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Systems of PDEs provide the basis for some of the most
powerful models of physical and social phenomena.

The formalism of such models allows a remarkable level
of automation of the process of simulating complex
systems.

Leveraging this potential for automation has been
developed to the greatest extent by the FEniCS Project.

However, using PDE models, and numerical methods to
solve them, involves numerous pitfalls.

We highlight many of these pitfalls and discuss ways to
circumvent them.



Well posed equations
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It is simply not possible to provide a solution to all
systems of differential equations.

Any given differential equation may be ill posed,
meaning that it does not make sense to talk about the
solution for one reason or another.

At the moment, there is no simple criterion to determine
if a system of differential equations is well posed.

Thus, it is not possible to provide software that solves all
systems of differential equations automagically.

The first step, then, is to determine if a system being
studied is well posed.



Failure modes: nonexistence
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There are several ways in which a differential equation
can fail to be well posed.

The most serious potential pitfall for a differential
equation is the lack of a solution regardless of any
boundary conditions or initial conditions.

Although it may be quite rare, such a pitfall does exist if
one starts trying to solve arbitrary systems of partial
differential equations.

We give an example of such an equation.

Fortunately, there is a general criterion that can be
applied to identify such behavior.



Failure modes: nonuniqueness
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If a physical system is supposed to have a unique state
given suitable determining conditions, then a
mathematical model having multiple solutions is
seriously flawed.

Nonlinear problems can have different solutions that are
separated from each other.

But if a PDE had a continuum of solutions, this would
probably be bad

Thus local unqiueness is a key feature that should hold
for a good model.

All nonlinear models studied here have this property.



Boundary conditions

Computational Modeling Initiative 2019 6/49

The typical cause of a system of partial differential
equations to have too many solutions is a lack of
boundary conditions.

It is not at all trivial to determine what the right number
of boundary conditions might be for an arbitrary system
of partial differential equations, and getting it wrong
could lead to either too many solutions or too few!

We present a case where both of these can be seen.



Continuous dependence

Computational Modeling Initiative 2019 7/49

Equally damaging, but often more subtle to detect, is the
lack of continuous dependence of the solution on the
data of a mathematical model, at least when the
physical problem should have this property.

Continuous dependence of the solution on the data is
verified in Sobolev spaces for many systems of PDEs.

However, not always required that a physical problem
have this property in standard Sobolev spaces.

One such “ill-posed” problem is considered
subsequently.



Well posedness
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All of these shortcomings of models can be summarized
as a lack of well posedness.

Coercivity and continuity provide a way to determine if a
particular differential equation is well-posed, but more
general techniques are also available.

Examples:

• the transport equation,
• non-Newtonian fluid models.

Moreover, some ill-posed models (e.g., the backwards
heat equation) are useful.



Numerical stability
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Equally difficult to insure, even for well-posed PDEs, is
the stability and consistency (and equivalently,
convergence) of numerical approximations.

There is no automatic way to define a discrete
approximation scheme that will always converge to the
solution of a PDE as the approximation is refined.

We discuss various pitfalls and examine in depth the
most critical.

However, we make no attempt to be exhaustive.



Ideal case
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Ultimately, it is assumed that the reader is trying to
solved a well-posed problem with a stable and
consistent numerical approximation.

The language of variational formulations of differential
equations is a powerful approach that allows a simple
proof of well-posedness in many cases.

Moreover, it leads to stable and consistent numerical
schemes via the Galerkin method.

In this way, finite element methods, spectral methods,
spectral element methods, etc., can be derived and
analyzed with respect to stability and consistency.



Right-sizing BCs
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Differential equations typically have too many solutions
of the equations themselves to specify a solution in any
reasonable sense.

A unique solution, required by most physical models, is
typically determined by boundary conditions and, for
time-dependent problems, initial conditions.

Consider the Laplace equation

−∆u = f (1)

Then for f ≡ 0 the solutions are harmonic functions, and
the real part of any complex analytic function in the
plane (in two space dimensions) is harmonic.



How many BCs?
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For any solution to (1), we can get another by adding
any harmonic function.

Thus there are way too many solutions to (1) without
any further restrictions.

This is an example of extreme nonuniqueness, where a
continuum of solutions exist.

But specifying the value of u on the boundary of some
open set Ω makes the solution of (1) unique in Ω:

−∆u = f in Ω, u = g on ∂Ω, (2)

has a unique solution, under suitable smoothness
conditions on f , g and the boundary ∂Ω.



How many BCs?

Computational Modeling Initiative 2019 13/49

There is no unique type of boundary condition that is
appropriate for a given system of differential equations.

For example, the system

−∆u = f in Ω,
∂u

∂n
= g on ∂Ω (3)

also has a solution provided that
∫

Ω

f(x) dx+

∮

∂Ω

g(s) ds = 0. (4)

For any solution u to (3), u+ c is also a solution for any
constant c, but that is the limit of nonuniquenss:

solutions modulo constants are unique.



