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Sources of singularities
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We have seen different examples of localized
singularities

• due to non-convex boundaries
• due to point loads

for the Laplace equation

−∆u = f in Ω

u = g on ∂Ω.
(1)

Adaptive mesh refinement can approximate
localized singularities more efficiently.



Nonconvex domain
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Figure 1: Re-entrant corner of angle κ.

Principle singularity for such a domain is of the form

u(r(cos θ, sin θ)) ≈ rπ/κ sin((π/κ)θ). (2)

When κ > π (nonconvex vertex), ∇u is unbounded.



Form of singularity
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More precisely, for a re-entrant corner of angle κ,

|∇ku(r(cos θ, sin θ))| ≈ r(π/κ)−k

Here ∇ku denotes tensor of derivatives of u of order k.

Similarly, for a point load at r = 0

|∇ku(r(cos θ, sin θ))| ≈ r2−d−k

These singularities are of the form rγ−k where γ ≥ 0 is
fixed.

Now we consider appropriate meshes for approximating
such functions.



Mesh refinements for singularities
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Suppose that, in general,

|∇ku(r)| ≈ C|r− r0|−k+γ for r ∈ Ω, (3)

where ∇ku denotes tensor of partial derivatives of order
k, and |T| denotes the Frobenius norm of a tensor T.

For the L-shaped problem, we saw this holds for k = 1
and γ = 2/3.

(3) holds for all k ≥ 1 and γ = π/κ for boundary vertices
with angle κ.

For simplicity, we assume that r0 = 0 from now on.



Local error estimates
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For a non-uniform mesh,

‖u− Ihu‖2H1(Ω) =
∑

e

‖u− Ihu‖2H1(e)

≤ C
∑

e

(
hm−1
e ‖u‖Hm(e)

)2
,

(4)

where summation is over all of elements e of mesh and
he = size of e.

Since we are assuming that the derivatives of the
solution degrade in a radial fashion, let us also assume
that the mesh is refined in a radial fashion.



Optimal mesh refinements
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For each element e, let re denote its centroid.

Assume there is a monotonic mesh function µ such that
he ≈ (1/n)µ(|re|), where n is a mesh size parameter.

For example, we will consider µ(r) = rβ for β > 0.

Let |e| denote the volume of an element e.

With such a mesh and under the assumption (3), the
error expression (4) takes the form

n2−2m
∑

e

(
µ(|re|)m−1|re|−m+γ

√
|e|

)2

≈ n2−2m

∫

Ω

(
µ(|r|)m−1|r|−m+γ

)2
dr.

(5)



Optimal mesh conditions
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Taking µ(r) = rβ, the integrand in (5) simplifies to |r|p
where p = 2(β(m− 1)−m+ γ).

Such an expression is integrable in d dimensions if and
only if p > −d, that is, if

β >
m− γ − d/2

m− 1
.

If d = 2 and m = 2 (piecewise linears in 2 D),
requirement is β > 1− γ.

For the L-shaped domain, this means β > 1
3 .



Optimal mesh conditions continued
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For higher-order approximations, mesh conditions are
different.

Other corners of the L-shaped domain can also require
mesh refinement.

For these, γ = 2, and cubics (m = 4) requires β > 1
3.

In this case, β > 7/9 is required at the re-entrant corner
(for m = 4).

When γ = π/κ is sufficiently large

(comparable with m− d/2), we can take

β ≈ 0, meaning a mesh of uniform size.



Adaptivity
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We have seen that refined meshes improve
approximation substantially.

Such meshes are derived analytically based
on a priori information about the singularities
of the solution.

Possible to refine meshes automatically based
on preliminary computations using techniques
that estimate size of error for a given mesh.

Not at all obvious; requires explanation.



Error indicators
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One of the major advances of computational
mathematics in the 20th century was the development
of error indicators [4, Chapter 9].

Such indicators suggest where the computational error
is largest and thus where the mesh should be refined.

This concept was pioneered by Ivo Babuška [2],
primarily by focusing on the residual error.

Not at all obvious that the residual could indicate where
the error is large, but it is now well understood.

The subject has developed significantly in the
subsequent decades [1, 7, 9].



Residual error estimators
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Many successful error estimators are based on the
residual .

Consider the variational form

aα(v, w) =

∫

Ω

α(x)∇v(x) · ∇w(x) dx (6)

with α piecewise smooth, but not necessarily
continuous.

