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Solving PDE’s with FEniCS

Laplace and Poisson

Chapters 1–7

Introduction to

Automated Modeling

with FEniCS

by L. Ridgway Scott



PDEs and the FEM
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Partial differential equations (PDEs) are used to model
everything.

Finite element method (FEM) solves general PDEs in
complex geometry.



Variational formulations
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Finite element method based on variational formulation
of partial differential equations (PDEs).

The variational formulation provides three things:

• Language to define PDEs for compilation into
executable code

• Foundation for theory of PDEs that allows one to
know whether or not a given model is well posed

• Framework (Galerkin) for numerical approximation

We explain first two via a simple example, Laplace’s
equation.

Subsequently, a large variety of problems will be shown
to fit into this framework.



PDEs are difficult
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PDEs are difficult. They faithfully represent reality.

Singularities occur when you least expect them.

FEM ideally suited to simulate such behavior.



Laplace equation
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Define a function u in a domain Ω ⊂ R
d by

−∆u = f in Ω (1)

together with boundary conditions

u = 0 on Γ ⊂ ∂Ω (Dirichlet)
∂u

∂n
= 0 on ∂Ω\Γ (Neumann)

(2)

where ∂u
∂n denotes the derivative of u in the direction

normal to the boundary, ∂Ω (∂u∂n = n · ∇u.)

This is known variously as Poisson’s equation
or Laplace’s equation (especially when f ≡ 0).



Laplace applications
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This equation forms the basis of a remarkable number
of physical models.

It serves as a basic equation for diffusion, elasticity,
electrostatics, gravitation, and many more domains.

In potential flow, the gradient of u is the velocity of
incompressible, inviscid, irrotational fluid flow.

• The boundary ∂Ω is the surface of an obstacle
moving in the flow, and one solves the equation on
the exterior of Ω.



The right box for solutions
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1C H
functions

Cantor
2

Different possible spaces in which to look for a solution.

• One is too big, so that spurious solutions abound, as
described in Section 27.3.

• One is too small, so that many physically relevant
solutions do not exist in that space,

• But Sobolev spaces are just right.



Solution space
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Right place to look for solution of such an equation is a
Sobolev space denoted H1(Ω) defined by

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d

}
,

where L2(Ω) means functions square integrable on Ω:

‖v‖L2(Ω) =
(∫

Ω

v(x)2 dx
)1/2

< ∞,

L2(Ω)d means d copies of L2(Ω) (Cartesian product).

There is a natural inner-product on L2(Ω) defined by

(v, w)L2(Ω) =

∫

Ω

v(x)w(x) dx,



Functions spaces
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Inner-product and associated norm on H1(Ω) defined by

(v, w)H1(Ω) = (v, w)L2(Ω) +

∫

Ω

∇v(x) · ∇w(x) dx

‖v‖H1(Ω) =
√
(v, v)H1(Ω)

For a vector-valued function w, e.g., w = ∇v, we define

‖w‖L2(Ω) = ‖ |w| ‖L2(Ω) =
(∫

Ω

|w(x)|2 dx
)1/2

,

where |ξ| denotes Euclidean norm of vector ξ ∈ R
d, and

(v,w)L2(Ω) =

∫

Ω

v(x) ·w(x) dx.



Domain for Poisson’s Equation
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(a)

Ω

(b)

Figure 3: (a) Domain Ω with Γ indicated in red. (b) Triangulation of Ω.

Now consider equation (1) with boundary conditions (2).

Assume Γ has nonzero measure (length or area, or
even volume, depending on dimension).

Later, we will return to the case when Γ is empty, the
pure Neumann case.

Typical Ω shown in Figure 3, with Γ shown in red.



Boundary condtions for Poisson’s Equation
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To formulate the variational equivalent of (1) with
boundary conditions (2), we define a variational space
that incorporates the essential, i.e., Dirichlet, part of the
boundary conditions in (2):

V :=
{
v ∈ H1(Ω) : v|Γ = 0

}
. (3)

See Table 1 for an explanation of the various names
used to describe different boundary conditions.

generic name example honorific name
essential u = 0 Dirichlet
natural ∂u

∂n
= 0 Neumann

Table 1: Nomenclature for different types of boundary conditions.



Variational Formulation of Poisson’s Equation
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Bilinear form for variational problem determined by
(1) multiplying equation by a nice function v,
(2) integrating over Ω and then
(3) integrating by parts:

(f, v)L2(Ω) =

∫

Ω

(−∆u)v dx

=

∫

Ω

∇u · ∇v dx−
∮

∂Ω

v
∂u

∂n
ds

=

∫

Ω

∇u · ∇v dx := a(u, v).

(4)

The boundary term in (4) vanishes for v ∈ V because
either v or ∂u

∂n is zero on any part of the boundary.



Integration by parts

Computational Modeling Initiative 2019 13/164

The integration-by-parts formula derives from the
divergence theorem

∫

Ω

∇·w(x) dx =

∮

∂Ω

w(s) · n(s) ds

applied to w = v∇u, together with ∂u
∂n = (∇u) · n and

∆u = ∇· (∇u) (n is the outward-directed normal to ∂Ω).
More precisely, we observe that

∇· (v∇u) =
d∑

i=1

(
(v∇u)i

)
,i
=

d∑

i=1

(v u,i),i

=
d∑

i=1

v,iu,i + v u,ii = ∇v · ∇u+ v∆u.



Integration by parts
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Thus the divergence theorem applied to w = v∇u gives
∮

∂Ω

v∇u(s) · n(s) ds =
∫

Ω

(
∇· (v∇u)

)
(x) dx

=

∫

Ω

(∇v · ∇u+ v∆u)(x) dx,

which means that
∫

Ω

−v(x)∆u(x) dx =

∫

Ω

∇v(x) · ∇u(x) dx

−
∮

∂Ω

v
∂u

∂n
ds

= a(u, v)−
∮

∂Ω

v
∂u

∂n
ds.

(5)



The variational problem
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Thus, u can be characterized via

u ∈ V satisfies

a(u, v) = (f, v)L2(Ω) ∀v ∈ V.
(6)

The reverse result, namely

a solution to the variational problem
in (6) solves Poisson’s equation

can be proved for smooth u.

Sketched later and done in detail in the
one-dimensional case.



The variational code
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Variational formulation translates to the following code:

from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, "on_boundary")
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
pi=3.141592
you = Expression("(sin(pi*x[0]))*(sin(pi*x[1]))",degree=1)
a = inner(grad(u), grad(v))*dx
L = (2*pi*pi)*you*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)



Plot of the solution
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The variational forms
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from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, "on_boundary")
# Define variational problem

u = TrialFunction(V)
v = TestFunction(V)
pi=3.141592
you = Expression("(sin(pi*x[0]))*(sin(pi*x[1])",degree=1)
a = inner(grad(u), grad(v))*dx
L = (2*pi*pi)*you*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)

Forms can include user-defined Expressions.



The domain and function space
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from dolfin import *
# Create mesh and define function space

mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, "on_boundary")
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
pi=3.141592
you = Expression("(sin(pi*x[0]))*(sin(pi*x[1]))",degree=1)
a = inner(grad(u), grad(v))*dx
L = (2*pi*pi)*you*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)

The domain is the union of elements in the mesh.



The boundary conditions
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from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define boundary condition

u0 = Constant(0.0)
bc = DirichletBC(V, u0, "on_boundary")
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
pi=3.141592
you = Expression("(sin(pi*x[0]))*(sin(pi*x[1]))",degree=1)
a = inner(grad(u), grad(v))*dx
L = (2*pi*pi)*you*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)

Constant is a special Expression.



Solving the equations and plotting
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from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, "on_boundary")
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
pi=3.141592
you = Expression("(sin(pi*x[0]))*(sin(pi*x[1]))",degree=1)
a = inner(grad(u), grad(v))*dx
L = (2*pi*pi)*you*v*dx
# Compute solution

u = Function(V)
solve(a == L, u, bc)
plot(u, interactive=True)

Different versions may plot differently.