Too many BCs?
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If some is good, then one might think more is better.

However, it is easy to see that the system of equations

−∆u =f in Ω

u = g0 on ∂Ω,
∂u

∂n
= g1 on ∂Ω

(5)

has too many boundary conditions.

Since the condition u = g0 on ∂Ω already uniquely
determines the solution u, it will only be a miracle that
∂u
∂n = g1 also holds on ∂Ω.

More precisely, there is a linear mapping A defined on
functions on ∂Ω such that (5) has a solution if and only if
g1 = Ag0 (exercise).



How many BCs?
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Similarly, the system

−∆u =f in Ω

∇u =g on ∂Ω
(6)

is over-specified.

It is closely related to (5) if we observe that the second
equation says that the tangential derivative of u is equal
to that of g0.

The over-determined boundary value problem (6)
appears in a non-local compatibility condition for the
Navier-Stokes equations.



Numerical Stability
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The simplest differential equation to solve is an ordinary
differential equation

du

dt
= f(u, t) (7)

with initial value
u(0) = u0 (8)

where we solve on some interval [0, T ].
The definition of the derivative as a limit of difference
quotients suggests a method of discretization:

du

dt
(t) ≈ u(t+∆t)− u(t)

∆t
(9)

where ∆t is a small positive parameter.



Time-stepping
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This suggests an algorithm for generating a sequence of
values un ≈ u(n∆t) given by (for example)

un = un−1 +∆tf(un, tn) (10)

where tn = n∆t.

The algorithm (10) is called the implicit Euler method,
and it can be shown that it generates a sequence with
the property that

|u(tn)− un| ≤ Cf,T∆t ∀tn ≤ T (11)

provided that we solve the implicit equation (10) for un
exactly and we compute with exact arithmetic.



Numerical error
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The issue of solving the nonlinear equation at each step
is important but not a show-stopper.

However, requirement of using finite-precision arithmetic
means that best error behavior we could expect is

|u(tn)− un| ≤ Cf,T∆t+ nǫ ∀tn ≤ T (12)

where ǫ measures the precision error that occurs at
each step in (10).

Useful to re-write (12) using the fact that n = tn/∆t as

|u(tn)− un| ≤ Cf,T∆t+
tnǫ

∆t
. (13)



Higher order schemes
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(13) shows that the error reaches a minimum and
cannot be reduced by reducing ∆t.

One way to increase the accuracy in (12) is to use a
more accurate approximation of the derivative than (9),
such as given by the backwards differentiaion formulæ
(BDF)

du

dt
(t) ≈ 1

∆t

k∑

i=0

aiun−i (14)

where the coefficients {ai : i = 0, . . . k} are chosen so
that (14) is exact for polynomials of degree k.
The BDF for k = 1 is the same as implicit Euler.



Higher order schemes
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Using the approximation (14), we get an algorithm of the
form

k∑

i=0

aiun−i = ∆tf(un, tn) (15)

which can be solved for un provided a0 6= 0.
In this case, the final error estimate would be

|u(tn)− un| ≤ Cf,T,k∆tk +
tnǫ

∆t
. (16)

Ultimate accuracy is still limited, but smaller absolute
errors (with larger ∆t) can be achieved with higher
values of k.



Round-off error
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For example, suppose that

• ǫ = 10−6 (which corresponds to single precision on a
32-bit machine)

• T = 1 and
• (for the sake of argument) Cf,T,k = 1.

Then with implicit Euler (k = 1) the smallest error we
can get is 10−3 with ∆t = 10−3.

But with k = 2 we get an error of size 10−4 with
∆t = 10−2.
Not only is error smaller but less work needs to be done
to achieve it.



BDF methods
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In practice, the constant Cf,T,k would depend on k and
the exact error behavior would likely be different in
detail, but the general conclusion that a higher-order
scheme may be better still holds.

The BDF methods for k = 2 and 3 are extremely popular
schemes.

We see that higher-order schemes can lead to more
managible errors and potentially less work for the same
level of accuracy.

Thus it seems natural to ask whether there are limits to
choosing the order to be arbitrarily high.



BDF methods

Computational Modeling Initiative 2019 23/49

Unfortunately, not all of the BDF schemes are viable.

Beyond degree six, they become unconditionally
unstable.

Let us examine the question of stability via a simple
experiment.

Suppose that, after some time T0, it happens that
f(u, t) = 0 for t ≥ T0.

Then the solution u remains constant after T0, since
du
dt ≡ 0.



Numerical instability
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What happens in the algorithm (15) is that we have

k∑

i=0

aiun−i = 0 (17)

for n ≥ T0/∆t.

But, this does not necessarily imply that un would tend
to a constant.

