
Computational Modeling Initiative 2019 1/50

Solving PDE’s with FEniCS

Navier-Stokes equations

Chapter 20–21

Introduction to

Automated Modeling

with FEniCS

by L. Ridgway Scott

The Navier-Stokes Equations

Computational Modeling Initiative 2019 2/50

The Navier-Stokes equations for the flow of a viscous,
incompressible, Newtonian fluid can be written

−∆u+∇p = −R (u · ∇u+ ut)

∇·u = 0
(1)

in Ω ⊂ R
d, where u denotes the fluid velocity, p denotes

the pressure, and R denotes the Reynolds number [2].
In our context, R = 1/η where η denotes the fluid
(kinematic) viscosity.

These equations must be supplemented by appropriate
boundary conditions, such as the Dirichlet boundary
conditions, u = γ on ∂Ω.

Navier-Stokes variational form

Computational Modeling Initiative 2019 3/50

A complete variational formulation of (1) takes the form:
Find u such that u− γ ∈ V and p ∈ Π such that

a (u,v) + b (v, p)

+R
(

c (u,u,v) + (ut,v)L2

)

= 0 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ Π ,

(2)

where e.g. a(·, ·) and b(·, ·) are the same as for Stokes:

a(u,v) :=

∫

Ω

n
∑

i,j=1

ui,jvi,j dx, b(v, q) := −

∫

Ω

n
∑

i=1

vi,iq dx,

(·, ·)L2 denotes the L2(Ω)d-inner-product and new form is

c(u,v,w) :=

∫

Ω

(u · ∇v) ·w dx. (3)

Navier-Stokes nonlinear form

Computational Modeling Initiative 2019 4/50

The spaces V and Π are the same as for the Stokes
equations.

The trilinear form (3) has some special properties that
reflect important physical properties of fluid dynamics.

To see these, need to derive some calculus identities.

For any vector-valued function u and scalar-valued
function v, the product rule for derivatives gives

∇· (u v) = (∇·u)v + u · ∇v. (4)

Applying product rule again gives

∇· (u v w) = (∇·u)v w + (u · ∇v)w + (u · ∇w)v.

Properties of the nonlinear term

Computational Modeling Initiative 2019 5/50

Repeat: ∇· (u v w) = (∇·u)v w+ (u · ∇v)w+ (u · ∇w)v.

Thus if we apply the divergence theorem we get
∮

∂Ω

(u · n)v w ds =

∫

Ω

∇· (u v w) dx

=

∫

Ω

(∇·u)v w dx+

∫

Ω

(u · ∇v)w dx+

∫

Ω

(u · ∇w)v dx.

Thus if u satisfies the divergence constraint ∇·u = 0 in
(1) and the product (u · n) v w vanishes on ∂Ω, we have

∫

Ω

(u · ∇v)w dx = −

∫

Ω

(u · ∇w)v dx. (5)

Properties of the nonlinear term

Computational Modeling Initiative 2019 6/50

Suppose now that v and w are vector-valued functions,
and u · n or v or w vanishes at each point on ∂Ω.

Applying (5), we find
∫

Ω

(u · ∇v) ·w dx = −

∫

Ω

(u · ∇w) · v dx. (6)

Then the trilinear form (3) is antisymmetric in the last
two arguments:

c(u,v,w) = −c(u,w,v). (7)

In particular, if ∇·u = 0 and v vanishes on ∂Ω, then

c(u,v,v) = 0.

Navier-Stokes time-stepping

Computational Modeling Initiative 2019 7/50

Simple time-stepping scheme for Navier-Stokes
equations (1) is implicit with respect to linear terms and
explicit with respect to nonlinear terms.

However, fully implicit schemes have better stability
properties.

Implicit time-stepping

Computational Modeling Initiative 2019 8/50

The workhorse schmes for solving the time-dependent
Navier-Stokes equations are implicit.

The simplest of these is the implicit Euler scheme,
which is the lowest-order backwards differentiation
(BDF) scheme.

The implicit Euler time-stepping scheme for the
Navier-Stokes equations can be defined as follows.

