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Fluid models
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The model equations for all fluids take the form

ut + u · ∇u+∇p = ∇·T+ f ,

where u is the velocity of the fluid, p is the pressure, T is
called the extra (or deviatoric) stress and f is externally
given data.

Models differ based on the way the stress T depends on
the velocity u.

Time-independent models take the form

u · ∇u+∇p = ∇·T+ f . (1)



(Navier-)Stokes equations
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For incompressible fluids, the equation (1) is
accompanied by the condition

∇·u = 0, (2)

which we will assume holds in the following discussion.

For suitable expressions for T defined in terms of u, the
problem (1) and (2) can be shown to be well posed, as
we indicate in special cases.

The simplest expression for the stress is linear:
T = 1

2η
(
∇u+∇ut

)
, where η denotes the viscosity of the

fluid.
Such fluids are called Newtonian.



(Navier-)Stokes equations
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Scaling by η, (1) becomes

1

η
u · ∇u+∇p̂−∆u = f̂ , (3)

where p̂ = (1/η)p and f̂ = (1/η)f .

For η large, nonlinear term multiplied by η−1 often
dropped, resulting in a linear system called the Stokes
equations when (2) is added.

When the nonlinear equation is kept, equations (3) and
(2) are called the Navier-Stokes equations , which we
consider later.



Stokes equations
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The Stokes equations for the flow of a viscous,
incompressible, Newtonian fluid can be written

−∆u+∇p = 0

∇·u = 0.
(4)

in Ω ⊂ R
d, where u denotes fluid velocity and p denotes

pressure [5].

These equations must be supplemented by appropriate
boundary conditions, such as the Dirichlet boundary
conditions, u = γ on ∂Ω.



Continuity constraint, mass conservation
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The key compatibility condition on the data comes from
the divergence theorem:

∮

∂Ω

γ · n ds = 0. (5)

What goes in must come out:
θ

x = 0

Inhomogeneous boundary data can be dealt with

by writing u = û+ γ, where û is in the usual variational

space reflecting homogeneous Dirichlet data.



Stokes variational formulation
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The variational formulation of (4) takes the form: Find u

such that u− γ ∈ V and p ∈ Π such that

a (u,v) + b (v, p) = 0 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,
(6)

where e.g. a(·, ·) = a∇(·, ·) and b(·, ·) are given by

a∇(u,v) :=

∫

Ω

d∑

i,j=1

ui,jvi,j dx, b(v, q) := −

∫

Ω

d∑

i=1

vi,iq dx.

Derived by multiplying (4) by v with a “dot” product, and
integrating by parts as usual. Note that the second
equation in (4) and (6) are related by multiplying the
former by q and integrating, with no integration by parts.



Stokes variational spaces
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The spaces V and Π are as follows.

In the case of simple Dirichlet data on the
entire boundary, V consists of the d-fold
Cartesian product of the subset of H1(Ω) of
functions vanishing on the boundary.

In this case, Π is the subset of L2(Ω) of functions having
mean zero.

The latter constraint corresponds to fixing an ambient
pressure.

Another variational formulation for (4) can be derived
which is equivalent in some ways, but not identical to (6).



Another Stokes variational formulation
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Define
ǫ(u)ij =

1
2 (ui,j + uj,i) (7)

and

aǫ(u,v) := 2

∫

Ω

d∑

i,j=1

ǫ(u)ijǫ(v)ij dx. (8)

Then it can be shown that

aǫ(u,v) := a∇(u,v) (9)

provided only that ∇·u = 0 in Ω and v = 0 on ∂Ω

or ∇·v = 0 in Ω and u = 0 on ∂Ω.

However, the natural boundary conditions associated
with aǫ and a∇ are quite different [3].



Stokes variational forms
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Inhomogeneous boundary data dealt with by writing
u = û+ γ, û ∈ V , and (6) becomes

Find û such that û ∈ V and p ∈ Π such that

a (û,v) + b (v, p) = −a (γ,v) := F (v) ∀v ∈ V ,

b(û, q) = −b(γ, q) := G(q) ∀q ∈ Π .
(10)

From now on, we will drop the drop the “hats” on u.



