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Conservation Laws
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Conservation laws are PDEs of the form

ut(x, t) +∇ · F(u(x, t)) = 0. (1)

• x ∈ R
d for d = 1, 2, 3,

• u ∈ R
n where n can be any positive integer, and

• F is a function defined on R
n with values in R

d.

Thus ∇ · F means

(∇ · F(v))j =
d

∑

k=1

Fj,k, j = 1, . . . , n.



One space dimension, one equation
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The simplest example is for d = n = 1, the inviscid
Burgers equation

0 = ut +
1
2(u

2)x = ut + uux. (2)

Here F (v) = 1
2v

2.

In general, for d = 1 and n = 1, (1) becomes

ut(x, t) + f(u(x, t))x = 0. (3)

We can think of the pair U = (u, f(u)) as a vector
function of x and t.

In this notation, ut + f(u)x = ∇·U .



Weak solutions
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Define R± = {t ∈ R : ±t ≥ 0}. Multiplying by a test
function v and integrating over R× R

p we get

0 =

∫

R

∫

Rp

(∇·U)v dt dx. (4)

Apply divergence theorem (2.9) to Uv on R× R
p:

−

∫

R

u0v dx =

∫

R

∫

Rp

∇· (Uv) dt dx

=

∫

R

∫

Rp

(∇·U)v dt dx+

∫

R

∫

Rp

U · (vt, vx) dt dx

=

∫

R

∫

Rp

(ut + f(u)x)v dt dx+

∫

R

∫

Rp

(u, f(u)) · (vt, vx) dt dx.

(5)



Weak solutions
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Therefore

0 =

∫

R

∫

Rp

(ut + f(u)x)v dt dx

= −

∫

R

∫

Rp

uvt + f(u)vx dt dx−

∫

R

u0v dx.
(6)

This yields the weak formula for the conservation law:
∫

R

∫

Rp

uvt + f(u)vx dt dx+

∫

R

u0v dx = 0 (7)

for smooth v vanishing outside a bounded set in R×R
p.

Functions u satisfying (7) are called weak solutions .



Weak solutions
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With elliptic equations, there is a strong correspondence
between the weak solutions defined by the variational
formulation and the strong form of the PDE.

However, for conservation laws, the situation is more
complicated.

Indeed, the weak form of a conservation law does not
fully specify their solution.

It has been observed that the “class of weak solutions
associated with a given system of equations depends
on the form in which the equations are written” [32,
page 161].



Weak solution nonuniqueness
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An example of the nonuniqueness for conservation laws
is given in [32]: both

u(x, t) =











0 x < 0

x/t 0 < x < t

1 t < x

(8)

and

w(x, t) =

{

0 2x < t

1 t < 2x
(9)

solve (7) for the inviscid Burgers equation.



Weak solutions
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We can verify that u is a solution:

ut(x, t) =











0 x < 0

−x/t2 0 < x < t

0 t < x

and

ux(x, t) =











0 x < 0

1/t 0 < x < t

0 t < x

.

Thus uux = −ut in each of the intervals x < 0, 0 < x < t,
and x > t.



Weak solutions
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Thus (ut + uux, v)L2(Ω) = 0 for all smooth v.

Since u is continuous, and piecewise linear, we can
integrate by parts to obtain (7).

The verification that w is a weak solution is complicated
by the fact that it is discontinuous.

But the weak formula does not require continuity, and
both wwx and wt are zero on the intervals 2x < t and
2x > t.

We can revisit the divergence theorem in (5).



Weak solutions
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Let us be slightly more general and assume that we
have a candidate solution w that is piecewise smooth,
with a jump only across a curve (ξ(t), t) in R× R

p.

For simplicity, assume that ξ(0) = 0. Define

Ω− = {(x, t) ∈ R× R
p : x < ξ(t)} and Ω+ = {(x, t) ∈ R×

Let Γ = {(x, t) ∈ R× R
p : x = ξ(t)}.