Navier-Stokes variational form

Computational Modeling Initiative 2019 9/50

Expressed in variational form, it is

a
(

uℓ,v
)

+ b
(

v, pℓ
)

+R c
(

uℓ,uℓ,v
)

+
R

∆t

(

uℓ − uℓ−1,v
)

L2
= 0,

b
(

uℓ, q
)

= 0,

(8)

where v varies over all V (or Vh) and q varies over all Π
(or Πh) and ∆t denotes the time-step size.

More efficient time-stepping schemes will take a similar
form, such as the backwards differentiation schemes. In
particular, (8) is the first-order backwards differentiation
scheme.

Navier-Stokes variational form

Computational Modeling Initiative 2019 10/50

At each time step, one has a problem to solve for (uℓ, pℓ)
with the form ã(·, ·) is

ã(u,v) := a(u,v) + τ (u,v)L2 , (9)

where the constant τ = R/∆t.

It takes the form

ã
(

uℓ,v
)

+ b
(

v, pℓ
)

+R c
(

uℓ,uℓ,v
)

= τ
(

uℓ−1,v
)

L2
,

b
(

uℓ, q
)

= 0.

(10)

However, (10) is nonlinear, so an algorithm must be
chosen to linearize it.

Fixed-point iteration

Computational Modeling Initiative 2019 11/50

One of the simplest solution methods is the fixed-point
iteration, which takes the form:

ã
(

uℓ,k,v
)

+ b
(

v, pℓ,k
)

= −R c
(

uℓ,k−1,uℓ,k−1,v
)

+ τ
(

uℓ−1,v
)

L2
,

b
(

uℓ,k, q
)

= 0.

(11)

This iteration can be started with an extrapolated value,
e.g., uℓ,0 := 2uℓ−1 − uℓ−2, and once convergence is
achieved, we set uℓ = uℓ,k.

Note that we have uℓ,k = γ on ∂Ω, that is, uℓ,k = u
ℓ,k
0 + γ

where u
ℓ,k
0 ∈ V .

Fixed-point iteration

Computational Modeling Initiative 2019 12/50

The variational problem for uℓ,k can be written:
Find u

ℓ,k
0 ∈ V and p ∈ Π such that

ã
(

u
ℓ,k
0 ,v

)

+ b
(

v, p
)

= −ã
(

γ,v
)

−R c
(

uℓ,k−1,uℓ,k−1,v
)

+ τ
(

uℓ,v
)

L2
∀v ∈ V

b
(

u
ℓ,k
0 , q

)

=− b
(

γ, q
)

∀q ∈ Π.

(12)

This is of the form

F (v) = −ã
(

γ,v
)

−R c
(

uℓ,k−1,uℓ,k−1,v
)

+ τ
(

uℓ−1,v
)

L2
∀v ∈ V

G
(

q
)

=− b
(

γ, q
)

∀q ∈ Π.

(13)

Boundary data γ appears in both F and G.

Stability of the exact solution

Computational Modeling Initiative 2019 13/50

The nonlinear time-stepping scheme (10) has excellent
stability properties.

To see why, let us assume for simplicity that the
boundary data γ is zero. Then

ã
(

uℓ,uℓ
)

= −R c
(

uℓ,uℓ,uℓ
)

+τ
(

uℓ−1,uℓ
)

L2
= τ

(

uℓ−1,uℓ
)

L2
.

Then the Cauchy-Schwarz inequality implies

ã
(

uℓ,uℓ
)

≤ τ‖uℓ−1‖L2(Ω)‖u
ℓ‖L2(Ω)

≤ 1
2τ
(

‖uℓ−1‖2L2(Ω) + ‖uℓ‖2L2(Ω)

)

Stability of the exact solution

Computational Modeling Initiative 2019 14/50

Subtracting 1
2τ‖u

ℓ‖2L2(Ω) from both sides yields

a
(

uℓ,uℓ
)

+ 1
2τ‖u

ℓ‖2L2(Ω) ≤
1
2τ‖u

ℓ−1‖2L2(Ω)

≤ a
(

uℓ−1,uℓ−1
)

+ 1
2τ‖u

ℓ−1‖2L2(Ω).
(14)

Thus uℓ is non-increasing in the norm

‖v‖τ =
√

a(v,v) + 1
2τ‖v‖

2
L2(Ω).

Therefore
‖uℓ‖τ ≤ ‖uℓ‖τ ,

that is, subsequent time steps are bounded by the initial
value in this norm.