Mixed Method Formulation
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The general formulation of the discretization (6) is of the
form

a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh

b(uh, q) = G(q) ∀q ∈ Πh,
(11)

where F ∈ V ′ and G ∈ Π′ (the “primes” indicate dual
spaces [2]).

It is called a “mixed method” since the variables v and q
are mixed together.

For the Stokes problem (6), the natural variational
formulation is already a mixed method, whereas it
is an optional formulation in other settings.



Mixed Method Formulation
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In the discrete mixed method, V and Π are two Hilbert
spaces with subspaces Vh ⊂ V and Πh ⊂ Π,
respectively.

The main twist in the variational formulation of mixed
methods with inhomogeneous boundary conditions is
that the term G is not zero [11].

We will assume there is a continuous operator
D : V → Π such that

b(v, p) = (Dv, p)Π ∀p. (12)

In the Stokes problem, D = ∇· .



Interpretation of inhomogeneous BCs
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Some details regarding inhomogeneous boundary
conditions

Let PΠ denote the Riesz representation of G in Πh, that
is

(PΠG, q)Π = G(q) ∀q ∈ Πh . (13)

Note that the second equation in (11) says that

PΠDuh = PΠG (14)

where we also use PΠ g to denote the Π-projection of
g ∈ Π onto Πh.



Continuity and coercivity conditions
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We assume that the bilinear forms satisfy the standard
continuity conditions

a(u, v) ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V

b(v, p) ≤ Cb‖v‖V ‖p‖Π ∀v ∈ V, p ∈ Π.
(15)

We also assume appropriate coercivity conditions

α‖v‖2V ≤ a(v, v) ∀v ∈ Z ∪ Zh

β‖p‖Π ≤ sup
v∈Vh

b(v, p)

‖v‖V
∀p ∈ Πh.

(16)

Note the special spaces Z and Zh.



The spaces Z and Zh
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Z and Zh are defined by

Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Π} (17)

and
Zh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Πh} (18)

respectively.

Z is the set of divergence free functions in H1
0(Ω), and

u ∈ Z such that a(u,v) = F (v) ∀v ∈ Z.

Functions in Zh are not in general divergence free, but

uh ∈ Zh such that a(uh,v) = F (v) ∀v ∈ Zh.



Variational formulation in Z and Zh
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Thus the varational problem for Stokes appears to be
standard in the spaces Z and Zh:

uh ∈ Zh such that a(uh,v) = F (v) ∀v ∈ Zh.

But there is a variational crime in general: Zh 6⊂ Z.

So there are two things of concern:

• The approximate flow uh will not necessarily be
incompressible, and

• we do not know if Zh will provide good
approximation.



Canonical variational form
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The mixed formulation can be posed in the canonical
variational form by writing

A((u, p), (v, q)) :=a(u, v) + b(v, p) + b(u, q)

F((v, q)) :=G(q) + F (v)

(19)

for all (v, q) ∈ V := V × Π.

This can be solved by direct methods (Gaussian
elimination), but the system is not positive definite.

However, other algorithms can be used in special cases,
as we discuss subsequently.



Taylor-Hood method
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The first general spaces used for the Stokes equations
(6) were the so-called Taylor-Hood spaces, as follows.

Let V k
h denote C0 piecewise polynomials of degree k on

a triangulation Th of a polygonal domain Ω ⊂ R
d.

Let

∼

Vh =
{
v ∈

(
V k
h

)d
: v = 0 on ∂Ω

}
(20)

and let

Πh =

{
q ∈ V k−1

h :

∫

Ω

q(x) dx = 0

}
. (21)



Taylor-Hood method theory
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It can be proved that (16) holds in both two and three
dimensions under very mild restrictions on the mesh [1].

