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If the boundary ∂Ω of a domain Ω is curved, it is often
necessary to approximate it in some way.

For simplicity, we will consider the Laplace equation

−∆u = f in Ω

with homogeneous Diriclet boundary conditions

u = 0 on ∂Ω.

Such boundary conditions easy to satisfy on polygonal
boundaries with piecewise polynomials.

But impossible for curved boundaries.



Curved boundaries

Computational Modeling Initiative 2019 3/36

There are various ways in which this can be addressed:

• interpolate the boundary conditions [7] (a collocation
approach)

• modify the polynomials via a change of coordinates
(isoparametric elements)

• incorporate the boundary conditions into the
variational form (Nitsche’s method).

The name isoparametric element was coined by Bruce
Irons1 in part as a play on words, assuming that the
audience was familiar with isoperimetric inequalities.

1Bruce Irons (1924—1983) is known for many concepts in finite element analysis, in-
cluding the Patch Test for nonconforming elements [4] and frontal solvers, among others.
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There are two, interconnected issues related to
geometry approximation.

• One is to represent the boundary values accurately.
• Other is to compute required quadrature related to

elements with curved sides.

Isoparametric method deals with this together, but
requires complex technology to deal with mappings.

Nitsche’s method addresses boundary conditions but
not quadrature on curved elements.

However, a modification [2] of Nitsche’s method solves
this problem.
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Method of Nitsche for polygonal domain:

−∆u = 2π2(sin πx)(sin πy) in Ω = [0, 1]2, u = 0 on ∂Ω.

poly. order mesh no. γ L2 error
1 32 10 2.09e-03
2 8 10 5.16e-04
4 8 10 1.77e-06
4 128 10 4.96e-12
8 16 10 1.68e-11

16 8 10 2.14e-08
Table 1: L2 errors for Nitsche’s method: effect of varying polynomial
order and mesh size for fixed γ = 10. Here we take h = N−1 where
N is the mesh number.
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Allows use of functions that do not satisfy Dirichlet
boundary conditions to approximate solutions which do
satisfy Dirichlet boundary conditions. Define

aγ(u, v) =

∫

Ω

∇u · ∇v dx+ γh−1

∮

∂Ω

uv ds

−

∮

∂Ω

∂u

∂n
v ds−

∮

∂Ω

∂v

∂n
u ds,

(1)

where γ > 0 is fixed parameter, h is mesh size [6, 8].

Solution to Laplace’s equation satisfies u ∈ H1
0(Ω) and

aγ(u, v) = (f, v)L2 ∀v ∈ H1
0(Ω). (2)
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Reason is that all boundary terms vanish, and

aγ(u, v) = a(u, v) for all u, v ∈ H1
0(Ω)

where a(·, ·) is usual bilinear form for Laplace operator:

a(u, v) =

∫

Ω

∇u · ∇v dx.

But more generally for all v ∈ H1(Ω),
∫

Ω

fv dx =

∫

Ω

(−∆u)v dx = a(u, v)−

∮

∂Ω

v
∂u

∂n
ds

= aγ(u, v),

(3)

since u = 0 on ∂Ω.
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Thus if u solves (2), then it also satisfies u ∈ H1
0(Ω) and

aγ(u, v) = (f, v)L2 ∀v ∈ H1(Ω). (4)

Now consider the discrete problem

find uh ∈ Vh such that aγ(uh, v) = (f, v)L2 ∀v ∈ Vh,

(5)
where Vh ⊂ H1(Ω) not required to be subset of H1

0(Ω).

Nitsche’s method produces results of same quality as
are obtained with specifying Dirichlet conditions
explicitly, as indicated in Table 1.
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However, for particular values of γ, behavior is
suboptimal, as indicated in Table 2. Nitsche’s method
guaranteed to work if γ sufficiently large.

poly. order mesh no. γ L2 error
1 8 100 3.23e-02
1 8 10 3.10e-02
1 8 2 2.76e-02
1 8 1.5 3.93e-02
1 8 1.1 6.00e-02
1 8 1.0 1.80e-01
1 32 1.0 1.81e-01

Table 2: L2 errors for Nitsche’s method: effect of varying γ. For γ too small,
the accuracy is limited.
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Now let us analyze Nitsche’s method.

As a consequence of (4) and (5), we have

aγ(u− uh, v) = 0 ∀v ∈ Vh. (6)

Nitsche’s method is of interest when Vh 6⊂ H1
0(Ω), for

otherwise we could use the usual formulation.