Convergence of fixed-point iteration

Computational Modeling Initiative 2019 15/50

The convergence of the iterative scheme (11) can be
analyzed as follows.

Subtracting two consecutive versions of (11), we find the
following formula for ek := uℓ,k − uℓ,k−1:

ã
(

ek, ek
)

= R
(

c
(

uℓ,k−1,uℓ,k−1, ek
)

−c
(

uℓ,k−2,uℓ,k−2, ek
)

)

= R
(

c
(

uℓ,k−1,uℓ,k−1, ek
)

−c
(

uℓ,k−2,uℓ,k−1, ek
)

+

c
(

uℓ,k−2,uℓ,k−1, ek
)

−c
(

uℓ,k−2,uℓ,k−2, ek
)

)

= R
(

c
(

ek−1,uℓ,k−1, ek
)

+c
(

uℓ,k−2, ek−1, ek
)

)

.

Convergence of fixed-point iteration

Computational Modeling Initiative 2019 16/50

So we have

ã
(

ek, ek
)

= R
(

c
(

ek−1,uℓ,k−1, ek
)

+ c
(

uℓ,k−2, ek−1, ek
)

)

.

From the Cauchy-Schwarz inequality, we find

|c(uℓ,k−2, ek−1, ek)| ≤ ‖uℓ,k−2‖L∞(Ω)a(e
k−1, ek−1)1/2(ek, ek)1/2.

From (7) and the Cauchy-Schwarz inequality, we find

|c(ek−1,uℓ,k−1, ek)| = |c(ek−1, ek,uℓ,k−1)|

≤ ‖uℓ,k−1‖L∞(Ω)(e
k−1, ek−1)1/2(a(ek, ek))1/2.

Convergence of fixed-point iteration

Computational Modeling Initiative 2019 17/50

Estimating the terms with the “c” form in them, we find

ã
(

ek, ek
)

≤ R‖uℓ,k−1‖L∞(Ω)

(

ek−1, ek−1
)1/2 (

a
(

ek, ek
))1/2

+R‖uℓ,k−2‖L∞(Ω)

(

a
(

ek−1, ek−1
))1/2 (

ek, ek
)1/2

≤ 1
2

(

R‖uℓ,k−1‖L∞(Ω)

)2 (
ek−1, ek−1

)

+ 1
2a

(

ek, ek
)

+
1

2τ

(

R‖uℓ,k−2‖L∞(Ω)

)2
a
(

ek−1, ek−1
)

+
τ

2

(

ek, ek
)

= 1
2

(

R‖uℓ,k−1‖L∞(Ω)

)2 (
ek−1, ek−1

)

+
1

2τ

(

R‖uℓ,k−2‖L∞(Ω)

)2
a
(

ek−1, ek−1
)

+ 1
2 ã

(

ek, ek
)

Convergence of fixed-point iteration

Computational Modeling Initiative 2019 18/50

So
ã
(

ek, ek
)

≤ 1
2

(

R‖uℓ,k−1‖L∞(Ω)

)2 (
ek−1, ek−1

)

+
1

2τ

(

R‖uℓ,k−2‖L∞(Ω)

)2
a
(

ek−1, ek−1
)

+ 1
2 ã

(

ek, ek
)

≤
R2

2τ

(

2
∑

j=1

‖uℓ,k−j‖2L∞(Ω)

)

ã
(

ek−1, ek−1
)

+ 1
2 ã

(

ek, ek
)

.

Therefore (note R2/τ = R∆t)

ã
(

ek, ek
)

≤
R2

τ

(

2
∑

j=1

‖uℓ,k−j‖2L∞(Ω)

)

ã
(

ek−1, ek−1
)

.

So fixed-point iteration converges provided ∆t is small
enough and ‖uℓ,j‖L∞(Ω) stay bounded.