We will study the corresponding variational problem with
Dirichlet boundary conditions on a polyhedral domain Ω
in the n dimensions, so that V = H1

0(Ω).



Model problem
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For simplicity, take the right-hand side for the variational
problem to be a piecewise smooth function, f .

As usual, let Vh be piecewise polynomials of degree less
than k on a mesh Th, and assume that the
discontinuities of α and f fall on mesh faces (edges in
two dimensions) in Th.

That is, both α and f are smooth on each T ∈ Th.

However, we will otherwise only assume that Th is
non-degenerate [4], since we will want to allow
significant local mesh refinement.



Mesh terminology
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A family of meshes {Th} is nondegenerate if there is a
constant C < ∞ such that ∀h

ρmax(e) ≤ Cρmin(e) ∀e ∈ Th (7)

Here ρmin(e) (resp., ρmax(e)) is the radius of the largest
ball contained in e (resp., smallest ball containing e).

A mesh family is quasi-uniform if there is a constant
C < ∞ such that

h = max {ρmax(e) : e ∈ Th} ≤ Cmin {ρmin(e) : e ∈ Th}
for all h.



Degenerate meshes
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Note that any quasi-uniform family of meshes is
necessarily nondegenerate.

There are important classes of meshes that are
degenerate.

• problems with a large aspect ratio
• problems where there is a discrepancy between the

approximation needs in one direction versus others.

Significant work regarding error estimators in such an
anisotropic context has been done

However, the subsequent material will be limited to the
case of nondegenerate meshes.



Residual definition
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Let u satisfy the usual variational formulation
aα(u, v) = (f, v)L2(Ω) for all v ∈ V , and let uh ∈ Vh be the
standard Galerkin approximation.

The residual Rh ∈ V ′ is defined by

Rh(v) = aα(u− uh, v) ∀v ∈ V. (8)

Note that, by definition,

Rh(v) = 0 ∀v ∈ Vh, (9)

assuming Vh ⊂ V .

Let A denote the differential operator formally
associated with the form (6), that is, Av := −∇· (α∇v).



Residual computation
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The residual can be computed by Rh(v) =

∑

T

∫

T

(f +∇· (α∇uh))v dx+
∑

e

∫

e

[αne · ∇uh]ne
v ds =

∑

T

∫

T

(f −Auh)v dx+
∑

e

∫

e

[αne · ∇uh]ne
v ds ∀v ∈ V,

where ne denotes a unit normal to e and [φ]n denotes
the jump in φ across the face normal to n:

[φ]n(x) := lim
ǫ→0

φ(x+ ǫn)− φ(x− ǫn).

so expression above is independent of choice of normal
n on each face.



Jump terms
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There are two parts to the residual.

One is the integrable function RA defined on each
element T by

RA|T := (f +∇· (α∇uh)) |T = (f −Auh) |T , (10)

and the other is the “jump” term

RJ(v) :=
∑

e

∫

e

[αne · ∇uh]ne
v ds ∀v ∈ V. (11)

The proof of residual formula derived by integrating by
parts on each T .

Resulting boundary terms are collected in the term RJ .



Error bound
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Assuming that aα(·, ·) is coercive on H1(Ω), and
inserting v = eh in (8), we see that

1

c0
|eh|2H1(Ω) ≤ |aα(eh, eh)| = |Rh(eh)|. (12)

Therefore

‖eh‖H1(Ω) ≤ c0 sup
v∈H1

0
(Ω)

|Rh(v)|
‖v‖H1(Ω)

. (13)

The right-hand side of (13) is the H−1(Ω) norm of the
residual.

This norm is in principle computable in terms of the data
of the problem (f and α) and uh.



Error bound approximation
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But the typical approach is to estimate it using what is
known as a Scott-Zhang [10] interpolant Ih which
satisfies, for some constant c0,

‖v − Ihv‖L2(T ) ≤ c0hT |v|H1(T̂ ) (14)

for all T ∈ Th, where T̂ denotes the union of elements
that contact T , and

‖v − Ihv‖L2(e) ≤ c0h
1/2
e |v|H1(Te) (15)

for all faces e in Th, where Te denotes the union of
elements that share the face e, where he (resp. hT ) is a
measure of the size of e (resp. T ).