Meaning of dolfin code
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The code f*dx means
∫

Ω

f(x) dx

where Ω is the domain associated with the function
space of which f is a member:

f ∈ V, Ω = domain(V )

In our example, V is defined by

V = FunctionSpace(mesh, "Lagrange", 1)

and mesh contains the domain information.



A manufactured solution
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Method of manufactured solutions

Computational Modeling Initiative 2019 24/164

Method of manufactured solutions tests our technology
by considering a problem with a known solution:

−∆u = 2π2 sin(πx) sin(πy) in Ω = [0, 1]× [0, 1]

u = 0 on ∂Ω,

whose solution is u(x, y) = sin(πx) sin(πy).

Of course, we started with the solution

u(x, y) = sin(πx) sin(πy)

and then computed its Laplacian to get

f = 2π2 sin(πx) sin(πy).



Dirichlet boundary condition specification
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In line 9, the third variable in DirichletBC specifies
where Dirichlet boundary conditions are to be specified.

Table 2 specifies two other ways of achieving same
thing, for example

bc=DirichletBC(V,u0,DomainBoundary())

technique specification
keyword "on boundary"

reserved function DomainBoundary()
user defined function boundary

Table 2: Different ways to specify the boundary of a domain.



Variational formulations as theory
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We have seen that

• variational formulations provide a language

for partial differential equations (PDEs).

Now we show that

• variational formulations provide a basis

for the theory of PDEs.

This gives us greater confidence in the validity
of our technical simulations.



Linear functionals as data
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A function F defined on V is called a linear functional if

it is a linear function defined for any v ∈ V

having a real number as its value.

The right-hand side of (6) can be written using

F (v) = (f, v)L2(Ω) ∀v ∈ V. (7)

The expression F is called a linear functional because
(a) it is linear and (b) it has scalar values.

By linear, we mean that

F (u+ av) = F (u) + aF (v)

for any scalar a and any u, v ∈ V .



Continuous linear functionals
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Critical condition on a linear functional for success in a
variational formulation: bounded (a.k.a. continuous).

A linear functional F is bounded (equivalently
continuous) on a normed space V if

|F (v)| ≤ CF‖v‖V ∀v ∈ V. (8)

A natural norm ‖·‖V for the space V defined in (3) is

‖v‖a =
√

a(v, v).

The smallest possible constant CF for which

(8) holds is called the dual norm of F .



Dual norm
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The dual norm of F is defined by

‖F‖V ′ := sup
0 6=v∈V

|F (v)|
‖v‖V

. (9)

The linear form (7)

F (v) = (f, v)L2(Ω) ∀v ∈ V

is bounded on H1(Ω): L2 norm is part of H1 norm.

But other linear forms are not, such as F (v) := v′(x0) for
some x0 ∈ [0, 1].

This form is linear, but consider what it should do for the
function v(x) := |x− x0|2/3. Note that v ∈ H1([0, 1]).



Inhomogeneous Neumann problem
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Illustrates need for linear functionals as data.

Consider Laplace equation (1) with inhomogeneous
Neumann boundary condition

∂u

∂n
= g on Ω\Γ.

As before, we assume homogeneous Dirichlet boundary
conditions posed on Γ ⊂ ∂Ω, and we define

V =
{
v ∈ H1(Ω) : v = 0 on Γ

}
.

From (5) we get variational form: u ∈ V with

a(u, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
g(s)v(s) ds ∀v ∈ V.



Inhomogeneous Neumann linear form
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Yet another example of the general variational problem

u ∈ V satisfying a(u, v) = F (v) ∀v ∈ V, (10)

where the linear functional F is given by

F (v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
g(s)v(s) ds ∀v ∈ V.

Can prove F is continuous on H1(Ω).

Shows why we need general concept of linear forms as
data.



Inhomogeneous Neumann example
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Consider Ω = [0, 1]2 with homogeneous Dirichlet data on

Γ = {(x, y) ∈ ∂Ω : x = 0 or y = 0 or y = 1} .

Thus Ω\Γ = {(x, y) ∈ ∂Ω : x = 1}. The variational
formulation of

−∆u = f in Ω, u = 0 on Γ,
∂u

∂n
= g on ∂Ω\Γ (11)

is to find u ∈ V =
{
v ∈ H1(Ω) : v = 0 on Γ

}
such that

a(u, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
g(s)v(s) ds ∀v ∈ V, (12)

where as before a(u, v) =
∫
Ω∇u(x) · ∇v(x) dx.



Inhomogeneous Neumann example
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Define g(y) = y(1− y) and f(x, y) = 2x.

As always, define V =
{
v ∈ H1(Ω) : v = 0 on Γ

}
.

Exact solution is u(x, y) = xy(1− y).

The solution is depicted in Figure 4.

degree mesh size L2 error
1 32 1.78e-04
2 8 3.87e-05
3 2 1.51e-15

Table 3: Errors for inhomogeneous Neumann problem.



Inhomogeneous Neumann example
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Figure 4: Solution of (11) computed using piecewise linears on a 32 × 32
mesh.



Varying variational formulations
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We have seen that Laplace’s equation can be
expressed as a variational formulation

Find u ∈ V such that

a(u, v) = F (v) for all v ∈ V

and furthermore that the variational
formulation can be used as a language to
describe the problem in code.

Now we want to show that this formulation is
universal for a broad range of problems.



Formulation of the Pure Neumann Problem: varying V
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Pure Neumann (or natural) boundary conditions

∂u

∂n
= 0 on ∂Ω (13)

(i.e., when Γ = Ø) varies the definition of V .

In particular, solutions are unique only up to an additive
constant, and they can exist only if the right-hand side f
in (1) satisfies

∫

Ω

f(x) dx =

∫

Ω

−∆u(x) dx

=

∫

Ω

∇u(x) · ∇1 dx−
∮

∂Ω

∂u

∂n
ds = 0.



Mean-zero spaces
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A variational space appropriate for the present case is

V =

{
v ∈ H1(Ω) :

∫

Ω

v(x) dx = 0

}
. (14)

For any integrable function g, we define its mean, ḡ, as
follows:

ḡ :=
1

meas(Ω)

∫

Ω

g(x) dx.

For any v ∈ H1(Ω), note that v − v̄ ∈ V .

Then u− ū satisfies the variational formulation (6) with
V defined as in (14).



Mean-zero spaces
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Conversely, if u ∈ H2(Ω) solves the variational equation
(6) with V defined as in (14), then u solves Poisson’s
equation (1) with a right-hand-side given by

f̃(x) := f(x)− f̄ ∀x ∈ Ω (15)

with boundary conditions (13).

Why does this work?

Variational form a(·, ·) is coercive on V [2]: there is a
constant C depending only on Ω such that

‖v‖2H1(Ω) ≤ Ca(v, v) ∀v ∈ V.



Secret of coercivity
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Coercivity requires removal of constants from V .

Dirichlet data on small part Γ of boundary does this:
if a constant is zero on Γ it is zero everywhere.

Poincaré’s inequality says that

‖v − v‖2L2(Ω) ≤ Ca(v, v) ∀v ∈ H1(Ω).

For v ∈ V , the mean v is zero. Thus

‖v‖2L2(Ω) ≤ Ca(v, v) ∀v ∈ V.

Squaring and adding a(v, v) to both sides gives

‖v‖2H1(Ω) = a(v, v) + ‖v‖2L2(Ω) ≤ (C2 + 1)a(v, v) ∀v ∈ V.



Proving continuity
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Easy to see that reverse holds:

a(v, v) ≤ C‖v‖2H1(Ω)

for all v ∈ V .

This continuity condition and the Cauchy-Schwarz
inequality (20) guarantee a(u, v) makes sense for
u, v ∈ V .

The coercivity and continuity bounds hold for discrete
approximations as well under a very simple condition:

Vh ⊂ V.



Bilinear forms
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An expression a(·, ·) is bilinear form if it is linear in each
argument separately. Fix w ∈ V and define forms

F (v) = a(v, w) and G(v) = a(w, v) for all v ∈ V.

We require that F and G be linear. More concretely,

a(u+ cv, w) = a(u, w) + ca(v, w) and

a(u, cv + w) = ca(u, v) + a(u, w)

for all u, v, w ∈ V and any constant c.