But the bilinear form aγ(v, v) is not defined for general
v ∈ H1(Ω).

For example, take Ω = [0, 1]2 and v(x, y) = 1 + x2/3 for
(x, y) ∈ Ω.



Analyzing Nitsche some more

Computational Modeling Initiative 2019 11/36

Then
v,x(x, y) =

2
3x

−1/3 for all x, y ∈ [0, 1]2.

Thus, v,x is square integrable on Ω, and since v,y = 0,

|∇v| is square integrable on Ω. So v ∈ H1(Ω).

But, v,x(x, y) → ∞ as x → 0 for all y ∈ [0, 1].

In particular, this means that ∂v
∂n = ∞ on the part of the

boundary {(0, y) : y ∈ [0, 1]}.

Therefore aγ(v, v) = ∞.

Thus we need a new theory to explain the behavior of
Nitsche’s method.
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Since aγ(·, ·) not continuous on H1(Ω), cannot use
standard approach to analyze behavior of Nitsche’s
method (5).

Or at least we cannot use the standard norms.

Instead we define

||| v ||| =
(

a(v, v) + h

∮

∂Ω

∣

∣

∣

∂v

∂n

∣

∣

∣

2

ds+ h−1

∮

∂Ω

v2 ds
)1/2

. (7)

Philosophy of this norm is that it

• penalizes departure from Dirichlet boundary
condition

• minimizes impact of normal derivative on boundary.
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Correspondingly, we define V to be the subset of H1(Ω)
consisting of functions for which this norm is finite.

It is easy to see that this norm matches the different
parts of the Nitsche bilinear form, so that

|aγ(v, w)| ≤ Cγ||| v ||| |||w ||| ∀v, w ∈ V. (8)

One can show [8] that

||| v ||| ≤ Cγh
−1‖v‖L2(Ω) ∀v ∈ Vh, (9)

for any space Vh of piecewise polynomials on a
reasonable mesh.
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There exist γ0 > 0 and α > 0 such that

α||| v |||2 ≤ aγ(v, v) ∀v ∈ Vh, γ ≥ γ0. (10)

Assume that solution u is sufficiently smooth that
||| u ||| < ∞. In this case, one can prove [8] that

||| u− uh ||| ≤
(

1 +
Cγ

α

)

inf
v∈Vh

||| u− v |||L2(Ω)

≤ C ′hk‖u‖Hk+1(Ω)

(11)

using piecewise polynomials of degree k, and so

‖uh‖L2(∂Ω) ≤ Chk+1/2‖u‖Hk+1(Ω),

so Dirichlet boundary conditions closely approximated.
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When boundary is not polygonal, for example, a circle,
an error related to approximating ∂Ω must be made
when using piecewise polynomials to approximate the
solution of a PDE boundary-value problem.

The simplest approach is to approximate the boundary
∂Ω by a simplicial surface (in two dimensions, polygonal
curve), constructing approximate domain Ωh.

If the domain Ω is not convex, then the approximate
domain Ωh may not be contained inside Ω.
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Consider Nitsche (1) to solve Poisson’s equation with
f = 4 on unit circle, with Dirichlet boundary conditions.

The exact solution is

u(x, y) = 1− x2 − y2. (12)

To deal with the curved boundary, we use the mshr
system which includes a circle as a built-in domain type.

What mshr does is to approximate the circle by a
polygon, as seen on the left side of Figure 1.
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Figure 1: Using mshr to generate a mesh for a disc with piecewise lin-
ear approximation of the solution (12). The parameter γ = 10 in Nitche’s
method. (left) Coarse mesh generated by using the meshsize parameter
equal to 1. Values of the solution uh are plotted. (right) Finer mesh gener-
ated by using meshsize parameter equal to 5. Values of the error u − uh
are plotted.
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Instructing mshr to use a finer mesh produces an
approximation that is uniformly small, as seen on the
right side of Figure 1, where the error only is plotted.

The polygonal boundary approximation is a piecewise
linear approximation of ∂Ω, and we see that using
piecewise linear approximation inside the approximate
domain can be effective.

However, we might want more accuracy, and it is natural
to consider using piecewise quadratic approximation
inside the approximate domain.



More accuracy

Computational Modeling Initiative 2019 19/36

Thus we examine the use of piecewise quadratic
approximation on a polygonal domain approximating the
circle in Figure 2.

We might have expected the error using quadratics for
our test problem, whose solution is given in (12), would
be essentially zero, since the exact solution is itself a
quadratic polynomial.

