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In large computations, the rate limiting step is often the
solution of a linear system.

In some cases, it is sufficient to use Gaussian
elimination or its variants (such as Cholesky
factorization).

Such algorithms are called direct methods .

However, for large, three-dimensional simulations,
iterative methods are frequently more efficient.



Direct methods
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Stationary iterative methods
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There are three important classes of iterative methods.

The first of these are known equivalently as stationary
iterative methods and relaxation methods .

Examples include Jacobi, Gauss-Seidel, SOR, SSOR,
etc.

algorithm sufficient conditions on A for convergence
Jacobi generalized diagonally dominant

Gauss-Seidel symmetric, positive definite
SOR symmetric, positive definite

Table 1: Stationary iterative methods for solving AX = F and conditions
on A that guarantee convergence.



Current applications of stationary iteration
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These basic techniques are still used in certain
contexts, and many of the concepts behind them are
frequently used in more complicated solvers.

In particular, relaxation methods are frequently used as
smoothers for multi-grid methods.

Typically, the simpler the iterative method, the easier it is
to implement a parallel version.



Stationary iteration theory
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Suppose that we are solving a linear system AX = F .
The general form of a stationary iterative scheme is

Nxn+1 = PXn + F,

where A = N − P and N is chosen to be an easily
invertible matrix, e.g., diagonal (Jacobi) or triangular
(Gauss-Seidel, SOR).

The error En = X −Xn satisfies

xn+1 = MXn,

where M = N−1P .



Stationary iterative methods
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Thus convergence is equivalent to ρ(M) < 1 where ρ is
the spectral radius.

It is known [22] that

• Jacobi is convergent for generalized diagonally
dominant matrices, and

• Gauss-Seidel and SOR are convergent for
symmetric, positive definite matrices.



Krylov methods

Computational Modeling Initiative 2019 8/27

Krylov methods are nonstationary iterative methods.

They naturally adapt to the properties of the solution.

algorithm matrices for which the method applies
CG symmetric, positive definite

MINRES symmetric
GMRES invertible

Table 2: Krylov subspace based methods for solving AX = F and condi-
tions on A that guarantee convergence.



Krylov subspaces
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Krylov1 methods are a class of techniques based on
projecting the solution onto an increasing subspace of
vectors that is efficient to create.

Suppose that we are solving a linear system AX = F .

Then the Krylov subspace of order k is the linear space
spanned by

F,AF, . . . , AkF.

Such vectors are easily created iteratively via
AiF = A(Ai−1F ), where A0F = F .

1Alexei Nikolaevich Krylov (1863–1945) was very active in the theory and practice of
shipbuilding and is commemorated by the Krylov Shipbuilding Research Institute.



Conjugate gradients
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The first of the Krylov methods is called conjugate
gradients (a.k.a. CG) and was developed by Hestenes2

and Stiefel3.

Conjugate gradients converges for symmetric positive
definite matrices, and it has an optimality property [22]
that makes it extremely attractive.

2Magnus Rudolph Hestenes (1906–1991) obtained a Ph.D. at the University of Chicago
with Gilbert Bliss in 1932.

3Eduard L. Stiefel (1909–1978) is known both as a pure mathematician (for his work
on the Stiefel-Whitney characteristic classes) and as a computational mathematician (he
was also an early user and developer of computers [23]). Stiefel was the advisor of Peter
Henrici as well as 63 other students over a period of 37 years. Henrici was the advisor of
Gilbert Strang, one of the early pioneers of the mathematical theory of the finite element
method.



Minimum residual
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The algorithm MINRES is applicable to symmetric but
indefinite matrices [19].

Although CG and MINRES utilize the same Krylov
space of vectors, they minimize different quantities.

CG minimizes ‖X −Xk‖A, where ‖y‖A =
√

ytAy,
whereas MINRES minimizes ‖F − AXk‖ℓ2, where
‖y‖ℓ2 =

√

yty.

It is easy to see that CG requires A to be positive
definite, since ‖·‖A is not a norm otherwise.



GMRES
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For symmetric, positive definite matrices, MINRES can
outperform CG in some cases [12].

The algorithm Generalized Minimum RESidual GMRES
[20, 14, 10] can be used for general matrices.

The Arnoldi algorithm [8, 15] is closely related to
GMRES.



Multi-grid
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Multi-grid methods apply to problems posed on grids
having having coarse grids and fine grids.

Variational, this occurs if we have subspaces V i ⊂ V

with V i ⊂ V i+1.

The solutions to the variational problems

Find ui ∈ V i such that a(ui, v) = F (v) ∀v ∈ V i (1)

are then increasingly accurate approximations to the
solution u of the variational problem

Find u ∈ V such that a(u, v) = F (v) ∀v ∈ V. (2)



MG properties
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But more importantly, ui can be used as an initial guess
for an iterative scheme for solving for ui+1.

However, real power of multi-grid is deeper than this.