As before, define U = (w, f(w)) and apply the
divergence theorem to Uv separately on Ω− and Ω+ and
add the result together:



Weak solutions
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−

∫

R

u0v dx+

∫

Γ

[n · U ]v ds =

∫

Ω
−

∇· (Uv) dt dx

+

∫

Ω+

∇· (Uv) dt dx

=

∫

R

∫

Rp

(∇·U)v dt dx+

∫

R

∫

Rp

U · (vt, vx) dt dx

=

∫

R

∫

Rp

(wt + f(w)x)v dt dx

+

∫

R

∫

Rp

(w, f(w)) · (vt, vx) dt dx.

(10)



Weak solutions
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Here [φ] denotes jump of φ across Γ: boundary of Ω± is
Γ ∪ R±, with the normals ±n in the divergence theorem
being equal and opposite for Ω± on Γ.

To be a weak solution, we must have

[n · U ] = 0 on Γ.

This is known as the Rankine–Hugoniot condition.

The vector (ξ′(t), 1) is tangent to Γ, so the normals to Γ
are ±c(t)(−1, ξ′(t)), where

c(t) =
√

1 + ξ′(t)2.



Weak solutions
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Thus we can write the jump condition as

w+ − w− =
(

f(w+)− f(w−)
)

ξ′(t). (11)

The proposed solution w satisfies w− = 0 and w+ = 1,
and ξ′(t) = 2, so this reduces to

1 = f(1)ξ′(t) = 1
2 · 2.

This completes the verification that w is a weak solution
of the inviscid Burgers equation.



Weak solutions
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Since the variational equation does not define the
solution, some rule must be adopted to sort things out.

However, there is no universal way to determine
relevant weak solutions.

Some have argued that there must be a solution
determined by Nature.



Weak solutions

Computational Modeling Initiative 2019 15/72

The thinking is that the conservation law models a
natural phenomenon and thus it should have a unique,
natural solution.

But there could be many microscopic models of natural
phenomenon leading to the same macroscopic model,
so there is no “natural” criterion to choose one.

macroscalemicroscale mesoscale

Figure 1: Different descriptions of matter. From the left: microscopic (e.g.,
molecules in a gas), mesoscopic (e.g., density of molecules described
via continuum description), macroscopic (idealized limit of mesoscopic de-
scription).



Diffusion limits
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Conservation laws represent the macroscale level in a
multiscale model for many physical systems [21, 38], as
depicted in Figure 1.

One such system models the dynamics of a gas [5, 34].

The microscale model in this case is a molecular model
[21].

In many cases, the microscale model can be well
approximated at a mesoscale as an advection–diffusion
system.



Viscosity solutions
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For Burgers equation, resulting equation is

0 = ut + uux − ǫuxx. (12)

This is called the viscous Burgers equation .

In many cases, it makes sense to take the limit as ǫ → 0,
obtaining what are called viscosity solutions [20].

Hamilton–Jacobi equations generalize the concept of
conservation laws and take the form

ut(x, t) +H(x,u(x, t),∇u(x, t)) = 0.

Viscosity solutions first developed in this framework [20]
and generalized to second-order PDEs [19].



Solving the viscous Burgers equation
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Let us consider solving (12) with initial conditions
appropriate for the proposed solutions (8).

We will shift the origin by one-half, and take the initial
condition to be

u0(x) =
1
2(1 + tanh(K(x− 1

2))

for a suitably large value of K.



Viscous Burgers example
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Figure 2: Solution of (12) on [0, 1] by piecewise linears using the algorithm
(13) with 1000 mesh points, ∆t = 0.001, and ǫ = 10−3. Initial condition
u0(x) =

1
2(1 + tanh(105(x− 1

2)). Solution is shown at T = 0.3.



Viscous Burgers algorithm
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To simplify the approximation, we modified the implicit
Euler scheme (10.34) for the heat equation to obtain

(un+1, v)L2(Ω) +∆t
(

aǫ(u
n+1, v) + (un+1unx, v)L2(Ω)

)

= (un, v)L2(Ω) ∀v ∈ V,
(13)

where

aǫ(w, v) = ǫ

∫

Ω

w′(x)v′(x) dx = ǫ

∫

Ω

wx(x)vx(x) dx.

Here we approximated the nonlinear term uux via

un+1unx.