Variational form a(u, v) =
∫
Ω∇u · ∇v dx is bilinear

because integral of sum of functions is sum of integrals.



Coercivity condition
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Critical foundation of PDE theory is coercivity condition:

‖v‖2H1(Ω) ≤ Ca(v, v) ∀v ∈ V. (16)

Coercivity implies solution is unique: f ≡ 0 =⇒

0 = (f, u)L2 = a(u, u) ≥ 1

C
‖u‖2H1(Ω).

Coercivity condition implies a stability result:

‖u‖H1(Ω) ≤
Ca(u, u)

‖u‖H1(Ω)
= C

(f, u)L2

‖u‖H1(Ω)
≤ C‖f‖V ′, (17)

where dual norm defined by

‖F‖V ′ := sup
0 6=v∈V

|F (v)|
‖v‖V

.



Continuity condition
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Finite-dimensional case: uniqueness implies existence.

Infinite dimensions, continuity condition required:

|a(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ V. (18)

Usually this condition is evident, but consider

−1

2
∆u(r1, r2) + (κ(r1) + κ(r2)) u(r1, r2) = f(r1, r2)

in Ω = [0,∞]× [0,∞], where κ(r) = r−2 − r−1 + 1
2 .

Here coercivity is easy but continuity requires Hardy’s
inequality (assuming u = 0 on ∂Ω).



Lax-Milgram theorem
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Lax-Milgram Theorem Suppose a(·, ·) is coercive (16)
and continuous (18) (bounded) on H1(Ω).

Then variational problem (6) has unique solution u for
every continuous (bounded) F defined on H1(Ω), and

‖u‖H1(Ω) ≤ c1c0 sup
v∈H1(Ω)

|F (v)|
‖v‖H1(Ω)

,

where c0 is constant in (16) and c1 is constant in (18).

The combination of continuity and coercivity correspond
to the stability of the numerical scheme.



A small detail
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Our definition of the variational space V ensures that
a(v, v) < ∞ for all v ∈ V .

But our variational formulation involves a(u, v) for
u, v ∈ V .

Why is a(u, v) well defined for all u, v ∈ V ?

The Cauchy-Schwarz inequality guarantees that

|a(u, v)| ≤ ‖u‖a‖v‖a,

where ‖v‖a =
√

a(v, v) for all v ∈ V .

The proof is a simple calculation.



Cauchy-Schwarz inequality proof
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a(u− tv, u− tv) = a(u, u)− 2ta(v, u) + t2a(v, v)

= a(u, u)− 2ta(u, v) + t2a(v, v).

In particular, since a(u− tv, u− tv) ≥ 0,

2ta(u, v) ≤ a(u, u) + t2a(v, v). (19)

For example, suppose that a(v, v) = 0.

Choose the sign of t to be the sign of a(u, v). From (19)
we conclude that

2|t| |a(u, v)| ≤ a(u, u).

Since 2|t| |a(u, v)| ≤ a(u, u) holds for all t ∈ R, we can let
|t| → ∞ to conclude that a(u, v) = 0.



Cauchy-Schwarz inequality
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If a(v, v) 6= 0, define t = sign(a(u, v))‖u‖a/‖v‖a.

If by chance a(u, u) = 0, then we reverse the previous
argument to conclude that again a(u, v) = 0.

If not zero, and thus t 6= 0, divide by |t| in (19) to get

2|a(u, v)| ≤ 1

|t|a(u, u) + |t| a(v, v) = 2‖u‖a‖v‖a.

Thus we have proved the Cauchy-Schwarz inequality

|a(u, v)| ≤ ‖u‖a‖v‖a. (20)

The Cauchy-Schwarz inequality is generally true for any
non-negative, symmetric bilinear form.



Inner products
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Cauchy-Schwarz often stated for an inner-product .

Our bilinear form a(·, ·) is almost an inner-product
except that it lacks one condition, non-degeneracy.

In our case a(v, v) = 0 if v is constant, and for an
inner-product, this is not allowed.

One example of an inner-product is the bilinear form

(u, v)L2(Ω) =

∫

Ω

u(x) v(x) dx.

Here we see that (v, v)L2(Ω) = 0 implies that v ≡ 0.

But the Cauchy-Schwarz inequality does not

require this additional property to be valid.



Connection to classical notions
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Suppose that u ∈ C2(Ω) and V is defined by (3). Recall
the integration-by-parts formula (4), which we write as

∫

Ω

(−∆u)v dx = a(u, v) +

∮

∂Ω

v
∂u

∂n
ds. (21)

If a(u, v) = (f, v)L2(Ω) for all v ∈ V , then
∫

Ω

(
(−∆u)(x)− f(x)

)
v(x) dx =

∮

∂Ω

v(s)
∂u

∂n
(s) ds.

We can choose v ∈ V to be zero on the boundary, and
in this case

∫

Ω

(
(−∆u)(x)− f(x)

)
v(x) dx = 0.



Implications of smoothness

Computational Modeling Initiative 2019 50/164

In particular, suppose that f and ∆u are continuous and

(−∆u)(x0)− f(x0) 6= 0

for some x0 ∈ Ω satisfying

d := distance(x0, ∂Ω) > 0.

Then there is an ǫ > 0 such that ǫ < d and

|(−∆u)(x)− f(x)| > 0 for all |x− x0| < ǫ.

Choose

v(x) =

{
1− ǫ−1|x− x0| |x− x0| < ǫ

0 |x− x0| ≥ ǫ
. (22)



Variatonal equation
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Note that v ≥ 0 and v > 0 for |x− x0| < ǫ, and that
v ∈ H1

0(Ω) (exersize).

But this would mean that
∫

Ω

(
(−∆u)(x)− f(x)

)
v(x) dx 6= 0,

yielding a contradiction.

This means that wherever both f and ∆u are
continuous, we must have f = −∆u.

So that the variational solution is also a classical
solution if it is smooth enough.



Meaning of naturual boundary conditions
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From previous arguments, −∆u = f in Ω provided both
continuous on Ω.

Thus integration-by-parts formula (21) implies
∫

Ω

f(x)v(x) dx = a(u, v) +

∮

∂Ω

v(s)
∂u

∂n
(s) ds

for all v ∈ V .

Comparing (21) and (10), we conclude that
∮

∂Ω

g(s)v(s) ds =

∮

∂Ω

v(s)
∂u

∂n
(s) ds =

∮

∂Ω\Γ
v(s)

∂u

∂n
(s) ds

for all v ∈ V , where V is defined by (3).



More meaning of naturual boundary conditions
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Suppose that s0 ∈ ∂Ω\Γ with distance(s0,Γ) > 0, and
suppose that g(s0)− ∂u

∂n(s0) 6= 0.

If both g and ∂u
∂n are continuous near s0, there is an ǫ > 0

such that |g(s)− ∂u
∂n(s)| > 0 for all s ∈ ∂Ω satisfying

|s− s0| < ǫ.

Choose v as in (22). Then we reach a contradiction:
∮

∂Ω\Γ
v(s)

(
g(x)− ∂u

∂n
(s)

)
ds 6= 0.

Thus we conclude that ∂u
∂n(s) = g(s) wherever they are

both continuous (as well as ∆u and f ).



Variational approximation
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Variational formulation: find u ∈ V such that

a(u, v) = F (v) for all v ∈ V

gives PDE language and theory.

Also provides basis for numerical methods.

The key idea, due to Galerkin, is to construct a
set of functions Vh ⊂ V and then to

find uh ∈ Vh such that

a(uh, v) = F (v) for all v ∈ Vh



Domain subdivisions
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(a)

Ω

(b)

Let Th denote a subdivision of Ω, e.g., a triangulation
(triangles in two-D or tetrahedra in three-D).

Triangulation of the domain in (a) is shown in (b).

The main requirement for a triangulation is that no
vertex of a triangle can be in the middle of an edge.

However, more general subdivisions can be used that
violate this property [1, 8, 9].