Note that Zh 6⊂ Z in this case.

The main drawback of Taylor-Hood is that the
divergence-free condition can be substantially violated,

leading to a loss of mass conservation.

The loss of mass conservation can be avoided if we
force the divergence constraint to be satisfied by a
penalty method.



Taylor-Hood method limitations
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Another drawback of Taylor-Hood is that the linear
system (19) is bigger and not positive definite.

It represents a saddle-point problem.

We will see that an iterated penalty method has a
symmetric, positive definite linear system that is well
conditioned.

Thus we consider the question of how to force Zh ⊂ Z
for a general space Vh.

This can be done by choosing

Πh = ∇·Vh.



Comparison of the matrix sizes
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ρA B

B t 0

Taylor−Hood matrix

Iterated

A

Penalty
 matrix



Best approximation from Zh
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The discrete version of the Stokes equations can be
written as

a(uh,v) = F (v) ∀v ∈ Zh.

From Céa’s theorem, the error u− uh is bounded by the
best approximation from Zh.

So the only issue is to see that the space Zh is not
over-constrained.

But in fact it can be.

Let us simply count the number of degrees of freedom
for the mesh depicted in Figure 1.



Constraint counting
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(a) (b) (c)

Figure 1: (a) A triangulation with only one interior vertex; (b) degrees of
freedom for piecewise linear vector functions on this mesh that vanish on
the boundary; (c) degrees of freedom for piecewise quadratic vector func-
tions on this mesh that vanish on the boundary.

There are only two degrees of freedom, as indicated in Figure 1(b),
for piecewise linear vector functions on this mesh that vanish on the
boundary. That is, dimVh = 2.
If Πh is piecewise constants on this mesh which have mean zero,
then dimΠh = 3 (one for each triangle, minus 1 for the mean-zero
constraint.)



Over constrained
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Thus we see that the inf-sup condition (16) cannot hold;
Vh is only two-dimensional, so the three-dimensional
space Πh must have p orthogonal to ∇·v for all v ∈ Vh.

Moreover, it is not hard to see that Zh = {0}, the space
with only the zero function.

For Vh being piecewise quadratic vector functions on the
mesh in Figure 1(a), the dimension of Vh is 10, as shown
in Figure 1(c); there are 4 edge nodes and 1 vertex
node, and 2 degrees of freedom for each.

If Πh is discontinuous piecewise linears on this mesh
which have mean zero, then dimΠh = 11 (three for each
triangle, minus 1 for the mean-zero constraint.)



Reducing constraints
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Thus we see that Vh is still too small to match Πh, just by
dimensional analysis.

One way to resolve this dilemma is to reduce the
number of constraints implied by b(v, q) = 0.

This could be done by making the pressure space
smaller, or (equivalently as it turns out) reducing the
accuracy of integration in computing b(v, q).

Such reduced or selective integration has been
extensively studied [7].

But another way to eliminate the limiting behavior is to
go to higher degree polynomials.



Higher-degree approximation
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For Vh being piecewise quartic vector functions on the
mesh in Figure 1(a), dimVh = 50 (there are 3 nodes per
edge, 3 nodes per triangle and one vertex node).

Correspondingly, if Πh consists of discontinuous
piecewise cubics with mean zero, then dimΠh = 39 (10
degrees of freedom per triangle and one mean-zero
constraint).

Thus we do have dimVh >> dimΠh in this case.

However, the counting of constraints has to be more
careful.



Extract constraint counts
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The divergence operator maps Vh to Πh, with its image
being Wh, and its kernel is Zh. So

dimVh = dimWh + dimZh.

We hope that Wh = Πh, which is true if

dimWh = dimΠh = 39.

Thus we need to show that dimZh = 11 in this case.

We can write Zh = curlSh where

Sh is the space of C1 (scalar) piecewise quintics

This space is specified uniquely by 11 parameters [9].



Convergence of Scott-Vogelius
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The choice of pressure space Πh = ∇·Vh is often called
the Scott-Vogelius method.