Viscous Burgers picks right solution

Computational Modeling Initiative 2019 21/72

We see in Figure 2 that the viscosity method picks the
solution u in (8) even though it has a more complex
structure than w.

The code to produce Figure 2 and Figure 3 is in
Program 23.2.



Viscous Burgers plots
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Figure 3: Solution of (12) on [0, 1] by piecewise quartics using the algorithm
(13). Initial condition u0(x) = e−(10x)2 . Solution is shown at T = 0.5.
(Left) 100 mesh intervals, ∆t = 0.0001, and ǫ = 10−3. (Right) 1000 mesh
intervals, ∆t = 0.00005, and ǫ = 10−4.



Smooth initial data
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Using (13), we can investigate the behavior of Burgers’
equation for different initial data.

In Figure 3, we show the solution with a Gaussian as
initial data.

What happens is quite different from what we saw with
other wave equations.

The solution is approaching a discontinuity on the front
of the wave.

The back side approaches a linear ramp as seen in
Figure 2.



Numerical nonuniqueness

Computational Modeling Initiative 2019 24/72

In Section 9.5, we saw that nonlinear equations can
have solutions whose data agree to within round-off
error yet are globally quite different. Consider the
related problem

du

dt
(t, x)− ǫ

d2u

dx2
(t, x) + u(t, x)

du

dx
(t, x) = 0 for x ∈ [0, 1], t ∈ [0

du

dx
(t, 0) = 0,

du

dx
(t, 1) = 0,

u(0, x) = φ(x),

(14)

where ǫ > 0 is a fixed parameter.



Weak solutions
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The corresponding time-independent problem (9.18)
was studied in Section 9.5 on the interval [−1, 1].

In [8], it was shown that, if u is a solution of (14) such
that u(t, x) → v(x) as t → ∞ then v is a constant.

More precisely, they show that if v ∈ L2(0, 1) satisfies

‖u(t, ·)− v‖L2(0,1) → 0 as t → ∞,

then v is constant.

Constants are time-independent solutions of (14).

Compare the results of [30, 37].



Weak solutions
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On the other hand, numerical evidence is presented in
[8] that there are solutions of (14) that appear to tend to
time-independent solutions, for example, for
φ(x) = 5 cos(πx) and φ(x) = 50(12 − x)3, with ǫ = 0.1.

They show that the limiting numerical functions v are of
the form

vβ(x) = −β tanh((β/2ǫ)(x− 1
2)), (15)

where the coefficient β is determined based on the
computed solution.

v does not satisfy Neumann conditions in (14) exactly,
but discrepancy is exponentially small, as in Section 9.5.



Review of wave equations
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The simplest wave model (see Section 12.2) is

ut + cux = 0, (16)

where c = wave speed. Solutions of this equation satisfy

u(t, x) = v(x− ct).

Solutions of nonlinear advection equations of the form

0 = ut + f(u)x = ut + f ′(u)ux

no longer just translate to the right.



Review of wave equations, continued
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Things move to the right at speeds c(t, x) = f ′(u(t, x))
that depend on the size of u, and they can change
shape, as seen in Figure 3.

Thus linear and nonlinear conservation laws are very
different in character.



Finite difference approximation
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We can approximate u on a grid in space and time:

u(i∆t, j∆x) ≈ ui,j.

We write
ut(i∆t, j∆x) ≈

ui,j − ui−1,j

∆t

f(u)x(i∆t, j∆x) ≈
f(u)i,j − f(u)i,j−1

∆x
.

Thus we obtain the upwind scheme

ui+1,j = ui,j −
∆t

∆x
(f(u)i,j − f(u)i,j−1) . (17)

This finite-difference approximation allows us to simulate
nonlinear advection as easily as linear advection.



Finite difference approximation
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Notice that the scheme depends only on the ratio
∆t/∆x, often referred to as the CFL number in honor of
a paper by Courant, Friedrichs, and Lewy [18].

In Figure 4 we show the solution of the inviscid Burgers
equation (2),

0 = ut +
1
2(u

2)x,

with the same Gaussian initial data as in Figure 3.