Compatibility Conditions

Computational Modeling Initiative 2019 19/50

Compatibility conditions govern solution
smoothness.

For the Navier-Stokes equations, there are
local compatibility conditions like those found
for the heat equation.

However, there are also non-local compatibility
conditions for the Navier-Stokes equations,
and we describe them subsequently.

Local Compatibility Conditions

Computational Modeling Initiative 2019 20/50

There are local compatibility conditions for boundary
and initial data for Navier-Stokes equations similar to
ones for the heat equation to have a smooth solution.

These can be derived again from the observation that
that the values of u on the spatial boundary have been
specified twice at t = 0.

The first condition is simply

u0(x) = γ(x) ∀x ∈ ∂Ω. (15)

Additional conditions arrise by using the differential
equation at t = 0 and for x ∈ ∂Ω, but we post-pone
temporarily deriving one of these.

Incompressibility Condition

Computational Modeling Initiative 2019 21/50

However, we find a new type of condition, namely,

∇·u0 = 0. (16)

Although this condition is quite obvious, it does pose a
significant constraint on the initial data.

If either compatibility is not satisfied wild oscillations will
result near t = 0 and x ∈ ∂Ω.

In such a nonlinear problem, this can cause completely
wrong results to occur.

Compatibility conditions (15) and (16) do not have to be
satisfied for the Navier-Stokes equations (1) to be well
posed in the weak sense.

Mass conservation

Computational Modeling Initiative 2019 22/50

Another condition arises due to the incompressibility (or
divergence-free) condition:

∮

∂Ω

n · γ = 0. (17)

This simply means that the amount of fluid coming into
the domain must balance the amount of fluid going out
of the domain: the net mass flux into the domain is zero.

If this compatibility condition is violated, then the
solution can clearly not have divergence zero.

Local Compatibility Conditions

Computational Modeling Initiative 2019 23/50

There is a unique solution in any case, but the physical
model may be incorrect as a result if it is supposed to
have a smooth solution.

Compatibility conditions are a very subtle form of
constraint on model quality.

The compatibility conditions (15) and (16) are described
in terms of local differential-algebraic constraints.

However, we will see that there are other compatibility
conditions that lead to global constraints that may be
extremely hard to verify or satisfy in practice.

A nonlocal compatibility condition

Computational Modeling Initiative 2019 24/50

Simply applying the first equation in (1) on ∂Ω at t = 0
we find

−∆u0 +∇p0 = −R (γ · ∇u0 + γ
′) on ∂Ω (18)

where p0 denotes the initial pressure.

Since p0 is not part of the data, it might be reasonable to
assume that the pressure initially would just adjust to
insure smoothness of the system, i.e., satisfaction of
(18), which we can re-write as

∇p0 = ∆u0 −R (γ · ∇u0 + γ
′) on ∂Ω (19)

Nonlocal Compatibility Conditions

Computational Modeling Initiative 2019 25/50

However, taking the divergence of the first equation in
(1) at t = 0 we find

∆p0 = −R∇· (u0 · ∇u0) in Ω. (20)

Thus p0 must satisfy a Laplace equation with the full
gradient specified on the bounary by (19).

Note that, if ∇·v = 0, then

∇· (v · ∇v) =
∑

i,j

vi,jvj,i = ∇v : ∇vt in Ω. (21)

Thus we can write (20) as

∆p0 = −R
(

∇u0 : ∇u0
t
)

in Ω.

Nonlocal Compatibility Conditions

Computational Modeling Initiative 2019 26/50

Summarizing, we have

∆p0 = −R
(

∇u0 : ∇u0
t
)

in Ω.

together with the boundary conditions

∇p0 = ∆u0 −R (γ · ∇u0 + γ
′) on ∂Ω.

This is an over-specified system (one too many
boundary conditions), so not all u0 will satisfy it.

The only simple way to satisfy both (19) and (20) is to
have u0 ≡ 0, that is to start with the fluid at rest.

Nonlocal Compatibility Conditions

Computational Modeling Initiative 2019 27/50

For R > 0, it is easy to see that the system given by (19)
and (20) is over-specified since γ

′ can be chosen
arbitrarily.