The choice of pressure space Πh = ∇·Vh implies that
Zh ⊂ Z, and so the velocity error is governed by best
approximation.

When the inf-sup condition holds with β independent of
h, then best-approximation from Zh may be related to
best-approximation from Vh:

‖u− uh‖H1(Ω) ≤
1

α
inf
v∈Zh

‖u− v‖H1(Ω)

≤
C

αβ
inf
v∈Vh

‖u− v‖H1(Ω).
(22)



Analysa using quartic elements and the iterated penalty meth od
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Pressure convergence of Scott-Vogelius
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When the inf-sup condition holds independently of the
mesh, one also obtains the following approximation
result for the pressure:

‖p− ph‖L2(Ω) ≤
C

β

(
inf
v∈Vh

‖u− v‖H1(Ω) + inf
q∈Πh

‖p− q‖L2(Ω)

)
.

Table 1 describes mesh restrictions under which the
inf-sup bound (16) is known to hold with β independent
of mesh size, in two and three dimensions, for various
values of k.

Boundary singular vertices and nearly singular (interior)
vertices are defined in [2, page 319].



The unified Stokes algorithm
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Singular interior vertices (crossed triangles or crossed
quadrilaterals) in the mesh are good (2D).

But inf-sup constant can degenerate if vertices are
nonsingular close to being singular [2, page 319].

Scott-Vogelius algorithm produces a accurate velocity
approximation with exact divergence zero, but pressure
approximation is discontinuous.

By contrast, the Taylor-Hood pressure approximation is
continuous but the velocity does not preserve mass.

The unified Stokes algorithm combines the best of these
two methods and eliminates the bad features.



The unified Stokes algorithm defined
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• The velocity approximation is exactly the same as for
the Scott-Vogelius algorithm,

• but the pressure is obtained by projecting the
Scott-Vogelius pressure onto the continuous
pressure space (21) used in the Taylor-Hood
method.

Scott-Vogelius pressure p = ∇·w for some w ∈ Vh.

Then the unified Stokes pressure p̂h is defined by

(p̂h, q)L2(Ω) = (∇·w, q)L2(Ω) ∀q ∈ Πh.



USA properties
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Unified Stokes pressure p̂h defined by

(p̂h, q)L2(Ω) = (∇·w, q)L2(Ω) ∀q ∈ Πh.

We will show subsequently that p̂h is easy to compute,
by identifying w.

When the inf-sup condition holds independently of the
mesh, the unified Stokes pressure p̂h also satisfies [8]

‖p− p̂h‖L2(Ω) ≤
C

β

(
inf
v∈Vh

‖u− v‖H1(Ω)

+ inf
q∈Πh

‖p− q‖L2(Ω)

)
.

(23)



Mesh restrictions
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Under mesh restrictions, convergence of velocity can be
proved [13, 12, 10, 6]

d k inf-sup mesh restrictions
2 1 NO, but works for all crossed triangles
2 2 YES some crossed triangles required
2 3 YES new conditions [4] required
2 ≥ 4 YES no nearly singular vertices
3 ≥ 6 YES only one Th known

Table 1: Mesh restrictions for exact divergence-free piecewise polynomials;
d= dimension of Ω, k= degree of polynomials.



Exact div-free elements
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Taylor-Hood has no analog for the piecewise linear case

Malkus crossed triangles show that the inf-sup condition
is not necessary for well-posed mixed method

Approximation by Zh based on Powell C1 piecewise
quadratic element.

We now turn to an algorithm for solving

for the velocity and pressure without dealing

explicitly with the pressure space Πh.

The algorithm is a general optimization technique called

the iterated penalty method.



Iterated Penalty Method
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Consider a mixed method for Stokes of the form (11):

a(uh,v) + b(v, ph) = F (v) ∀v ∈ Vh

b(uh, q) = G(q) ∀q ∈ Πh.