Using elements
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(a)

Ω

(b)

Figure 5: (a) Domain Ω with Γ indicated in red. (b) Nodal positions for Vh

are indicated by the black dots; note that vertices in Γ are not included, to
respect the essential (Dirichlet) boundary condition.

Main concept of finite element method: use each
element of the subdivision as a separate domain in
which to reason about the balance of forces.

Mathematically, corresponds to choosing functions on
each element to represent variables used in the model.



Using the coercivity condition
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Often, same functions used on each element, but not
necessary [8, 9, 5].

In this way, one constructs a finite dimensional space Vh

which can be used in what is known as the Galerkin
method to approximate the variational formulation (6),
as follows:

find uh ∈ Vh satisfying a(uh, v) = (f, v) ∀v ∈ Vh. (23)

Here we can think of h as designating the subdivision,

or perhaps as a parameter that denotes the size of the
elements of the subdivision.



Using the coercivity condition
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The coercivity condition implies stability for the discrete
approximation, namely

‖uh‖H1(Ω) ≤
Ca(uh, uh)

‖uh‖H1(Ω)
= C

(f, uh)

‖uh‖H1(Ω)
≤ C‖f‖V ′, (24)

where we will explain the meaning of ‖f‖V ′ later.

In particular, if f ≡ 0, then uh ≡ 0.

Provided Vh is finite dimensional, this implies that (23)
always has a unique solution.

We can see this more clearly by choosing a basis
{φi ∈ Vh : i = 1, . . . , Nh}. Write uh =

∑
i Uiφi.



Some linear algebra
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Figure 6: Typical basis function for continuous piecewise linear functions.

Using the linearity of the form a(·, ·) in each of its
variables, we obtain the linear system AU = F where

Aij = a(φi, φj), Fi =

∫

Ω

f(x)φi(x) dx ∀i, j = 1, . . . , Nh.



More linear algebra
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Since A is symmetric (Aji = a(φj, φi) = a(φi, φj) = Aij),
we have, for all j = 1, . . . , Nh,

Fj =

∫

Ω

f(x)φj(x) dx = a(uh, φj) = a
(∑

i

Uiφi, φj

)

=
∑

i

Uia(φi, φj) =
∑

i

UiAij =
∑

i

AjiUi =
(
AU)j

From linear algebra, solution to linear system AU = F
exists uniquely ⇐⇒ only solution for F = 0 is U = 0.

The latter is guaranteed by the coercivity condition (17):

‖uh‖2H1(Ω) ≤ Ca(uh, uh) = C(f, uh) = 0.



Piecewise linears
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Given a triangulation, the simplest space Vh that we can
construct is the set of continuous piecewise linear
functions.

On each triangle (or tetrahedron), such functions are
linear, and moreover we contrive to make them
continuous.

A linear function is determined by its values at the
vertices of a simplex.

Easy to see in one or two dimensions; graph of function
is line or plane through specified values at vertices.

If values of v ∈ Vh at vertices agree in all of the triangles
meeting there, then resulting function is continuous.



Kronecker basis
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In two dimensions, the values along edges are specified
completely by the values at the vertices.

A basis for Vh satisfies φi(xj) = δij (Kronecker δ) as
depicted in Figure 6.

The vertices of a triangulation provide the nodes of the
space Vh; these are shown as black dots in Figure 5.

Only vertices where nodal values are non-zero have
black dots, where the boundary condition v = 0 holds on
Γ for v ∈ Vh ⊂ V .



General approximation
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What determines the accuracy of the approximation?

Céa’s Theorem [2, 2.8.1] says the following.

Suppose that Vh ⊂ V , that the variational form a(·, ·) is
bounded and coercive on V , and that F is bounded on
V . Then

‖u− uh‖a ≤ C inf
v∈Vh

‖u− v‖a.

Thus the accuracy of the finite element method is
determined by the accuracy of approximation.

Often called quasi-optimal.



Nodal values for quadratics
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Figure 7: Nodes for quadratics: vertices and edge midpoints.

For more accurate, cost effective approximation, often
useful to use higher-order polynomials in each element.

In Figure 7 we see the nodes for piecewise quadratic
functions (compare Figure 3).



Piecewise quadratic approximation
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Again, we can define a basis for the space Vh of
continuous piecewise quadratics in terms of functions
that satisfy

φi(xj) = δij (Kronecker δ),

where the xj ’s are the nodes in Figure 7.

But now it is not so clear how we can be sure that this is
a valid representation.

What we need to know is that this nodal representation
is unisolvent on each triangle, meaning that

on each triangle you can solve uniquely for a
quadratic given the values at the specified nodes,
the vertices and edge midpoints.



Proof of unisolvence: degree reduction
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On each edge, we have three distinct points that
determine uniquely a quadratic, simply by invoking the
fundamental theorem of algebra.

If all nodal values on one edge vanish, then the
quadratic q(x, y) must vanish on that edge.

WLOG suppose that edge lies on the x-axis. Then
q(x, y) = yℓ(x, y) where ℓ is a linear polynomial in x, y.

Can be verified by expanding q in powers of x and y

(there are 6 terms) and invoking q(x, y) ≡ 0

on the edge lying on the x-axis.



Proof of unisolvence continued
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q also vanishes on the other two edges of the triangle,
neither of which can lie on the x-axis, so that means that
ℓ must also vanish on these edges.

But this clearly implies that ℓ ≡ 0, and thus q ≡ 0.

By linear algebra, uniqueness of the representation
implies existence of a representation:

We have exactly 6 nodal variables
matching the dimension of space of
quadratic polynomials in two dimensions.

Complete details are found in [2, Chapter 3].



Arbitrary degree polynomials
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No limit on the degree of polynomials that can be used.

General family of elements called Lagrange elements .

Regular pattern of nodes shown in Figure 8.

(a) (b) (c)

Figure 8: Varying mesh number M and polynomial degree k with the same
number of nodes: (a) M = 4, k = 1 (linears), (b) M = 2, k = 2 (quadratics),
(c) M = 1, k = 4 (quartics).



Method of manufactured solutions
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Using the method of manufactured solutions, consider

−∆u = 2π2 sin(πx) sin(πy) in Ω = [0, 1]× [0, 1]

u = 0 on ∂Ω,
(25)

whose solution is u(x, y) = sin(πx) sin(πy).

The errors

‖uh − u‖L2(Ω) = ‖uh − (2π2)−1f‖L2(Ω) (26)

for different meshes shown in Figure 8 and different
polynomial degrees, together with execution times, are
given in Table 4.



Computational experiments with (25).
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degree mesh number L2 error time (s)
1 32 2.11e-03 0.09
2 8 5.65e-04 0.08
1 128 1.32e-04 0.31
2 16 6.93e-05 0.08
1 256 3.31e-05 1.07
2 64 1.08e-06 0.23
4 8 7.78e-07 0.08
8 2 7.29e-08 0.08
4 16 2.44e-08 0.11

16 1 1.61e-09 0.09
4 32 7.64e-10 0.23
8 4 1.42e-10 0.09
4 64 2.39e-11 0.74
4 128 4.95e-12 3.0
8 8 3.98e-12 0.13
8 16 1.67e-11 0.33

Table 4: Computational experiments with solving the problem (25).



Arbitrary degree polynomials
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What we see in Table 4 is that the error can be reduced
substantially by using higher-order polynomials.

Increasing the mesh number for linear Lagrange
elements does reduce the error, but the execution time
grows commensurately with the error reduction.

Using linears on a mesh of size 256 gives half the error
of quadratics on a mesh of size 16, but the latter
computation requires one-tenth of the time.

For the same amount of time as this computation with
quadratics, using quartics on a mesh of size 8 gives an
error almost two orders of magnitude smaller.



Arbitrary degree polynomials
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Each mesh with double the number of mesh points was
derived from the one with the smaller number of points
by subdiving each triangle into four similar triangles.

To get the highest accuracy, the best strategy is to use
higher polynomial order, up to a point.

The most accurate computation occurs with polynomial
degree 8 with a mesh number of 8.

But the error quits decreasing at a certain point due to
round-off error.

Will discuss the effects of finite precision arithmetic is
more detail later.



Arbitrary degree polynomials
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The times presented here should be viewed as
approximate.