Interpolation estimates
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Dropping the subscript “e” on the normal n to e, we get

|Rh(v)| = |Rh(v − Ihv)|

=
∣∣∣
∑

T

∫

T

RA(v − Ihv) dx

+
∑

e

∫

e

[αn · ∇uh]n(v − Ihv) ds
∣∣∣

≤
∑

T

‖RA‖L2(T )‖v − Ihv‖L2(T )

+
∑

e

‖ [αn · ∇uh]n ‖L2(e)‖v − Ihv‖L2(e).



Residual estimate
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Thus

|Rh(v)| ≤
∑

T

‖RA‖L2(T )c0hT |v|H1(T̂ )

+
∑

e

‖ [αn · ∇uh]n ‖L2(e)c0h
1/2
e |v|H1(T̂e)

≤c′
(∑

T

‖RA‖2L2(T )h
2
T

+
∑

e

‖ [αn · ∇uh]n ‖2L2(e)he

)1/2

|v|H1(Ω),

(16)

where c′ = Cc0 for some constant C that depends only
on the maximum number of elements in T̂ for each T .



Local error indicator
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In view of (16), the local error indicator Ee is defined by

Ee(uh)2 :=
∑

T⊂Te

h2
T‖f +∇· (α∇uh)‖2L2(T )

+ he‖ [αn · ∇uh]n ‖2L2(e).

(17)

The previous inequalities can be summarized as

|Rh(v)| ≤ c′
(∑

e

Ee(uh)2
)1/2

|v|H1(Ω), (18)

which in view of (13) implies that

|eh|H1(Ω) ≤ c′c0
(∑

e

Ee(uh)2
)1/2

, (19)

where c′ is a constant only related to interpolation error.



Local error estimates and refinement
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In the previous slide, an upper bound for the global error
|u− uh|H1(Ω) was given in terms of locally defined error
estimators (17).

If the data f and α are themselves piecewise
polynomials of some degree, there is a lower bound for
the local error [4, Section 9.3]

|eh|H1(Te) ≥ c Ee(uh) (20)

where c > 0 depends only on the non-degeneracy
constant for Th.



Local error estimates and refinement
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One corollary of (20) is reverse inequality to (19),

|eh|H1(Ω) ≥
c√
2

(∑

e∈Th

Ee(uh)2
)1/2

.

A reverse inequality to (20) (a local upper bound) is not
true in general.

However, the local lower bound (20) suggests the
philosophy that

the mesh should be refined wherever

the local error indicator Ee(uh) is big.



Caveats
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Unfortunately, ....

where indicator is small

error not necessarily small.

Distant effects may pollute the error and

make error large even if

error indicator Ee(uh) is small nearby.



Other norms
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It is possible to have error estimators for other norms.

For example, the pointwise error u− uh at x can be
represented using the Green’s function

(u− uh)(x) = aα(u− uh, G
x) = aα(u− uh, G

x − v)

= Rh(G
x − v) ∀v ∈ Vh.

(21)

Thus choosing v as the Scott-Zhang interpolant of Gx

[5, page 719] leads to an error indicator of the form

E∞(uh) = max
T∈Th

(
h2
T‖f +∇· (α∇uh)‖L∞(T )

+ he‖ [αn · ∇uh]n ‖L∞(e)

)
.

(22)



Other norms

Computational Modeling Initiative 2019 28/43

It can be proved [5] that there is a constant C such that

‖u− uh‖L∞(Ω) ≤ CE∞(uh).

The error estimators in [5] apply as well to nonlinear
problems and to singular perturbation problems.

An extension to anisotropic meshes is given in [6] for
two-dimensional problems and piecewise linear
approximation.



Other goals
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Instead of attempting to estimate norms of the error, we
can estimate linear functionals of the error.

For example, the quantity of interest (C6) in the van der
Waals problem is an integral.

The strategy of goal oriented error estimation [8]
(a.k.a. dual weighted residual method [3]) is to solve
a adjoint problem to find z ∈ V such that

a∗(z, v) = M(v) ∀v ∈ V, (23)

where M is the linear functional to be optimized.



Form adjoint
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Here, the adjoint form a∗(·, ·) is defined for any bilinear
form a(·, ·) via

a∗(v, w) = a(w, v) ∀v, w ∈ V. (24)

The concept of adjoint form can also be extended [8] to
the case where a(·, ·) is defined on a pair of spaces
V ×W instead of V × V as is the usual case considered
so far.

It is also possible to extend the theory to allow the goal
functional M to be nonlinear.