Let ρ′ ∈ R and ρ > 0. The iterated penalty method is

a(un,v) + ρ (∇·un,∇·v)Π =

F (v)− (∇·v,∇· (wn + ργ))Π ∀v ∈ Vh

wn+1 = wn + ρ′ (un + γ) ,

(24)

The pressure is defined by

ph = PΠ∇·wh, (25)

where wh := wn for terminal value of n.



Convergence properties
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The convergence properties of (24) follow from [2].

Theorem 0.1 Suppose that the forms (11) satisfy (15)
and (16). for Vh and Πh = DVh. Then the algorithm (24)
converges for any 0 < ρ < 2ρ′ for ρ′ sufficiently large.
For the choice ρ = ρ′, (24) converges geometrically with
a rate given by

Ca

(
1

β
+

Ca

αβ

)2/
ρ .

The following stopping criterion follows from [2].



Stopping criteria
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Theorem 0.2 Suppose that the forms (11) satisfy (15)
and (16). for Vh and Πh = DVh. Then the errors in
algorithm (24) can be estimated by

‖un − uh‖V ≤

(
1

β
+

Ca

αβ

)
‖Dun − PΠG‖Π

and
‖pn − ph‖Π ≤

(
Ca

β
+

C2
a

αβ
+ ρ′Cb

)
‖Dun − PΠG‖Π.

When G(q) = −b(γ, q), then PΠG = −PΠDγ and since
Dun ∈ Πh,

‖Dun − PΠG‖Π = ‖PΠD (un + γ)‖Π

≤ ‖D (un + γ)‖Π.
(26)



Convergence and stopping criteria
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The latter norm in (26) is easier to compute, avoiding
the need to compute PΠG.

We formalize this observation in the following result.

Corollary 0.1 Under the conditions of Theorem (0.2)
the errors in algorithm (24) can be estimated by

‖un − uh‖V ≤

(
1

β
+

Ca

αβ

)
‖D (un + γ)‖Π

and

‖pn − ph‖Π ≤

(
Ca

β
+

C2
a

αβ
+ ρ′Cb

)
‖D (un + γ)‖Π.



Iterated penalty performance
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The iterated penalty code
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mesh = UnitSquareMesh(meshsize, meshsize, "crossed")
V = VectorFunctionSpace(mesh, "Lagrange", k)
u = TrialFunction(V)
v = TestFunction(V)
w = Function(V)
a = inner(grad(u), grad(v)) * dx + r * div(u) * div(v) * dx
b = -div(w) * div(v) * dx
F = inner(f, v) * dx
u = Function(V)
pde = LinearVariationalProblem(a, F - b, u, bc)
solver = LinearVariationalSolver(pde)
# Scott-Vogelius iterated penalty method
iters = 0; max_iters = 10; div_u_norm = 1
while iters < max_iters and div_u_norm > 1e-10:

# solve and update w
solver.solve()
w.vector().axpy(-r, u.vector())
# find the Lˆ2 norm of div(u) to check stopping condition
div_u_norm = sqrt(assemble(div(u) * div(u) * dx(mesh)))
print "norm(div u)=%.2e"%div_u_norm
iters += 1



Test Problem
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We can use FEniCS to test our algorithm. In our experiments, we try to
recover an analytical solution of the Stokes equations

u =

[
sin(4πx) cos(4πy)
− cos(4πx) sin(4πy)

]

p = π cos(4πx) cos(4πy)

by applying u above as a boundary condition and letting

f =

[
28π2 sin(4πx) cos(4πy)
−36π2 cos(4πx) sin(4πy)

]
.

Next is a complete implementation on the unit square with mesh size
h = 1

16 and polynomial order k = 6.