Weak solutions
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Figure 4: Solution of (2) on [0, 1] by the upwind scheme (17) with 104 mesh
points and ∆t/∆x = 0.1. Initial condition u0(x) = e−(10x)2 . Solution is
shown at T = 0, .25, .5. The vertical axis represents a pseudo time give
by 4T chosen to avoid intersection of the curves. The octave code to
produce this plot is given in Program 23.1.



Integral invariants
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Let us consider solutions of conservation laws with finite
support in space.

Although the wave shape changes with time, the integral
of u is preserved: integrating the advection equation in
space (and integrating by parts) gives

∂

∂t

∫

R

u dx =

∫

R

ut dx = −

∫

R

f(u)x dx = 0. (18)

Thus the area under the graph of u is constant. In
Figure 4, we see that the initial wave forms convert to a
long triangular form, and so its amplitude must decrease
to maintain a constant area.



Weak solutions
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The integral of u2 is also preserved: multiplying the
advection equation by u and integrating in space (and
integrating by parts) gives

1

2

∂

∂t

∫

R

u2 dx =

∫

R

uut dx = −

∫

R

f(u)xu dx

=

∫

R

f(u)ux dx =

∫

R

g(u)x dx = 0,

(19)

where g′ = f , that is, g is an antiderivative of f , with
g(0) = 0.



Shocks
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Shocks can be described as discontinuities that can
form and move, as shown in Figure 4, again with
f(u) = u2.

Shock fronts stay sharp, but back side of advancing
wave remains continuous, as in Figure 4.

The amplitude has to decrease since the integrals of u
and u2 remain constant.

Over time, the wave amplitude goes to zero.

This is further illustrated on the left side of Figure 5
which has a step-function initial data.



Linear versus nonlinear shocks
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In the linear case (16), even discontinuous solutions are
propagated by translation:

u(t, x) = v(x− ct).

Even though the exact solution is trivial, let’s see what
our upwind difference method produces.

On the right side of Figure 5 we show the result of the
upwind difference method (17) for f(u) = u.

In the case of linear advection, our numerical method
produces waves that are no longer sharp at either the
leading edge or trailing edge of a discontinuity.



Weak solutions
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By contrast, the leading edge of the numerically
computed nonlinear wave is sharp.

On the other hand, since the wave speed is constant,
the linear waves move much faster than the nonlinear
waves.

Thus difference methods treat linear and nonlinear
waves quite differently.



Weak solutions
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Figure 5: Upwind scheme with CFL=0.5, ∆x = 10−3 for (left) inviscid Burg-
ers equation (2) and (right) linear advection (16) with speed c = 1.



Numerical dissipation
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Numerical schemes for conservation laws introduce
implicit dissipation. Taylor’s approximation says

ui,j − ui,j−1

∆x
≈ ux(i∆t, j∆x) +

∆x

2
uxx(i∆t, j∆x). (20)

Thus the difference scheme is actually a better
approximation to

ut + ux −
∆x

2
uxx = 0

than it is to the linear advection equation

ut + ux = 0.



Weak solutions
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In this case, we see [29, 11] that the difference method
effectively introduces a diffusion or dissipation element,
where the size of the diffusion constant depends on the
mesh size.

Thus the difference method naturally picks out the
diffusion-limit solution.

In the nonlinear case, we have

0 = ut + f(u)x −
∆x

2
f(u)xx.



Inviscid Burgers equation
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For the inviscid Burgers equation, this becomes

0 = ut + uux −
∆x

2

(

uux
)

x

= ut + uux −
∆x

2

(

(ux)
2 + uuxx

)

.
(21)

The effect of the dissipation term is harder to predict in
this case, but apparently it does not lead to excessive
smoothing of shocks, contrary to the linear case.

We leave as an exercise

One key point is that the dissipation term in variational
form turns off when u = 0.