Let us examine what the solutions of (17) could look
like.

Consider the sequence un := ξ−n for some number ξ.



Root condition
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Plugging into (17) we find

0 =
k∑

i=0

aiξ
−n+i = ξ−n

k∑

i=0

aiξ
i (18)

If we define the polynomial pk by

pk(ξ) =
k∑

i=0

aiξ
i (19)

we see that we have a null solution to (17) if and only if ξ
is a root of pk.



Numerical Stability
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If there is a root ξ of pk where |ξ| < 1 then we get
solutions to (17) which grow like

un = ξ−n =

(
1

ξ

)tn/∆t

. (20)

Not only does this blow up exponentially, the exponential
rate goes to infinity as ∆t → 0.

This clearly spells disaster.

On the other hand, if |ξ| > 1, then the solution (20) goes
rapidly to zero, and more rapidly as ∆t → 0.



Numerical Stability
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For roots ξ with |ξ| = 1 the situation is more
complicated, and ξ = 1 is always a root because the
sum of the coefficients ai is always zero.

Instability occurs if there is a multiple root on the unit
circle |ξ| = 1.

In general, one must consider all complex (as well as
real) roots ξ.

Given this simple definition of the general case of BDF, it
is hard to imagine what could go wrong regarding
stability.



Numerical Stability
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Unfortunately, the condition that |ξ| ≥ 1 for roots of
pk(ξ) = 0 restricts k to be six or less for the BDF
formulæ.

In particular, p7(0.0735± ι 0.9755) = 0, and the complex
modulus |0.0735± ι 0.9755| ≈ 0.9783 < 1.

The inf-sup condition for mixed methods is another type
of numerical stability condition that effects the choice of
finite element spaces suitable for fluid flow problems.



BDF roots
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Figure 1: Roots of polynomials (19) with the smallest modulus are plotted
for degrees k = 5 (triangle), k = 6 (asterisk), and k = 7 (plus). The solid
line indicates the unit circle in the complex plane.



The right box
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The variational formulation of PDEs is not only a
convenient way to describe a model, it also provides a
way to ensure that a model is well posed.

One of the critical ingredients in the variational
formulation is the space of functions in which one seeks
the solution.

We can see that this is just the right size to fit the needs
of most modeling problems.

We can think of the space of functions in the variational
formulation of PDEs as a box in which we look for a
solution.



The right box
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If the box is too big,

• we might get spurious solutions.

If the box is too small,

• then we may get no solutions.

So we need a box that is just right to have the
right number of solutions.



A box too small
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A box too small is easy to describe.

The space Cm of functions whose derivatives up
through order m are continuous is natural if the number
of derivatives in the PDE is less than or equal to m.

Then all derivatives are classically defined, and the
equation itself makes sense as a equation among
numbers at all points in the model domain.

However, many problems do not fit into this box.

For example, when the geometry of the boundary of a
domain in two-dimensions has an interior angle that is
greater than π (and hence the domain is not convex), a
singularity arises even for the Laplace equation.



A box too big
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A box too big can be described already in
one-dimension.

Cantor “middle-thirds” function defined as follows on
[0, 1]:

C(x) :=





1
2

1
3 ≤ x < 2

3
1
2C(3x) 0 ≤ x < 1

3
1
2(1 + C(3x− 2)) 2

3 ≤ x < 1

(21)

Recursive nature of definition means that it is easily
computed.

Any programming language with recursion is suitable.



A box too big
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By definition, the derivative of C is zero at almost every
point (a notion made precise by Lebesgue measure
theory [2].)

This is problematic, since we expect solutions of linear
PDEs to be unique in most cases.

But the simplest equation u′ = f would have u+ aC as a
solution for any given solution u, for any real number a.

This would violate our principle that solutions should be
isolated.



The Cantor function
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However, derivative of C not a Lebesgue integrable function.

Figure 2: Cantor function (21).



The right box
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Thus the choice of spaces V of functions
whose derivatives are Lebesgue integrable
functions provides just the right size box in the
variational formulation.

These spaces are the workhorses of

the variational approach to PDEs.

These are called Sobolev spaces, and they

are reviewed at the end of the notes.



Local Solvability
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An equation such as ∆u = f presumes that it is possible
to specify u, at least locally, by giving a combination of
its derivatives (u,11 + u,22 + · · · ).
What is it that makes this possible?

That is, should we always assume that an arbitrary
combination of derivatives can be specified without any
internal consistency required?

It is easy to see one kind of partial differential equation
that would make little sense:

∂2u

∂x ∂y
= − ∂2u

∂y ∂x
, (22)



Lewy equation
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Since we know that for smooth functions, the order of
cross derivatives does not matter, we see that (22) has
an internal contradiction.

Thus (22) corresponds to an equation of the form t = −t
and has only the zero solution.