A simple way to avoid the nonlocal compatibility
condition is to start the simulation with

• initial data u0 = 0 and
• boundary data γ(0) = γ

′(0) = 0.

Moreover, such an approach may be more appropriate
physically.

Time-independent solvers

Computational Modeling Initiative 2019 28/50

Consider the time-independent Navier-Stokes equations
in variational form:

Fv(u) = a(u,v) +Rc(u,u,v) = 0 ∀v ∈ Z, (22)

together with the incompressibility constraint u ∈ Z, that
is, equivalently ∇·u = 0 or b(u, q) = 0 for all q ∈ Π.

In addition, we assume that we have Dirichlet boundary
conditions u = g on ∂Ω.

This is a nonlinear system of equations posed on the
affine subspace Z + g.

Navier-Stokes variational form

Computational Modeling Initiative 2019 29/50

Variety of nonlinear solvers that can be applied.

But it is useful to see what Newton’s method looks like
for this system.

We compute the Jacobian of F by taking limits of
difference quotients:

Fv(u+ ǫw)− Fv(u) = ǫ a(w,v)

+R
(

c(u+ ǫw,u+ ǫw,v)− c(u,u,v)
)

.

We are differentiating in the affine space Z + g, so
perturbation w satisfies w = 0 on ∂Ω, as well as
∇·w = 0 (in short, w ∈ Z).

Navier-Stokes variational form

Computational Modeling Initiative 2019 30/50

Expanding

c(u+ ǫw,u+ ǫw,v) = c(u,u+ ǫw,v) + ǫ c(w,u+ ǫw,v)

= c(u,u,v) + ǫ c(u,w,v) + ǫ
(

c(w,u,v) + ǫ c(w,w,v)
)

= c(u,u,v) + ǫ
(

c(u,w,v) + c(w,u,v)
)

+ ǫ2c(w,w,v).

Thus

Fv(u+ ǫw)− Fv(u) = ǫ
(

a(w,v)

+R(c(u,w,v) + c(w,u,v))
)

+Rǫ2c(w,w,v).

Define a new variational form

ĉ(u,w,v) = c(u,w,v) + c(w,u,v). (23)

Navier-Stokes variational form

Computational Modeling Initiative 2019 31/50

Therefore

JF (u)v,w = lim
ǫ→0

ǫ−1
(

F (u+ ǫw,v)− F (u,v)
)

= a(w,v) +R ĉ(u,w,v).
(24)

Thus Newton’s method takes the form
Find w ∈ Z such that

a(w,v) +R ĉ(un,w,v) = F (un,v) ∀v ∈ Z,

Set un+1 = un −w.
(25)

Initial u0 ∈ Z + g could come from Stokes equations
satisfying the boundary conditions, u0 ∈ Z + g.

Navier-Stokes variational form

Computational Modeling Initiative 2019 32/50

Note that ĉ(u,w,v) = ĉ(w,u,v), and we find

ĉ(u,w,w) = c(u,w,w) + c(w,u,w)

= c(w,u,w) =

∫

Ω

wt(∇u)w dx.
(26)

For larger R, use continuation method increasing R

successively.

Take u0 at each step to be solution for previous R.

System (25) can be solved by iterated penalty method.

Navier-Stokes flows

Computational Modeling Initiative 2019 33/50

We give here some important examples of
Navier-Stokes flow.

The first ones are exact, but they are also the
basis for many important applications.

We begin with two exact solutions.

Then we consider ones where no analytical
form is available.

Poiseuille flow

Computational Modeling Initiative 2019 34/50

We begin with flow in a channel.

Surprisingly, solution is same for all Reynolds numbers.

Recall the notion of a two-dimensional channel Ω:

Ω =
{

(x, y) ∈ R
2 : 0 ≤ x ≤ L, 0 ≤ y ≤ 1

}

.

Assumed that flow is negligible in the third dimension
across the width of the canal.

Also recall Poiseuille flow, defined by

u(x, y) = (u(x, y), v(x, y)) = (12y(1− y), 0),

for (x, y) ∈ Ω.