There is significant variation due to system load from
run to run.

These computations were done on a MacBook Pro with
2.3 GHz Intel Core i7 and 16 GB 1600 MHz DDR3
memory.

However, we do see order of magnitude variation
depending on the mesh size and polynomial degree.



Convergence theory
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Now we review the theory behind

convergence of finite element method.

Céa’s Theorem says:

just depends on approximation theory.

Degree of polynomials determines
best rate of approximation.



Basic approximation theory
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Success in the finite element method is
guaranteed by

• continuous and coercive bilinear form a(·, ·)
• bounded (continuous) linear form F (data)
• good approximation by Vh (Céa’s Theorem)

Just need to understand

why piecewise polynomials

provide good approximation.



Nodal basis means good approximation
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Nodal basis key to finite element error behavior.

Both piecewise linears and piecewise quadratics have

nodal basis functions φi which satisfy φi(xj) = δij

(Kronecker δ), where xj denotes a typical node.

For linears, the nodes are the vertices, and

for quadratics the edge midpoints are added.

For higher degree Lagrange elements, more edge
nodes are involved, as well as interior nodes.

With cubics, the centroid of each triangle is a node.



Interpolant
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Nodal representation is basis for defining an interpolant.

Using such a nodal representation, we construct a

global interpolant Ih

defined on continuous functions, by

Ihu =
∑

i

u(xi)φi.

Thus Ih maps continuous functions into

the space Vh used in finite element computations.



Interpolant approximation
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Let Ih denote a global interpolant for a family of finite
elements based on the components of T h.

Suppose that Ihu is continuous, as is true for the
Lagrange family of elements.

Further, suppose that the corresponding shape
functions have an approximation order, m, that is

‖u− Ihu‖H1(Ω) ≤ Chm−1|u|Hm(Ω). (27)

In order to have good approximation, we need to have

Ih
(
V ∩ Ck(Ω)

)
⊂ Vh, (28)

where k = 0 for Lagrange elements.



Mesh constraint
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However, we allow for the possibility that k > 0 since this
holds for other element families.

Condition Ih
(
V ∩ Ck(Ω)

)
⊂ Vh, is a mesh constraint.

If Vh ⊂ V and the form a(·, ·) is bounded and coercive,
then unique solution, uh ∈ Vh, to variational problem

a(uh, v) = (f, v) ∀v ∈ Vh

satisfies (by Céa’s theorem)

‖u− uh‖H1(Ω) ≤ C inf
v∈Vh

‖u− v‖H1(Ω)

≤ C‖u− Ihu‖H1(Ω) ≤ Chm−1|u|Hm(Ω).



Initial error estimates
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Summary: if conditions (27) and (28) hold, then

‖u− uh‖H1(Ω) ≤ Chm−1|u|Hm(Ω).

The requirements Vh ⊂ V and (28) place a constraint on
the subdivision in the case that Γ is neither empty nor all
of the boundary.

These requirements provide the consistency of the
numerical approximation.

Necessary to choose the mesh so that it aligns properly
with the points where the boundary conditions change
from Dirichlet to Neumann.



Matching Boundary Conditions

Computational Modeling Initiative 2019 81/164

If the points where the boundary conditions change are
vertices in the triangulation, then

Vh := Ih
(
V ∩ C0(Ω)

)

is same as space of piecewise polynomials that vanish
on edges contained in Γ.

If we choose mesh so that edges contained in Γ form a
subdivision of Γ, it follows that Vh ⊂ V holds.



Matching Boundary Conditions

Computational Modeling Initiative 2019 82/164

On the other hand, if the set of edges where

functions in Vh vanish is too small, then Vh 6⊂ V .



Matching Boundary Conditions
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If the set of edges where functions in Vh vanish

is too big, then (28) (Ih
(
V ∩ Ck(Ω)

)
⊂ Vh) fails to hold.



Matching Boundary Conditions
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In the case of pure Dirichlet data, i.e., Γ = ∂Ω, then Vh is
just the set of piecewise polynomials that vanish on the
entire boundary.

In the case of pure Neumann data, i.e., Γ = Ø, Vh is the
entire set of piecewise polynomials with no constraints
at the boundary.

Even if finite element space matches Γ correctly, there is
a singularity associated with changing boundary
condition type along a straight boundary.



Estimates in other norms
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Frequently, it is the case that the L2(Ω) norm is better by
one power of h:

‖u− uh‖L2(Ω) ≤ Chm|u|Hm(Ω). (29)

This follows by a duality relationship.

Denote the error eh = u− uh.

We solve Poisson’s problem with eh as the data:

a(φ, v) = (eh, v)L2(Ω) ∀v ∈ V.

Then we have an expression for ‖eh‖L2(Ω):

‖eh‖2L2(Ω) = (eh, eh)L2(Ω) = a(φ, eh).



Duality method
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Subtracting the variational formulations for u and uh, we
find a(eh, v) = 0 for all v ∈ Vh, so

‖eh‖2L2(Ω) = a(φ− v, eh)

for all v ∈ Vh. Choosing v appropriately, we find

‖eh‖2L2(Ω) ≤ Ch‖φ‖H2(Ω)‖eh‖H1(Ω). (30)

For smooth problems,

‖φ‖H2(Ω) ≤ C‖eh‖L2(Ω), (31)

so we conclude that

‖eh‖2L2(Ω) ≤ Ch‖eh‖L2(Ω)‖eh‖H1(Ω).



Duality result
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Dividing by ‖eh‖L2(Ω), we find

‖eh‖L2(Ω) ≤ Ch‖eh‖H1(Ω).

This proves (29) provided (31) holds.

As we will see, latter is not always the case.

Since Galerkin is a least-squares method, we might not
expect errors to behave well uniformly.

Might not be surprising that errors near the boundary
would be slightly worse but in a small region.

Significant that this is not generally the case.



L∞ estimates
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Rather, it is possible to prove that ‖u− uh‖W 1
∞
(Ω) and

‖u− uh‖H1(Ω) are of the same order of accuracy in h.

Similarly, ‖u− uh‖L2(Ω) and ‖u− uh‖L∞(Ω) are of the
same order of accuracy in h, with one small exception.

With piecewise linear approximation, ‖u− uh‖L∞(Ω) can
be worse by a factor of | log h| than ‖u− uh‖L2(Ω).

Uniform bounds for FEM are much complex to prove
than duality argument used to prove L2 estimates.

But they have been extended to many complicated
systems such as the Navier-Stokes equations.



A reality check
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Error estimates provide check on code performance.

For example, if we consider two meshes, of size h and
h/2, then we expect that

‖u− uh‖H1(Ω)/‖u− uh/2‖H1(Ω) ≈ hm−1/(h/2)m−1 = 2m−1.

Thus we would have

m− 1 = log2
(
‖u− uh‖H1(Ω)/‖u− uh/2‖H1(Ω)

)
.

Similarly, if (29) holds, we have

‖u− uh‖L2(Ω)/‖u− uh/2‖L2(Ω) ≈ hm/(h/2)m = 2m.



Empirical rate

Computational Modeling Initiative 2019 90/164

Thus we define the quantity “rate” in Table 4 via

rate = log2
(
‖u− uh‖L2(Ω)/‖u− uh/2‖L2(Ω)

)
. (32)

Recall that we expect m ≈ k + 1 where k is the degree
of piecewise polynomials used for the simulation.

Of course, this is only a “not to exceed” rate, so your
experience may differ.

In fact, the observed rate can be negative, due to
round-off error amplification via the condition number of
the system.



Varying variational formulations
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Review: variational formulations can be used for

• a language for PDEs
• basis for PDE theory
• foundation for numerical approximation.

Ingredients for a variational formulation:

• the variational space V
• the bilinear form a(·, ·)
• a linear functional F (data for the problem).

We have seen how V can change via the Neumann
problem.

Now we consider other changes.



Inhomogeneous Boundary Conditions: varying F
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When boundary conditions are equal to zero, we often
call them homogeneous, whereas we refer to nonzero
boundary conditions as inhomogeneous.

Inhomogeneous boundary conditions are easily treated.