There are some differential equations that simply have
no solution even locally, independent of any boundary
conditions.
A famous example is due to Hans Lewy:



Lewy equation
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Lewy’s equation is

∂u

∂x1
− ι

∂u

∂x2
+ 2(ιx1 − x2)

∂u

∂x3
= f, (23)

where ι is the imaginary unit, ι =
√
−1.

Then for most infinitely differentiable functions f there is
no solution of this equation in any open set in
three-space.

Note that this has nothing to do with boundary
conditions, just with satisfying the differential equation.

This equation is a complex equation (ι =
√
−1) but it

can be written as a system of two real equations for the
real and imaginary parts of u respectively.



Multi-index notation
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There is a general condition that must be satisfied in
order that linear partial differential equations have a
local solution.

This condition is known as the local solvability
condition.

To explain the condition, we need to introduce some
notation.

Let D = −ι
(
∂
∂x1

, . . . ,
∂
∂xj

, . . . , ∂∂xd

)
stand for the vector of

complex partial derivatives, and
let α = (α1, . . . , αj, . . . , αd) be a multi-index (i.e., a
vector of non-negative integers), so that



More index notation
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Dαu := (−ι)|α|
∂α1

∂xα1

1

· · · ∂
αj

∂x
αj

j

· · · ∂
αd

∂xαd

d

u , (24)

where |α| := α1 + · · ·αj + · · ·αd.

For any d-dimensional variable ξ, we can form the
monomial

ξα := ξ1
α1 · · · ξjαj · · · ξdαd (25)

so that Dα is the same as ξα with the substitution
ξj = −ι∂/∂xj.

In this notation, the Lewy equation (23) becomes

−ιD1u+D2u− 2(x1 + ιx2)D3u = f. (26)



More index notation
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The reason for the factor −ι in the definition of D is so
that the Fourier transform of D works out nicely; if û
denotes the Fourier transform of u, then

D̂αu(ξ) = ξαû(ξ).

Suppose that we want to consider linear partial
differential equations of the form

P (x, D)u =
∑

|α|≤m

aα(x)D
αu = f (27)

for some f .



Symbol of a PDO
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We can form the corresponding symbol P (x, ξ) of the
linear partial differential operator

P (x, ξ) =
∑

|α|≤m

aα(x)ξ
α , (28)

Define the principal part of the symbol, Pm, by

Pm(x, ξ) =
∑

|α|=m

aα(x)ξ
α , (29)

and correspondingly its complex conjugate Pm by

Pm(x, ξ) =
∑

|α|=m

aα(x)ξ
α . (30)



Symbol of a PDO
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Also define the following partial derivatives of the
principal symbol:

P (j)
m (x, ξ) :=

∂Pm

∂ξj
(x, ξ) , Pm,j(x, ξ) :=

∂Pm

∂xj
(x, ξ) (31)

and define their complex conjugates analogously.

Finally, define the commutator C2m−1(x, ξ) of the
principal part of the symbol via

C2m−1(x, ξ) = ι
d∑

j=1

(
P (j)
m (x, ξ)Pm,j(x, ξ)

−P
(j)
m (x, ξ)Pm,j(x, ξ)

)
.

(32)



No solutions
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The commutator is a polynomial of degree 2m− 1 in ξ
with real coefficients.

Finally, the local solvability theorem.

Theorem 0.1 If the differential equation (27) has a
solution in a set Ω for every smooth f that vanishes near
the boundary of Ω, then

C2m−1(x, ξ) = 0 for all ξ and all x ∈ Ω

such that Pm(x, ξ) = 0.
(33)

Meaning: if (33) does not hold, there are no (even local)
solutions.



No solutions
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Here, notion of “solution” is very weak; need not be a
smooth solution.

Thus the result provides a very stringent condition on
the symbol in order to expect any sort of solution at all.

For a complete description of this and other examples
see [3]; see [1] for more recent results and references.

The most striking feature of the local solvability
condition (33) is that it is a “closed” condition.

Otherwise said, “non-solvability” is an open condition:

if C2m−1(x, ξ) 6= 0 then small perturbations

would not be expected to make it vanish.



No solutions

Computational Modeling Initiative 2019 47/49

Moreover, even if (33) holds for one set of coefficients
aα, it may fail to hold for a small perturbation.

Finally, we will be interested in nonlinear partial
differential equations; if these have a solution, then the
solution can be viewed as solutions to linear partial
differential equations with appropriate coefficients
(which depend on the particular solution).



No solutions
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Despite the pessimism implied by the local solvability
condition (33), we will see that there are indeed broad
classes of nonlinear partial differential equations which
can be proved to have solutions.

But this should not be taken for granted in general.

In proposing a new model for a new phenomenon,

the first question to ask is whether it

makes sense at this most fundamental level.
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