Test Problem pressure
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Unified Stokes solution for the pressure



Divergence comparison
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1
h

k Taylor-Hood Scott-Vogelius Unified Stokes
2 4 1.86e-01 8.50e-11 4.27e-11
2 5 9.21e-02 7.24e-11 3.23e-11
2 6 3.60e-02 3.43e-11 3.33e-11
4 4 9.20e-03 3.46e-11 3.30e-11
4 5 3.52e-03 3.33e-11 3.28e-11
4 6 2.02e-04 3.24e-11 3.22e-11
8 4 6.41e-04 3.25e-11 3.20e-11
8 5 5.15e-05 3.17e-11 3.15e-11
8 6 4.67e-06 3.13e-11 3.12e-11
16 4 3.17e-05 3.14e-11 3.12e-11
16 5 9.99e-07 3.10e-11 3.09e-11
16 6 5.73e-08 3.09e-11 3.07e-11

Table 2: ‖∇·u‖L2(Ω) for varying h and k with 4 iterations of the penalty
method for Scott-Vogelius (and therefore also USA)



Numerical results
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Stokes flow examples
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We give here some important examples of Stokes flow.

• Poiseuille flow in a two-dimensional channel
• Poiseuille flow in a three-dimensional pipe
• Crossing channels
• Driven cavity

First two are elementary and exact

but also basis for many important applications.

We begin with flow in a channel.



Poiseuille flow
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A two-dimensional channel Ω (a long rectangle) is an
idealization of a canal.

We take the length to be L and the depth to be 1:

Ω =
{
(x, y) ∈ R

2 : 0 ≤ x ≤ L, 0 ≤ y ≤ 1
}
.

Restricting to two dimensions presumes that flow is
negligible in third dimension across width of canal.

Flow in a channel is named for Poiseuille and defined by

u(x, y) = (12y(1− y), 0), for (x, y) ∈ Ω. (27)



Poiseuille flow
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u(x, y) = (12y(1− y), 0)

satisfies homogeneous Dirichlet boundary conditions on
top and bottom of the channel:

we have put a lid on the canal.

If we write u(x, y) = (u(x, y), v(x, y)), we see that v is
identically zero, and u has a parabolic profile.

Moreover, ∆u ≡ 1 and ∇·u = ux = 0. Thus define
p(x, y) = x, and we have

−∆u(x, y) +∇p(x, y) = 0 for (x, y) ∈ Ω.



Poiseuille flow in 3D too
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Thus Poiseuille flow

u(x, y) = (12y(1− y), 0), p(x, y) = x, for (x, y) ∈ Ω

satisfies the Stokes equations

−∆u(x, y) +∇p(x, y) = 0 for (x, y) ∈ Ω,

∇·u = 0 for (x, y) ∈ Ω.

Three-dimensional flow in a pipe (cylinder) is similar and
also is named for Poiseuille.

We can think of these flows as being driven by the
non-zero pressure gradient.



Stokes cross
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Now we consider two channels that cross each other.
Let L ≥ 1. Define domains

Ωx = {(x, y) : |x| < L, |y| < 1}

Ωy = {(x, y) : |y| < L, |x| < 1} ,

and define Ω = Ωx ∪ Ωy.



Stokes cross
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Define vector functions

gx(x, y) =

{
(1− y2, 0) |x| < L, |y| < 1

0 elsewhere

gy(x, y) =

{
(0, 1− x2) |y| < L, |x| < 1

0 elsewhere
.

By definition, gx, gy ∈ H1(Ω), since

extension by zero is a continuous operation on H1.

Also ∇·gx = ∇·gy = 0 in Ω.



Stokes cross
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Similarly, define scalar functions

px(x, y) =

{
−2x |x| < L, |y| < 1

0 elsewhere

py(x, y) =

{
−2y |y| < L, |x| < 1

0 elsewhere
.

These are both in L2(Ω) and have mean zero.

In Ωx, −∆gx = (2, 0) = −∇px, and

in Ωy, −∆gy = (0, 2) = −∇py.



Stokes box
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Then (gx, px) is a strong solution of Stokes in Ωx,

and (gy, py) is a strong solution of Stokes in Ωy,

with homogeneous Dirichlet boundary conditions on
appropriate sides of the two domains.