Suppose that we are trying to solve for ui ∈ V i satisfying
(1) and we have an approximate solution wi ∈ V i.

Then the residual error ri = ui − wi satisfies

a(ri, v) = a(ui, v)− a(wi, v) = F (v)− a(wi, v) ∀v ∈ V,

(3)
which does not involve knowing ui.



MG magic
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But more importantly, ui can be used as an initial guess
for an iterative

The magic of multi-grid is to approximate (3) on a
coarser space (V i−1).

Need wi to be smooth enough that this is an effective
strategy, but a variety of iterative methods, both
stationary iterative methods and Krylov methods, are
smoothers that remove high frequencies.

For details, see [7].



MG variants
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It is not strictly required to have V i ⊂ V i+1.

There are two ways in which V i 6⊂ V i+1 occurs.

One is when discontinuous finite element spaces are
used [6].

Another is when the underlying grids are not nested
[17, 24, 9, 13].

Non-nested grids allow substantial freedom and
facilitate mesh coarsening [9].



MG variants
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Multi-grid methods were initiated by Bakhvalov4 [1] in
1966.

Achi Brandt [5] began popularizing and developing the
method in 1977.

Bank and Dupont [2, 3] gave one of the first proofs of
convergence of the method, in research that initiated at
the University of Chicago.

4Nikolai Sergeevich Bakhvalov (1934—2005) studied with both Sobolev and Kol-
mogorov.



Preconditioners
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The convergence rate of many iterative methods
depends on the condition number of the linear system.

For a symmetric, positive definite linear system, we can
take the condition number to be defined as the ratio of
the largest eigenvalue divided by the smallest
eigenvalue.

We have also seen that round-off is strongly affected by
the condition number of a linear system.

Linear systems associated with partial differential
operators often have condition numbers that grow
inversely with the mesh resolution.



PDE condition numbers
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PDE condition numbers grow as mesh size decreases
because PDEs have eigenvalues of unbounded size.

For finer meshes, larger eigenvalues can be resolved.

In particular, eigenfunctions often oscillate with a
frequency roughly proportional to the eigenvalue.

Thus the finer meshes resolve higher frequencies.

Therefore iterative methods introduce a limit on our
ability to resolve solutions based on mesh refinement.



Effect on round-off
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We have seen that round-off is strongly affected by the
condition number of a linear system.

One approach to this dilemma is to use higher-order
approximations.

— But this is limited: higher-order approximation
resolves higher frequency eigenfunctions.

— So the condition number is not reduced.

A better approach is to scale the linear system
appropriately to control the size of the eigenvalues.



Types of preconditioners
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The simplest scaling is diagonal preconditioning.

For a given matrix A, define diag(A) to be the diagonal
matrix with the same diagonal entries as A.

Then the diagonal preconditioning of A is the matrix
diag(A)−1A.

Fortunately, it is simple to compute the inverse of a
diagonal matrix P = diag(A)−1.

More complex version: produce preconditioner by using
incomplete factorization of the system [16, 4]



Limiting sparsity
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Incomplete factorization:

— sparsity condition is enforced autocratically.

— Gaussian elimination (or other direct method) is
performed in a way that only creates certain nonzero
elements in the resulting factors.

If for example we restrict the factors to be only diagonal,
then the algorithm is equivalent to diagonal
preconditioning.

On the other hand, we make no restriction on sparsity,
and allow arbitrary fill-in, then the algorithm produces
the exact inverse (via forward and backward solution
algorithms).



Limiting sparsity
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One common choice is to limit the sparsity of the factors
to be the same as the sparsity pattern of the original
matrix.

Such a factorization is obtained by following an
elimination algorithms (e.g., Gaussian elimination,
Cholesky factorization, etc.), but when the algorithm
calls for fill-in to occur, these additions to the original
sparse structure of A are ignored.

This yields a matrix P with the same sparsity pattern as
A and yet P is in some sense an approximation to A−1.



Benefit of preconditioning
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The benefit of preconditioning is that the iterative
method performs as if the matrix condition number is
that of the preconditioned system PA [11].

Thus significant benefit can occur.

The main objective is to choose P to be as close to A−1

as possible.

The discrete Green’s function provides a way to solve a
system [21], and this can be used to create an efficient,
parallel algorithm to implement a preconditioner [21].



Preconditioner theory
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A general understanding of preconditioners for linear
systems arising in solving PDEs is given in [18].

They describe how to extend the concept of
preconditioner to the PDE itself.

This in turn, when discretized, provides an effective
preconditioner that can be robust with respect to mesh
size and parameters in the PDE.



Preconditioner theory
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Two ways to construct preconditioners.

[18] advocates the bottom-left of the diagram.

PDE operator A discretization
−−−−−−−−−−−−→ Ah





y

approx.
inverse





y

approx.
inverse

preconditioner P for PDE discretization
−−−−−−−−−−→ Ph .
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