Navier-Stokes exact solution

Computational Modeling Initiative 2019 35/50

Remarkably, this is also an exact solution of the
Navier-Stokes equations, independent of the Reynolds
number.

This is because v ≡ 0 and the nonlinear term vanishes:

u · ∇u = u(ux) = 0,

since u is independent of x.

This u satisfies homogeneous Dirichlet boundary
conditions on both the top and bottom of the channel.

As before, the pressure is given by p(x, y) = x.

Solution verification

Computational Modeling Initiative 2019 36/50

Then

−∆u(x, y)+u ·∇u+∇p(x, y) = −∆u(x, y)+∇p(x, y) = 0

for (x, y) ∈ Ω.

Three-dimensional flow in a pipe (cylinder) is similar and
also is named for Poiseuille.

We can think of these flows as being driven by the
non-zero pressure gradient.

Unfortunately, the Stokes cross does not generalize to
the Navier-Stokes equations.

Jeffrey-Hamel flow

Computational Modeling Initiative 2019 37/50

Exact solution of the Navier-Stokes equations in a
converging or diverging duct.

The flow is defined by

u(x, y) := ν
u(atan(y/x))

x2 + y2
x , x = (x, y) ∈ Ω

where u solves the ODE

−
d2u

dξ2
(ξ) + 4 u(ξ) + 6 u(ξ)2 = f(ξ) for ξ ∈ [0, θ],

u(0) = 0, u′(θ) = 0.

(27)

With f = C . Reynolds number related to C.

Driven cavity for Navier-Stokes

Computational Modeling Initiative 2019 38/50

Let Ω = [0, 1]2 and let Γ denote the top of the square:

Γ = {(x, 1) : 0 ≤ x ≤ 1} .

Define Dirichlet boundary conditions by

u(x, 1) = 1 on Γ, u = 0 on ∂Ω\Γ.

Resulting Navier-Stokes problem with this boundary
condition is driven cavity problem for Navier-Stokes.

Denote the solution by uR where R is Rynolds number.

The solution of the Stokes driven cavity problem is the
same as u0.

Driven cavity for Navier-Stokes: R = 50

Computational Modeling Initiative 2019 39/50

Figure 1: Driven cavity problem computed with quartics, horizontal compo-
nent only. Difference between Navier-Stokes (Re=50) and Stokes (Re=0).

Driven cavity for Navier-Stokes: R = 200

Computational Modeling Initiative 2019 40/50

Figure 2: Driven cavity problem computed with quartics, horizontal compo-
nent only. Difference between Navier-Stokes (Re=200) and Stokes (Re=0).

Driven cavity for Navier-Stokes

Computational Modeling Initiative 2019 41/50

The solution of the driven cavity problem uR is depicted
in Figure 1, for two different values of R in (1).

The discretization was done with the Scott-Vogelius
iterated penalty method using quartics.

Plotted is the horizontal componenet of the velocity
differences uR − u0.

We see a substantial change in the flow pattern as a
function of the Reynolds number R.

Sudden expansion

Computational Modeling Initiative 2019 42/50

A common test problem for Navier-Stokes is a channel
with a sudden expansion:

Ω =

{

(x, y) : −L1 ≤ x ≤ L2, |y| ≤

{

1 for x ≤ 0,

δ−1 for x ≥ 0

}

,

for some 0 < δ < 1.

The boundary conditions are specified by the function

g =











(

(1− y2), 0
)

x = −L1,
(

δ(1− δ2y2), 0
)

x = L2,

0 elsewhere.

(28)

Sudden expansion

Computational Modeling Initiative 2019 43/50

Since the flow is going from the smaller channel to the
larger one, it is necessary to take L2 >> L1 to get
reliable results.

It is easy to see that
∫

∂Ω

g · n ds = 0.

Sudden expansion: Stokes

Computational Modeling Initiative 2019 44/50

Figure 3: Sudden expansion problem computed with quartics, hori-
zontal component only. Stokes flow.

Sudden expansion: Navier-Stokes

Computational Modeling Initiative 2019 45/50

Figure 4: Sudden expansion problem computed with quartics, horizontal
component only. Difference between Navier-Stokes and Stokes (Re=0)
solutions for Re = 50. Domain is defined with L1 = 3, L2 = 10, and δ = 1

2
.