However, there is a significant geometric error due to
the polygonal approximation of the domain, as shown
on the left side of Figure 2.
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Using an even finer mesh as shown on the right side of
Figure 2 indicates that the error is concentrated in a
boundary layer around the polygonal boundary
approximation.

In the computations for the right side of Figure 2 we
specified the segments parameter in the Circle
function to be 18, instead of using the default value 32
as in all other computations.

The corresponding code for this is

domain = Circle(dolfin.Point(0.0, 0.0),1.0,segments)
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Figure 2: Using mshr to generate a mesh for a disc with piecewise
quadratic approximation of the solution (12). Values of the error u − uh
are plotted. The parameter γ = 10 in Nitche’s method. (left) Same mesh
as used on the right-hand side of Figure 1. Mesh generated by using
meshsize parameter equal to 5. (right) Even more refined mesh. Mesh
generated by using meshsize parameter equal to 10 and segments pa-
rameter set to 18.



Curved domains

Computational Modeling Initiative 2019 22/36

polynomial degree meshsize L2 error segments
1 1 5.11e-02 default
2 1 1.14e-02 default
1 5 2.88e-02 default
2 5 1.16e-02 default
1 10 1.55e-02 default
2 10 1.16e-02 default
3 10 1.16e-02 default
2 10 3.69e-02 18
2 10 9.17e-03 36
2 10 2.27e-03 72

Table 3: Geometric error as a function of mesh size and polynomial degree
for the Laplace problem whose solution is given in (12). The parameter
γ = 10 in Nitche’s method. The default value for segments in mshr is 32.
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Table 3 shows reducing mesh size or increasing
polynomial degree, reduces L2 error much.

However, increasing number of segments in
approximation of circle decreases error as desired.

Limit on accuracy due to geometry approximation
known for some time [1].

Order of accuracy for quadratics and higher-order
polynomials is restricted, essentially because the
geometry approximation is piecewise linear.

Exact solution (12) is quadratic, but finite element
approximation with quadratics does not match it.
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Let us examine more closely the accuracy limits related
to polygonal approximation of the boundary.

Continue with circle as test domain Ω, but we choose a
higher-order polynomial manufactured solution.

Using the method of manufactured solutions, we take

u(x, y) = 1− (x2 + y2)3 and f(x, y) = 36(x2 + y2)2. (13)

We start with the standard approximation in which we
pose Diriclet boundary conditions on ∂Ωh [5].

Computational results are listed in Table 4(a).
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(a)

k M L2 error H1 error
1 16 2.47e-02 5.45e-01
2 16 5.62e-03 5.45e-02
3 16 5.53e-03 3.82e-02

(b)

k M γ L2 error H1 error
1 16 20 2.40e-02 5.42e-01
2 16 20 5.56e-03 3.94e-02
3 16 20 5.51e-03 2.97e-02

Table 4: Errors in L2(Ω) and H1(Ω) as a function of the meshsize, de-
noted by M , for the polygonal approximation for test problem whose exact
solution is given by (13). The number of segments was chosen to be 5
times the meshsize in all cases. In (a), the standard finite element method
was used with uh = 0 on ∂Ωh. In (b), Nitsche’s method was used on Ωh.
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Using Nitsche’s method gives comparable results, even
slightly better, as indicated in Table 4(b).

But in both cases, using piecewise cubics provides
minimal improvement over piecewise quadratics.

To get higher-accuracy, something new has to be done.

We explain one such approach.

But first we look in more detail at the effect of the
parameter γ in Nitsche’s method.

Consider Nitsche’s method as applied in the previous
section, but with a variety of values of γ.
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In particular, fix meshsize = 16, seqments = 80, and
k = 3 (piecewise cubics).

Errors depicted in Figure 3 for γ = 11 and γ = 12.

Errors on left of Figure 3, with γ = 11, are a hundred
times larger than on right, where γ = 12.

Values of corresponding norms are given in Table 5.

Error with γ = 11 very localized near part of boundary.

Computations for γ this small are spurious.