It works!
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Figure 2: Adaptivity applied to the slit problem using piecewise linears and
an initial mesh of size 4 with a goal M(u) =

∫
Ω
u2 dx. The initial, unrefined

mesh is apparent in the lower-left corner of the domain.



The variational code

Computational Modeling Initiative 2019 32/43

The variational formulation translates to code:

mytol=float(sys.argv[4])

.....

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

# Define variational problem
u = Function(V)
v = TestFunction(V)
f = Expression("1.0")
J = u*u*dx
F = (inner(grad(u), grad(v)))*dx - f*v*dx

# Compute solution
solve(F == 0, u, bc, tol=mytol, M=J)



More about the adjoint form
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If a(·, ·) is symmetric, then a∗(·, ·) is the same as a(·, ·).
But it is different for the diffusion-advection form aβ(·, ·).

aβ(v, w) =

∫

Ω

∇v(x) · ∇w(x) +
(
β(x) · ∇v(x)

)
w(x) dx.

We see that, if ∇·β = 0 and Dirichlet conditions are
imposed on the boundary wherever β · n 6= 0, then

a∗β(v, w) = aβ(w, v)

=

∫

Ω

∇v(x) · ∇w(x)−
(
β(x) · ∇v(x)

)
w(x) dx

= a−β(v, w) ∀v, w ∈ V.

(25)



Using the adjoint form
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Suppose as usual that u ∈ V satisfies a(u, v) = F (v) for
all v ∈ V , that uh ∈ Vh satisfies a(uh, v) = F (v) for all
v ∈ Vh, and that Vh ⊂ V .

Then a(u− uh, v) = 0 for all v ∈ Vh, and

M(u)−M(uh) = M(u− uh) = a∗(z, u− uh)

= a(u− uh, z)

= a(u− uh, z − v)

= Rh(z − v) ∀v ∈ Vh.

(26)

Analogy with (21): instead of Green’s function Gx

we have z.



Other goals
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Difficulty: do not know z, and need to compute it.

If we use same approximation space Vh to compute zh,
then we get a false impression (take v = zh in (26)).

Need to have higher-order approximation of z than
would normally be provided via Vh.

Different approaches to achieving this have been
studied [3], including simply approximating via a globally
higher-order method.



What dolfin does
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What is done in dolfin [8] (see also [3]) is to first
compute zh, then interpolate it on patches around a
given element using a higher-degree approximation,
using the interpolant as an approximation to z.

T

Figure 3: Nearby elements are used to construct a higher-order approxi-
mation to z.



What magic dolfin does
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Approach is effective and inexpensive, but ....
if this gives higher-order accuracy, why not use it?

There may be singularities in z that make its
approximation poor.

Duality between estimating the accuracy of uh and the
approximation of z [3] can address this.

But there is a certain amount of art in goal-based error
estimation that cannot be fully justified rigorously.



What dolfin does
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In any case, the approach works as indicated in
Figure 2, where the slit problem has been revisited
using piecewise linears on an initial mesh of size 4 with
a goal M(u) =

∫
Ω u

2 dx.

The initial, unrefined mesh is apparent in the lower-left
corner of the domain.



An example

Computational Modeling Initiative 2019 39/43

Suppose that a(·, ·) is symmetric, so that a∗(·, ·) = a(·, ·),
and that M(v) = F (v).

Then z = u.

Such a situation occurs in van der Waals problem, and
we suggest it be explored further as an exercise.



Boundary layers
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Mesh refinement motivated so far by point singularities.

However, theoretical foundations of error estimation are
insensitive to nature of singularities.

Boundary layers have singularities near large segments
(or all of) domain boundary.

Recall the problem

−ǫ∆u+ u = 1 in Ω, u = 0 on ∂Ω.

Results depicted in Figure 4 for ǫ = 0.001.



Boundary layer adapted mesh
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Figure 4: Adaptivity using piecewise linears and an initial mesh of size
2 with a goal M(u) =

∫
Ω
u2 dx. Coarsest mesh elements apparent in

middle of the domain, and refinement is made all around the boundary,
with special concentration at four corners of square.



Model problem

Computational Modeling Initiative 2019 42/43

We have chosen a representation where we plot the
mesh on the contours of the solution.

It appears that the automated techniques have
accurately determined where mesh refinement was
needed.

The computations were done with piecewise linears and
a goal M(u) =

∫
Ω u

2 dx.

The remnants of the initial mesh are visible in the middle
of the domain.
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