Sudden expansion

Computational Modeling Initiative 2019 46/50

The Stokes flow is symmetric in the direction orthogonal
to the direction of the channel.

This can be proved by reflecting the solution around the
centerline of the channel, and showing that the reflected
function is also a solution.

By uniqueness of Stokes flow we conclude that the
reflection must repoduce the solution.

But for Navier-Stokes flow, symmetry is not guaranteed.

It does hold for small enough Reynolds number, as
indicated in Figure 5 for R = 50.

Sudden expansion: R = 50

Computational Modeling Initiative 2019 47/50

Figure 5: Sudden expansion problem computed with quartics, hori-
zontal component only. Difference between the Navier-Stokes and
Stokes (Re=0) solutions. The domain is defined with L1 = 10,
L2 = 60, and δ = 1

4
: R = 50.

Sudden expansion: R = 100

Computational Modeling Initiative 2019 48/50

Figure 6: Sudden expansion problem computed with quartics, hori-
zontal component only. Sudden expansion problem computed with
quartics, horizontal component only. Difference between the Navier-
Stokes and Stokes (Re=0) solutions. The domain is defined with
L1 = 10, L2 = 60, and δ = 1

4
: R = 100.

Sudden expansion bifurcation

Computational Modeling Initiative 2019 49/50

Re
0

Figure 7: Idealization of the pitchfork bifurcation in the sudden-
expansion problem for the Navier-Stokes equations. The dark solid
lines indicate stable solutions of the Navier-Stokes equations as a
function of the Reynolds number (Re). The dark dashed line indi-
cates an unstable, symmetric solution of the Navier-Stokes equa-
tions. The unique solution indicated before the bifurcation is also
symmetric.

References

Computational Modeling Initiative 2019 50/50

[1] J. L. Bona, W. G. Pritchard, and L. R. Scott. A posteriori error
estimates for exact and approximate solutions of time–dependent
problems. In Seminar on Numerical Analysis and Its Applications to
Continuum Physics, Colecao ATAS 12, Sociedade Brasileira de
Matematica, pages 102–111, 1980.

[2] L.D. Landau and E.M. Lifshitz. Fluid Dynamics. Oxford: Pergammon,
1959.

[3] J. L. Lions. Quelques méthodes de résolution des problèmes aux
limites non linéaires. Paris: Dunod, 1969.

	
	The Navier-Stokes Equations
	Navier-Stokes variational form
	Navier-Stokes nonlinear form
	Properties of the nonlinear term
	Properties of the nonlinear term
	Navier-Stokes time-stepping
	Implicit time-stepping
	Navier-Stokes variational form
	Navier-Stokes variational form
	Fixed-point iteration
	Fixed-point iteration
	Stability of the exact solution
	Stability of the exact solution
	Convergence of fixed-point iteration
	Convergence of fixed-point iteration
	Convergence of fixed-point iteration
	Convergence of fixed-point iteration
	Compatibility Conditions
	Local Compatibility Conditions
	Incompressibility Condition
	Mass conservation
	Local Compatibility Conditions
	A nonlocal compatibility condition
	Nonlocal Compatibility Conditions
	Nonlocal Compatibility Conditions
	Nonlocal Compatibility Conditions
	Time-independent solvers
	Navier-Stokes variational form
	Navier-Stokes variational form
	Navier-Stokes variational form
	Navier-Stokes variational form
	Navier-Stokes flows
	Poiseuille flow
	Navier-Stokes exact solution
	Solution verification
	Jeffrey-Hamel flow
	Driven cavity for Navier-Stokes
	Driven cavity for Navier-Stokes: R=50
	Driven cavity for Navier-Stokes: R=200
	Driven cavity for Navier-Stokes
	Sudden expansion
	Sudden expansion
	Sudden expansion: Stokes
	Sudden expansion: Navier-Stokes
	Sudden expansion
	Sudden expansion: R=50
	Sudden expansion: R=100
	Sudden expansion bifurcation
	References