Errors very sensitive to exact value of γ, as in Table 5.
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Figure 3: Solution using Nitsche’s method with meshsize = 16, seqments
= 80, k = 3 (piecewise cubics), for the test problem whose exact solution
is given by (13), with (left) γ = 11 and (right) γ = 12. The L2 and H1 errors
are given for these values of γ and others in Table 5.
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γ L2 error H1 error
10.9 5.51e-03 6.24e-02
10.99 5.77e-03 3.61e-01
11.00 2.03e-01 4.25e+01
11.01 5.75e-03 3.59e-01
11.1 5.50e-03 4.88e-02
12.0 5.50e-03 2.92e-02
20.0 5.51e-03 2.97e-02
40.0 5.52e-03 3.35e-02
100 5.52e-03 3.62e-02

Table 5: Errors in L2(Ω) and H1(Ω) as a function of γ. Computed using
Nitsche’s method with meshsize = 16, seqments = 80, k = 3 (piecewise
cubics). The spatial error distributions for the cases γ = 11 and γ = 12 are
visualized in Figure 3.
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The method [2] of Bramble-Dupont-Thomée (BDT)
achieves high-order accuracy by modifying Nitsche’s
method [6] applied on Ωh using the bilinear form

N1,h(u, v) = ah(u, v)−

∮

∂Ωh

∂u

∂n
v ds

−

∮

∂Ωh

(

u+ δ
∂u

∂n

)(∂v

∂n
− γh−1v

)

ds

(14)

is introduced (if δ were 0, this would be Nitsche’s
method on Ωh). Here, n denotes the outward-directed
normal to ∂Ωh and

δ(x) = min {s > 0 : x+ sn ∈ ∂Ω} .
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Corrections of arbitrary order, involving terms δℓ ∂ℓu
∂nℓ for

ℓ > 1 are studied in [2].

Define W k
h to be the set of piecewise polynomials of

degree k on the mesh Th that have no restriction on ∂Ωh.

It is shown in [2] that the solution u∗h ∈ W k
h of

N1,h(u
∗
h, v) =

∫

Ωh

fv dx for all v ∈ W k
h (15)

satisfies
||| u− u∗h ||| ≤ Chk‖u‖Hk+1(Ω) + Ch7/2‖u‖W 2

∞
(Ω),

where ||| v ||| is defined in (7).
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Consider the case where Ω is the unit circle. We have

x+ δ(x)n ∈ ∂Ω for x ∈ ∂Ωh.

We can write x = (x · n)n+ (x · t)t, and
(x · t)2 = |x|2 − (x · n)2. Since |x+ δ(x)n| = 1, we have

1 = (x ·t)2+(x ·n+δ(x))2 = |x|2−(x ·n)2+((x ·n+δ(x))2.

Then
δ(x) =

√

1− |x|2 + (x · n)2 − x · n .

Note that for x ∈ ∂Ωh, |x| ≤ 1.

Thus δ(x) ≥ 0.



An example

Computational Modeling Initiative 2019 33/36

Expression for δ in dolfin:

x = SpatialCoordinate(mesh)
a = inner(grad(u),grad(v))*dx -
(inner(n,grad(u)))*v*ds \
-(u+(sqrt(1-inner(x,x)+inner(n,x)*inner(n,x)) \
-inner(n,x))*inner(n,grad(u)))* \
((inner(n,grad(v)))-(gamma/h)*v)*ds

Computational experiments are summarized in Table 6
for Poisson’s equation.
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Accuracy in L2 (resp., H1) improves as k increases for
k ≤ 3 (resp., k ≤ 4) but results for k = 4, 5 essentially
same as for k = 3 (resp., for k = 5 are essentially the
same as for k = 4).

We see that a one-line change to Nitsche’s method
makes a very significant change in accuracy.

The BDT method has been developed and applied in
many ways [3].
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k meshsize γ L2 error H1 error segments hmax
1 32 100 6.39e-03 2.77e-01 160 6.88e-02
1 64 100 1.58e-03 1.37e-01 320 3.53e-02
2 32 100 4.77e-05 7.17e-03 160 6.88e-02
2 64 100 5.91e-06 1.79e-03 320 3.53e-02
3 32 100 5.81e-07 9.23e-05 160 6.88e-02
3 64 100 3.57e-08 1.15e-05 320 3.53e-02
4 32 100 5.80e-07 5.90e-06 160 6.88e-02
4 64 100 3.63e-08 5.22e-07 320 3.53e-02
5 32 100 5.80e-07 5.77e-06 160 6.88e-02
5 64 100 3.62e-08 5.12e-07 320 3.53e-02

Table 6: Errors in L2(Ω) and H1(Ω) as a function of mesh size (hmax) for
the the BDT approximation for various polynomial degrees. Key: k is the
polynomial degree, meshsize and segments (the number of boundary
edges) are input parameters to the mshr function circle used to gener-
ate the mesh, γ is the parameter used in Nitsche’s method, and hmax is
the maximum mesh size for the mesh that mshr generates.
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