When L = 1 (Stokes box), Ωx = Ωy, and
both are solutions on all of Ω.

Thus any linear combination

(agx + bgy, apx + bpy)

is also an exact solution.



Stokes cross again
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When L > 1, these do not give an exact solution.

Plot of ux − gxx where u has boundary data gx.
(USA using L = 2, quartics, and meshsize = 64).



Near solutions
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How close are (gx, px) and (gy, py) to being solutions?

Extending px and py by zero outside of Ωx and Ωy,
respectively, makes them both defined in L2(Ω), still with
mean zero in the whole domain.

Thus (gx, px) (resp., (gy, py)) is a strong solution of the
Stokes equations in Ω\Bx (resp., Ω\By), where

Bx = {(x,±1) : |x| < 1} and By = {(±1, y) : |y| < 1}

are the sets in Ω where both ∇gz and pz (z = x or y)
have discontinuities.
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Let us determine what variational problem (gz, pz) (z = x
or y) solves in Ω.

Take z = x and let Ω̂y = {(x, y) ∈ Ωy : |y| > 1}.

Thus Ω = Ωx ∪ Bx ∪ Ω̂y, and Bx is the boundary
between Ωx and Ω̂y.

Since gx & px vanish in Ω̂y, and v vanishes on ∂Ωx\Bx,
∫

Ω

∇gx : ∇v dx−

∫

Ω

px∇·v dx =

∫

Ωx

(−2y)vx,y + 2x∇·v dx

=

∫

Ωx

(−2y)vx,y dx−

∫

Ωx

(2, 0) · v dx−

∮

Bx

(2xv) · n ds.

(28)
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Applying the divergence theorem to w = (0,−2y)vx, we
find

∫

Ωx

(−2y)vx,y dx =

∫

Ωx

2vx dx−

∮

Bx

n · (0, 2y) vx ds,

Thus
∫

Ω

∇gx : ∇v dx−

∫

Ω

px∇·v dx =

−

∮

Bx

n · (0, 2y) vx ds−

∮

Bx

(2xv) · n ds,
(29)

Define

F (v) = −

∮

Bx

n · (0, 2y) vx + (2xv) · n ds. (30)
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(gx, px) solves Stokes on Ω with data F given in (30).

Difference between u and gx is very localized near Bx.
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Let Ω be the unit square [0, 1]2 and let Γ denote the top
of the square:

Γ = {(x, 1) : 0 ≤ x ≤ 1} .

Define Dirichlet boundary conditions

u(x, 1) = (1, 0) on Γ, u = 0 on ∂Ω\Γ. (31)

The resulting Stokes problem

−∆u(x, y) +∇p(x, y) = 0 for (x, y) ∈ Ω,

∇·u = 0 for (x, y) ∈ Ω.

with boundary condition (31) is driven cavity problem.
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We imagine the top of the box to be a belt that is
continuously moving to the right and causing the fluid to
do the same.

Slightly unrealistic, but easy to state problem with
unknown solution often used as a test [8].

It is equally difficult to write down a vector function (g, 0)
that satisfies (31).

In polar coordinates, write g(r, θ) = cos θ for r near 0.

Has right boundary conditions near left-hand side of lid,
but not in H1(Ω).
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So the driven cavity problem has a singularity that
correlates with the difficutly of forcing the belt down onto
the top of the box.

Figure 2: Driven cavity problem computed with quartics, horizontal com-
ponent only. (left) meshsize = 16 and (right) meshsize = 128 showing only
where u ≥ 0. Computed with iterated penalty method using quartics.
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Horizontal componenet u of velocity u = (u, v) is plotted.

Horizontal velocity becomes negative below a particular
curve.

This visualization was achieved by including the mesh,
which is so dense as to appear black, and is plotted at
the level u = 0.

Thus we see the solution only when it is positive.

The curve u(x, y) = 0 is a distinctive feature of this
problem and can be used to compare solution methods.
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