose exact solution is p(x, y) = (cos πx)(cos πy).

We reformulate this using variational equations in (23).



Test problem implementation
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Using the spaces

BDM(1) for
∼

Vh,

together with the

essential boundary condition v · n = 0 on ∂Ω\Γ, and

DG(0) for Πh,

we obtained the result depicted in Figure 2.
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