Second-order dissipation
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The second-order derivative term in

ut + f(u)x − ǫf(u)xx = 0

is called a dissipation term: multiply the equation by u,
integrate in space and integrate by parts to get

0 =
1

2

∂

∂t

∫

R

u2 dx− ǫ

∫

R

uf(u)xx dx

=
1

2

∂

∂t

∫

R

u2 dx+ ǫ

∫

R

(ux)
2f ′(u) dx,

(22)

as in (19). Thus the integral of u2 must dissipate to zero,
since its time derivative is strictly negative (assuming
that u is not identically constant and f ′(u) > 0).



Artificial compression
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The behavior depicted in Figure 5 suggests that
nonlinearity controls diffusion artifacts.

Harten advocated artificial compression [40] as a
means of reducing numerical dissipation.



Lax-Wendroff
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Possible to alter numerical modifications in difference
methods, but not eliminate them [11, 2].

For example, the Lax-Wendroff scheme for linear
f(u) = u [31, 33] is

ui+1,j =
1

∑

k=−1

bkui,j+k, (23)

where b±1 =
1
2α(α∓ 1) and b0 = 1− α2, where

α = ∆t/∆x is the CFL number.



Numerical dispersion
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The Lax-Wendroff scheme is second-order accurate in
space, and it is a better approximation to

ut + ux − γ∆x2uxxx = 0 (24)

than it is to ut + ux = 0.

We leave as an exercise to compute γ.



Dispersion terms
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The third-order derivative term in

ut + f(u)x − ǫuxxx = 0 (25)

is called a dispersion term (see Section 12.4).

Multiply the dispersion term by u, integrate in space and
integrate by parts to get

∫

uuxxx dx = −

∫

uxuxx dx = −

∫

1
2((ux)

2)x dx = 0.

In view of (19), we conclude that the integral of u2 is
conserved for the solution u of (25).



Numerical errors
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There has been a long quest to achieve more accuracy
in numerical methods for conservation laws.

Although the upwind scheme (17) is quite effective, as
we have seen, there has been significant interest in
more accurate schemes.

The Lax-Wendroff [31, 33] scheme (23) is an early
example.



Discontinuous Galerkin etc.
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More recently, discontinuous Galerkin (DG) schemes
have been widely studied [39].

DG schemes were first used in the context of models for
advection terms in neutron transport (see references in
[36]).

Even more recently, Galerkin schemes using continuous
finite elements have been studied [27, 26, 25, 24, 23, 4].

Another new approach to conservation laws has been
developed called kinetic schemes [3]. An example of
their use is given in [14].



Hyperbolic Systems
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Systems of hyperbolic conservation laws arise in many
applications.

Perhaps simplest are the isentropic Euler equations.

These consist of two equations, one for the density of a
gas and the other for the velocity (or momentum).

They are ostensibly defined in 3 space dimensions, but
there are flows that are constant in some dimensions,
so the system makes sense in 1 and 2 spatial
dimensions as well.

We begin with the one-dimensional case.



Hyperbolic systems in one-D
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Primary new phenomenon: waves can propagate in
multiple directions and with different speeds.

No clear direction that is “upwind” in typical problems.

Moreover, shocks can collide.

In the two-dimensional case, a complication arises that
does not at the moment have a simple resolution.

Multiple solutions arise after shocks collide.

No known way to (1) select one solution theoretically or
(2) compute reliable solutions numerically.



Gas dynamics in one dimension
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The behavior of a gas moving in one direction at high
speed can be modeled via

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p(ρ))x = 0,
(26)

where ρ is the density of the gas, u is the velocity in the
x direction, and p is the pressure.

It is assumed that the pressure depends in an explicit
way on the density.

A common choice for the pressure p is p(ρ) = aργ,
where a and γ are constants satisfying a > 0 and γ ≥ 1.



Modeling details
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In this setting, it is assumed that the density and velocity
are independent of the y and z directions.

Such behavior is approximated in a shock tube [41].

We assume that the domain of x is R and t ≥ 0.



New variables
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If we define w = ρu, then the system (26) becomes

ρt + wx = 0

wt + (ρ−1w2 + p(ρ))x = 0,
(27)

which is of the form (1), where

u =

(

ρ
w

)

and F =

(

w
ρ−1w2 + p(ρ)

)

.

This is often called the conservation form of the
equations.

It has the defect that the vacuum state ρ = 0 [34]
corresponds to a singularity.