For example, suppose that we wish to solve (1) with
boundary conditions

u = gD on Γ ⊂ ∂Ω and
∂u

∂n
= gN on ∂Ω\Γ, (33)

where gD and gN are given.

For simplicity, let us assume that gD is defined on all of
Ω, with gD ∈ H1(Ω) and that gN ∈ L2(∂Ω\Γ).



Well-posedness of inhomogeneous formulation
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Recall the space (3): V =
{
v ∈ H1(Ω) : v|Γ = 0

}
.

Then the variational formulation of (1) , (33) is as
follows: find u such that u− gD ∈ V and such that

a(u, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
gNv ds ∀v ∈ V. (34)

This is well-posed since the linear form

F (v) := (f, v)L2(Ω) +

∮

∂Ω\Γ
gNv ds

is well defined (and continuous) for all v ∈ V .



Inhomogeneous BCs: finite element formulation

Computational Modeling Initiative 2019 94/164

Finite element approximation of (34) involves, typically,
use of an interpolant, IhgD, of the Dirichlet data.

Seek uh such that uh − IhgD ∈ Vh and

a(uh, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
gNv ds ∀v ∈ Vh. (35)

We can cast this in a more standard form as: find
ûh = uh − IhgD ∈ Vh such that

a(ûh, v) = (f, v)L2(Ω)+

∮

∂Ω\Γ
gNv ds− a(IhgD, v) ∀v ∈ Vh.

Then we can set uh = ûh + IhgD.



Affine variational formulation
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The dolfin built-in function solve automates this, so
data gD just needs to be specified.

Define the affine space V + gD by

V + gD = {v + gD : v ∈ V } .

Affine variational formulation: find u ∈ V + gD such that

a(u, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
gNv ds ∀v ∈ V.

Discrete approximation: Find uh ∈ Vh + IhgD such that

a(uh, v) = (f, v)L2(Ω) +

∮

∂Ω\Γ
gNv ds ∀v ∈ Vh.



Affine variational formulation
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Original variational formulation has three ingredients:
space V , bilinear form a(·, ·) and linear form data F (·).

Affine variational formulation has four ingredients: V ,
a(·, ·), F (·), and the Dirichlet data function gD.

Simplifies formulation of many PDE problems.

Fortunately, the dolfin built-in function solve
automates all of this.

Dirichlet data function gD needs to be specified just in
the call to solve.



Modification interlude
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Here are the modifications seen so far.

Pure Neumann boundary conditions modified
variational space V .

Inhomogeneous boundary conditions

• Natural: modification in right-hand side F .
• Essential: affine variational formulation.

Now we look at a case where the variational
form changes.



Robin boundary conditions: varying a(·, ·)
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It is frequently the case that more complex boundary
conditions arise in physical models.

The so-called Robin boundary conditions take the form

αu+
∂u

∂n
= 0 on ∂Ω\Γ, (36)

where α is a positive measurable function.

This will be coupled as before with a Dirichlet condition
on Γ.

A variational formulation for this problem can be derived
as follows.



Robin variational problem
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Let V be the space defined in (3) with the added proviso
that V = H1(Ω) in the case that Γ = Ø.

From (5), we get

(f, v)L2(Ω) =

∫

Ω

(−∆u(x))v(x) dx

=

∫

Ω

∇u(x) · ∇v(x) dx−
∮

∂Ω

v(s)
∂u

∂n
(s) ds

=

∫

Ω

∇u(x) · ∇v(x) dx+

∮

∂Ω

α(s) v(s) u(s) ds,

after substituting the boundary condition ∂u
∂n = −αu on

∂Ω\Γ and using the condition (3) that v = 0 on Γ.



Robin variational form
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Thus we define a new variational form

aRobin(u, v) : =

∫

Ω

∇u(x) · ∇v(x) dx

+

∮

∂Ω

α(s) v(s) u(s) ds.

Variational formulation for the equation (1) together with
the Robin boundary condition (36) takes the usual form

u ∈ V satisfies aRobin(u, v) = (f, v)L2(Ω) ∀v ∈ V. (37)

A solution to the variational problem (37) solves both
(1) and (36) under suitable smoothness conditions.



Robin variational form coercivity
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Note that aRobin(·, ·) is coercive on H1(Ω), that is there is
a constant C < ∞ such that

‖v‖2H1(Ω) ≤ CaRobin(v, v) ∀v ∈ H1(Ω).

This holds even if Γ = ∅.

Coercivity follows because α > 0:

aRobin(v, v) = a(v, v) +

∮

∂Ω

α(s) v(s)2 ds.

(Proof is a Sobolev space exercise.)

If α were negative, it might not be coercive.



Modification summary
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We have seen modifications to all 3

components of the variational problem.

Now we consider how the

problem domain impacts the solution.

Sobolev spaces are essential

to characterize solutions.



Geometry matters: varying the domain Ω
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The geometry of the domain boundary has a significant
impact on the regularity of the solution.

We begin by considering the problem

−∆u = 0 in Ω

u = g on ∂Ω,
(38)

where Ω is a polygonal domain in R
2.

We will see that the principal singularity of

the solution can be identified, associated with

what are often called re-entrant vertices.



L-shaped domain
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(a)

A

B

C

D (b)

B

A

C

D

κ

Figure 9: (a) L-shaped domain, (b) re-entrant corner of angle κ.

The L-shaped domain Ω is depicted in Figure 9(a):

Ω = [−1, 1]2 ∩
{
(x, y) = (r cos θ, r sin θ) : 0 ≤ r, 0 < θ < 3

2
π
}
,

defined using polar coordinates (x, y) = r(cos θ, sin θ).



Re-entrant corners
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Again using polar coordinates, define

g(r(cos θ, sin θ)) = r2/3 sin(2
3
θ). (39)

∂Ω has two parts: the convex part Γc = A ∪B ∪ C ∪D where

A = {(1, y) : 0 ≤ y ≤ 1} , B = {(x, 1) : −1 ≤ x ≤ 1} ,
C = {(−1, y) : −1 ≤ y ≤ 1} , D = {(x,−1) : 0 ≤ x ≤ 1} ,

(see Figure 9) and the re-entrant part

Γr = {(0, y) : −1 ≤ y ≤ 0} ∪ {(x, 0) : 0 ≤ x ≤ 1} .

Then our data g = 0 on Γr. Moreover, g is harmonic , meaning
∆g = 0.

This follows immediately from complex analysis, since g is

the imaginary part of the complex analytic function e(2/3)z.



Partial derivation

Computational Modeling Initiative 2019 106/164

Deriving such a result is not easy using calculus.
First of all, using polar coordinates (x, y) = r(cos θ, sin θ), we find

∇r =
(x, y)

r
and ∇θ =

(−y, x)

r2
. This means that

∇g(x, y) = 2
3

(
(∇r)r−1/3 sin(2

3
θ) + (∇θ)r2/3 cos(2

3
θ)
)

= 2
3
r−4/3

(
(x, y) sin(2

3
θ) + (−y, x) cos(2

3
θ)
)

= 2
3
r−4/3

(
x sin(2

3
θ)− y cos(2

3
θ), y sin(2

3
θ) + x cos(2

3
θ)
)

= 2
3
r−1/3

(
− sin(1

3
θ), cos(1

3
θ)
)
,

(40)

where trigonometric identities flow from the expressions (ι =
√
−1)

cos(1
3
θ)− ι sin(1

3
θ) = cos(−1

3
θ) + ι sin(−1

3
θ) = e−ι(1/3)θ = e−ιθeι(2/3)θ

=
(
cos θ − ι sin θ

)(
cos(2

3
θ) + ι sin(2

3
θ)
)

=
(
cos θ cos(2

3
θ) + sin θ sin(2

3
θ)
)
+ ι

(
− sin θ cos(2

3
θ) + cos θ sin(2

3
θ)
)
.



Gradient unbounded
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The immediate result of the calculation (40) is that, for
0 < θ < 3

2π,

|∇g(x, y)| blows up like |(x, y)|−1/3, since

|∇g(x, y)| = |∇g(r cos θ, r sin θ)| = 2
3r

−1/3 = 2
3 |(x, y)|−1/3.