Example solution
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In order to understand better key aspects of hyperbolic
systems, we consider an example.

If we take γ = 3, then (26) can be written [14] as two
Burgers equations.

In particular, assume that

p(ρ) = 1
12ρ

3.



Equivalent formulation
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Define

a(t, x) = u(t, x) + 1
2ρ(t, x) and b(t, x) = u(t, x)− 1

2ρ(t, x).

First rewrite (26) as

ρt = −(ρu)x − u(ρu)x + ρut + (ρu2 + 1
12ρ

3)x = 0.

The second equation can be simplified to

0 = uρux + ρut +
1
4ρ

2ρx = ρ
(

uux + ut +
1
4ρρx

)

.



Example details
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Then

at + aax = ut +
1
2ρt +

(

u+ 1
2ρ
)(

ux +
1
2ρx

)

= ut −
1
2(ρu)x + uux +

1
2

(

ρux + uρx
)

+ 1
4ρρx

= ut + uux +
1
4ρρx = 0,

(28)

assuming ρ > 0. Similarly

bt + bbx = ut −
1
2ρt +

(

u− 1
2ρ
)(

ux −
1
2ρx

)

= ut +
1
2(ρu)x + uux −

1
2

(

ρux + uρx
)

+ 1
4ρρx

= ut + uux +
1
4ρρx = 0.

(29)

Note that

ρ = a− b, u = 1
2(a+ b), and w = ρu = 1

2

(

a2 − b2
)

.



Plot equivalent solution
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Figure 6: Solutions (34) at t = 0.9.



Initial data chosen
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Following [14], define initial data

a0(x) =











1 x ≤ −1

−x −1 ≤ x ≤ 0

0 x ≥ 0

,

and

b0(x) = a0(x− 1)− 1 =











0 x ≤ 0

−x 0 ≤ x ≤ 1

−1 x ≥ 1

.



Initial data revealed
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This corresponds to initial data for ρ and u of the form

ρ0(x) =

{

1 |x| ≥ 1

|x| |x| ≤ 1

and

u0(x) =











1
2 x ≤ −1

−1
2x −1 ≤ x ≤ 1

−1
2 x ≥ 1

.



Proposed solution for a
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For 0 ≤ t < 1,

a(t, x) =











1 x ≤ t− 1

−x/(1− t) −1 + t ≤ x ≤ 0

0 x ≥ 0,

(30)

and then for t ≥ 1,

a(t, x) =

{

1 x ≤ 2(t− 1)

0 x > 2(t− 1)
. (31)

We can verify that (30) satisfies at = −aax as follows.



Verification of solution

Computational Modeling Initiative 2019 60/72

Differentiating with respect to t and x, we get

at(t, x) =











0 x ≤ t− 1

−x/(t− 1)2 −1 + t ≤ x ≤ 0

0 x ≥ 0,

,

ax(t, x) =











0 x ≤ t− 1

1/(t− 1) −1 + t ≤ x ≤ 0

0 x ≥ 0,

.

Multiplying the formula for ax times (30) yields the
formula for −at. We leave as Exercise 0.1 to show that
(31) satisfies the Rankine-Hugoniot (weak solution)
jump condition (11).



b is similar
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Similarly, for 0 ≤ t < 1,

b(t, x) =











0 x ≤ 0

−x/(1− t) 0 ≤ x ≤ 1− t

−1 x ≥ 1− t,

. (32)

and for t ≥ 1,

b(t, x) =

{

0 x ≤ 2(1− t)

−1 x > 2(1− t)
. (33)



Back to u and ρ
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Rewriting this in terms of u and ρ, we get for 0 ≤ t < 1

u(t, x) =











1
2 x ≤ t− 1

−1
2x/(1− t) t− 1 ≤ x ≤ 1− t

−1
2 x ≥ 1− t

,

ρ(t, x) =











1 x ≤ t− 1

|x|/(1− t) t− 1 ≤ x ≤ 1− t

1 x ≥ 1− t

.

These solutions are depicted in Figure 6 at t = 0.9.