Therefore |∇g(x, y)| is square integrable, but it is
obviously not bounded.

Benefit of working with Sobolev spaces:

allows g to be considered a reasonable function

even though it has an infinite gradient.



Gradient unbounded
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We can in principle use the vector calculus identity

∇· (φψ) = ∇φ ·ψ + φ∇·ψ

to compute
∆g = ∇· (∇g)

to verify that ∆g = 0, but the algebra is daunting.

Exercise: compute solution via variational problem (35),
see if u = g throughout Ω.

Another exercise: verify that ∆g = 0 analytically using
polar coordinates.



General non-convex domains
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Singularity like the L-shaped domain occurs for any
domain with non-convex vertex depicted in Figure 9(b),
where the angle of the re-entrant vertex is κ.

The L-shaped domain corresponds to κ = 3
2π.

The principle singularity for such a domain is of the form

gκ(r(cos θ, sin θ)) = rπ/κ sin((π/κ)θ). (41)

Note that when κ < π (a convex vertex), the gradient of
gκ is bounded.

Exercise: explore this general case for various values of
κ.



Slit domain
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The largest that κ can be is 2π which corresponds to a
slit domain .

We have g2π =
√
r sin(12θ), which is still in H1(Ω).

The slit domain is often a model for crack propagation .

An illustration of a problem on a slit domain is given by

−∆u = 1 in [0, 1]× [−1, 1]

u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω\Γ,

(42)

where Γ =
{
(x, 0) : x ∈ [12 , 1]

}
.



Slit domain continued
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The solution of (42) is depicted in Figure 10, where only

the top half of the domain (that is, [0, 1]× [0, 1]) is shown.

The solution in the bottom half of the domain can be

obtained by symmetric reflection across the x-axis.

The square-root singularity is clearly visible.



Slit domain solution
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Figure 10: Illustration of the singularity that can occur when boundary con-
dition types are changed, cf. (43), as well as a cut-away of the solution to
slit problem (42). Computed with piecewise linears on the indicated mesh.



General non-convex domains
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The range of κ values for a realistic polygonal domain
excludes a region around κ = 0 and κ = π.

In particular, we see that κ = π does not yield a
singularity; the boundary is a straight line in this case,
and gπ(x, y) = r sin θ = y, which is not singular.

When κ = 0, there is no interior in the domain near this
point.

Thus for any polygonal domain with a finite number of

vertices with angles κj, there is some ǫ > 0 such that

κj ∈ [ǫ, π − ǫ] ∪ [π + ǫ, 2π] for all j.



Three-dimensional singularities
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In three dimensions, the set of possible singularities is
much greater [4].

Edge singularities correspond to the vertex singularities
in two dimensions, but in addition, vertex singularities
appear [10].

The effect of smoothing singular boundaries is
considered in [6].



Changing boundary condition type
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When boundary conditions change type along a straight
line, singularity same as slit domain.

Suppose that we have a domain

Ω =
{
(x, y) ∈ R

2 : x ∈ [−1, 1], y ∈ [0, 1]
}

and we impose homogeneous Dirichlet conditions on

Γ =
{
(x, 0) ∈ R

2 : x ∈ [0, 1]
}

and Neumann conditions on ∂Ω\Γ.

We can reflect the domain Ω around the line y = 0, and
we get the domain [−1, 1]2 with a slit given by Γ.



Reflected solution is slit solution
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g2π =
√
r sin(12θ) satisfies Dirichlet conditions on Γ and

Neumann conditions on Γ∗.

Such singularities occur any time we switch from
Dirichlet to Neumann boundary conditions along a
straight boundary segment.

We illustrate this with the following problem:

−∆u = 1 in [0, 1]2

u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω\Γ,

(43)

where Γ =
{
(x, 0) : x ∈ [12 , 1]

}
, cf. Figure 10.

Exercise: explore this problem in more detail.



Same picture as for the slit domain
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Modeling challenge: point force
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Now consider a modeling challenge:

what is shape of drum head

if you push down on it

with a sharp pin?

We will see that the appropriate model
is not obvious.



Localized behavior
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How to model localized behavior in a physical system?

Tempting to model as an effect occuring at a single
point.

The Laplace equation models (to a reasonable extent)
deformation of the drum head (for small deformations).

So one might consider

−∆u =0 in Ω

u(x0) =u0

where u0 denotes the prescribed position of the pencil.



An ill-posed problem?
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However, this problem is not well posed.

Difficulty: one cannot constrain a function in H1(Ω) at a
single point.

This is illustrated by the function [2, Example 1.4.3]

v(x) = log | log |x| | (44)

which satsifies v ∈ H1(B) where

B =
{
x ∈ R

2 : |x| < 1
2

}
.

This function does not have a well-defined point value at
the origin.



Knife edge versus pin
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Thus setting a point value for a function in H1 does not
make sense.

By shifting this function around, we realize that functions
in H1 may not have point values on a dense set of
points {xi}:

u(x) =
∞∑

i=1

2−i log | log |x− xi| |

For example, take the set of points {xi} to be dense in

D =
{
x ∈ R

2 : |x| < 1
4

}
.



Knife edge versus pin
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It is possible to change to a Dirichlet problem

−∆u =0 in Ω

u =u0 on Γ

where Γ is a small curve representing the point of
contact of a knife edge with the drum head, and u0 is
some function defined on Γ.

As long as Γ has positive length, this problem is well
posed.

However, its behavior will degenerate as the length of Γ
is decreased.



Fundamental solution
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Another approach to modeling such phenomena is
using the Dirac δ-function [2]:

−∆u =δx0
in Ω

u =0 on ∂Ω,
(45)

where δx0
is the linear functional δx0

(v) = v(x0).

Again, there is an issue since this linear functional is not
bounded on V , as the function v defined in (44)
illustrates.

On the other hand, the solution to (45) is known as the
Green’s function for the Laplacian on Ω (with Dirichlet
conditions).



Fancy spaces
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Possible to make sense of (45) using sophisticated
Sobolev spaces [2].

However, rather than taking that approach, we take one
that effectively resolves the issue in conventional
spaces.

What we do is replace δx0
by a smooth function δA

x0
with

the property that
∫

Ω

δA
x0
(x) v(x) dx → v(x0) as A → ∞

for sufficiently smooth v.



Mollified δx0
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We then consider the problem

∆uA =δA
x0

in Ω

uA =g on ∂Ω.
(46)

Note that we can pick g to be the fundamental solution,
and thus we have uA → g as A → ∞.

For example, we can choose δA
x0

to be Gaussian
function of amplitude A and integral 1. In particular, in
two dimensions,

δA
x0

= Ae−πA|x−x0|2.



Sanity check
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We check our requirement that the integral is 1 via the
change of variables y =

√
πAx:

∫

R2

πA e−πA|x−x0|2 dx =

∫

R2

e−|y−y0|2 dy

= 2π

∫ ∞

0

e−r2r dr

= π

∫ ∞

0

e−s ds = π.

In our experiments, x0 was chosen to be near the middle
of the square Ω = [0, 1]2, that is, x0 = (0.50001, 0.50002)
to avoid having the singularity at a grid point.



Manufactured solution
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Figure 11: Solution of (46) computed with a mesh size of 512 with piece-
wise linears and A = 10, 000.



Manufactured solution
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The fundamental solution for the Laplace equation in
two dimensions is

g(x) = − 1

2π
log |x− x0|,

and so we took as boundary conditions g(x) for x ∈ ∂Ω.

Approximation of singular Green’s function only first
order accurate.

Increasing the order of polynomials used is only of
modest benefit.

Increasing the amplitude of the approximate δ-function
useful up to a point, but making it larger only of value if
the mesh is refined.