Getting past the shock
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Unfortunately, the equivalence of (a, b) and (u, ρ) does
not extend past t = 1 where the shocks collide, due to
the discontinuity of u in x that appears at t = 1.

Starting at t = 1, we have what is called a Riemann
problem , with initial data

ρ± = 1 and u± = ±1
2 .

That is, we have

u(1, x) =

{

1
2 x < 0

−1
2 x > 0

, ρ(1, x) =

{

1 x < 0

1 x > 0
.
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The solution [14] of this Riemann problem for t ≥ 1
consists of piecewise constants dictated by the
Rankine-Hugoniot conditions

u(t, x) =

{

±1
2 ∓x > c(1− t)

0 |x| < c(t− 1)
,

ρ(t, x) =

{

1 |x| > c(1− t)

ρm |x| < c(t− 1)
,

(34)

with ρm ≈ 1.93 [14].

We leave as Exercise 0.4 the determination of the wave
speed c in (34).



Nonuniqueness in systems of conservation laws
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Now extend (26) to a system in two space dimensions.

Write v = (u, v) for the flow variables.

The isentropic, compressible Euler equations can be
written as

ρt +∇· (ρv) = 0

(ρv)t +∇· (ρv ⊗ v) +∇p(ρ)) = 0,
(35)

where v ⊗ v is matrix with entries (v ⊗ v)ij = vivj and,
for matrix-valued function M(x), ∇·M defined by

(∇·M)i =
d

∑

j=1

Mij,j.



Bad news
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Unfortunately “in more than one space dimension, a
good theory for unique continuation of solutions after
the formation of shocks is not available” [14].

In particular, [14, Theorem 4, page 125] proves that
there are infinitely many “wild solutions” with
nonvanishing vorticity

ω(t, x, y) := uy(t, x, y)− vx(t, x, y) 6= 0,

where v = (u, v).

The piecewise constant weak solution in (34), extended
with v = 0, clearly has vorticity equal to zero.



Computational support

Computational Modeling Initiative 2019 67/72

Explicit computations are also given in [14] illustrating
the behavior of “wild” solutions.

This can be described loosely as the creation of vortices
after the collision of two shocks.

Given that the conservation laws are highly idealized
models, such an outcome is not surprising.

It should be noted that recent theoretical research on
nonuniqueness [1, 7, 10, 12, 13, 14, 15, 16, 17, 35] has
focused on weak solutions satisfying entropy conditions.



Entropy conditions not sufficient
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Entropy conditions were assumed to select physically
relevant solutions for systems of conservation laws.

Now it appears that they do not limit the ambiguity as
expected.

It has been known for a long time that general solutions
of conservation laws can be described in terms of
Young measures [6].

Roughly speaking, at each point in space, the solution
set is described in terms of a probability distribution of
values.



Young measures
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A classical solution in this setting corresponds to the
probability measure being a Dirac δ-function, meaning
that only one (vector) value is attained.

It is known [28] that, as long as a classical solution of a
conservation law exists, the Young measure reduces to
a δ-function.

However, after the collision of two shocks, such results
are not known, and possible behaviors in such situations
could involve non-δ, Young-measure solutions [9].

Such a solution has a definite physical interpretation:
Young measure puts limits on solution behavior.



Incomplete theory
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Thus it could be very useful to find ways of computing
such measure-valued solutions [22].

This area of modeling by PDEs is not fully understood,
so we do not attempt to say more about it here.

It seems clear that further research is needed to
determine useful simulation models to be used where
simple conservation laws were considered sufficient in
the past.

But until such improvements are made,
multi-dimensional systems of conservation laws must be
considered incomplete models.



Exercises
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Exercise 0.1 Prove that the function a(t, x) defined in
(31) satisfies the Rankine-Hugoniot (weak solution)
jump condition (11). (Hint: γ(t) = 2(t− 1).)

Exercise 0.2 Prove that the function b defined in (32)
satisfies bt = −bbx for 0 ≤ t < 1.

Exercise 0.3 Prove that the function b defined in (33)
satisfies the Rankine-Hugoniot (weak solution) jump
condition (11).

Exercise 0.4 Determine the wave speed c in (34).
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