Computational data

Computational Modeling Initiative 2019 129/164

degree mesh amplitude error check-sum
1 128 10,000 5.27e-03 -2.34e-02
1 256 10,000 2.50e-03 -4.57e-09
1 512 10,000 1.47e-03 -2.22e-16
1 1024 10,000 1.08e-03 5.11e-15
4 256 10,000 9.73e-04 -1.02e-10
1 512 100,000 9.67e-04 -1.06e-03
1 1024 100,000 5.24e-04 -1.98e-14

Table 5: Data for the solution of (46). Key: degree is the degree of polyno-
mials used, mesh is the number of triangle pairs in each direction. The am-
plitude is A, error is ‖uAh − g‖L2(Ω), check-sum is the value 1−

∫
Ω

(
δA
x0

)
h
dx

where
(
δA
x0

)
h

denotes the interpolant of δA
x0

in Vh.



Mismatch in boundary conditions yields singularity
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A mismatch between boundary conditions can lead to a
singularity.

Consider the boundary value problem

−∆u = 0 in Ω

u = 0 on Γ

∂u

∂n
= g on Ω\Γ,

(47)

where Ω = [0, 1]2, g(y) = 1 and

Γ = {(x, y) ∈ ∂Ω : x = 0 or y = 0 or y = 1} .



Mismatch in boundary conditions
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Thus Ω\Γ = {(x, y) ∈ ∂Ω : x = 1}.

Define Γ0 = {(x, y) ∈ ∂Ω : y = 0 or y = 1} ⊂ Γ.

Since u ≡ 0 on Γ, it follows that ∂u
∂x = 0 on Γ0,

But ∂u
∂x = 1 on Ω\Γ, so there is a discontinuity in ∂u

∂x at
(1, 0) and (1, 1).

In particular, second derivatives of u blow up like r−1

where r is the distance to (1, 0) or (1, 1).

Thus u 6∈ H2(Ω).



Viz technique
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To visualize this phenomenon, we have plotted ∂u
∂x in

Figure 12.

As expected, ∂u
∂x = 0 on Γ, and ∂u

∂x = 1 on Ω\Γ away from
the singular points (1, 0) or (1, 1).

At these points, the approximation can exhibit
unpredictable behavior for some meshes.

The code used to compute ∂u
∂x is

v=grad(u)[0]



Mismatch plot
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Figure 12: Plot of ∂u
∂x where u is the solution of (47) approximated with

piecewise linears on a 16 × 16 mesh. We see that ∂u
∂x = 0 on Γ0 (top and

bottom sides of Ω = [0, 1]2) and ∂u
∂x = 1 on ∂Ω\Γ (right side of Ω = [0, 1]2).



Modifying the equation
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So far, everything has been based on

the Laplace/Poisson equation

Now we modify the PDE itself.

Simplest modification: add a potential.

Let’s see what the issues are!



Adding a potential
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We now augment the equation (1) with a potential Z,
which is simply a function defined on Ω with real values.
The PDE takes the form

−∆u+ Zu = f in Ω (48)

together with the boundary conditions (2).

To formulate the variational equivalent of (1) with
boundary conditions (2), we again use the variational
space

V :=
{
v ∈ H1(Ω) : v|Γ = 0

}
.



Bilinear form
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The appropriate bilinear form for the variational problem
is then

aZ(u, v) =

∫

Ω

∇u(x) · ∇v(x) + Z(x)u(x)v(x) dx.

In the case of homogeneous boundary conditions, we
seek a solution u ∈ V to

aZ(u, v) =

∫

Ω

f(x)v(x) dx ∀ v ∈ V. (49)

The simplest case is when Z is a constant, in which

case (48) is often called the Helmholtz equation .



Bounded V
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The Helmholtz problem becomes interesting if Z is
large, or equivalently, there is a small coefficient in front
of ∆ in (48).
Exercise: explore this problem.

To understand coercivity in such problems, we first
consider the eigenvalue problem

−∆u = λu in Ω (50)

together with the boundary conditions (2).

Denote solution of (50) by uλ.



Potential coercivity
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Let λ0 be the lowest eigenvalue, and uλ0
∈ V the

corresponding eigenvector, for the eigenproblem
problem (50):

a0(uλ, v) = λ

∫

Ω

uλ(x)v(x) dx ∀ v ∈ V,

where a0(·, ·) denotes the case Z ≡ 0, same as bilinear
form a(·, ·) in (4).

Coercivity (16) of the bilinear form a0(·, ·) shows that
λ0 > 0.

Moreover, if Z(x) > −λ0 for all x ∈ Ω, then the problem
(49) is well posed since it is still coercive.



Boundary layers
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Let ǫ > 0. Consider the problem

−ǫ∆uǫ + uǫ = f in Ω,

together with boundary conditions u = 0 on ∂Ω, where f
is held fixed independent of ǫ.

This is known as a singular perturbation problem.

Under certain conditions, we expect uǫ → f as ǫ → 0,
since this is what we get if the term ǫ∆uǫ goes to zero as
ǫ → 0.

But this can only be correct if f = 0 on ∂Ω.



Localized behavior
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But in many cases, the data f does not satisfy the
constraint f = 0 on ∂Ω, and in that case something has
to be compromised.

In the typical situation, uǫ → f as ǫ → 0 everywhere
except in a small boundary layer near ∂Ω.

To gain intuition, we consider an example.



Localized behavior
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Figure 13: Boundary layer problem with ǫ = 0.0001 and f ≡ 1 approxi-
mated with piecewise linears: (left) 64× 64 mesh and (right) 16× 16 mesh.



Computational data
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degree mesh number L2 difference time
1 256 6.86e-02 1.11
1 512 5.34e-02 5.1
1 1024 4.72e-02 29
2 512 4.54e-02 23
4 256 4.48e-02 18
8 128 4.47e-02 25
8 8 7.74e-02 23

Table 6: Boundary layer problem with ǫ = 10−6. Degree refers to the poly-
nomial degree, mesh number indicates the number of edges along each
boundary side, L2 difference is ‖u− f‖L2([0,1]2), and time is in seconds.



Boundary layer example
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degree mesh number L2 difference ǫ

1 256 1.43e-01 1.00e-04
1 512 1.42e-01 1.00e-04
1 256 8.64e-02 1.00e-05
1 512 8.14e-02 1.00e-05
1 1024 8.00e-02 1.00e-05
1 1024 4.72e-02 1.00e-06

Table 7: Boundary layer problem with various values of ǫ. Degree refers to
the polynomial degree, mesh number indicates the number of edges along
each boundary side, L2 difference is ‖u− f‖L2([0,1]2).



Localized behavior
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Let ǫ > 0. Consider the problem

−ǫ∆uǫ + uǫ = f in Ω = [0, 1]2,

together with boundary conditions u = 0 on ∂Ω, where
f ≡ 1 is held fixed independent of ǫ.

In this case, f does not satisfy the boundary conditions.

The solution is depicted in Figure 13.

On the left side of Figure 13, the mesh is fine enough to
resolve the boundary layer, but on the right side of
Figure 13, we see a numerical artifact (an over-shoot).

In Table 7, we see evidence that uǫ → f in L2(Ω).



Unbounded potentials
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For certain unbounded potentials, it is still possible to
show that (49) is well posed.

For example, if Z is either the Coulombic or graviational
potential Z(x) = −|x|−1, then the eigenvalue problem

aZ(uλ, v) = λ

∫

Ω

uλ(x)v(x) dx ∀ v ∈ V,

is well posed, even in the case Ω = R
3.

In this case, eigensolutions correspond to

the wave functions of the hydrogen atom [7].

Exercise: explore this problem.



van der Waals interaction
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Figure 14: Asymptotic wavefunction perturbation computed with quartics
on a mesh of size 100, with L = 7.



van der Waals interaction
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van der Waals interaction energy between two hydrogen
atoms, separated by a distance R, is asymptotically of
the form −C6R

−6 where the constant C6 can be
computed [3] by solving a two-dimensional PDE.

Let Ω = [0,∞]× [0,∞] and consider the PDE

−1

2
∆u(r1, r2) + (κ(r1) + κ(r2)) u(r1, r2)

= −1

π
(r1r2)

2e−r1−r2 in Ω,
(51)

where the function κ is defined by κ(r) = r−2 − r−1 + 1
2.

The minimum of κ occurs at r = 2, and we have
κ(r) ≥ 1

4 .



van der Waals variational form
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The problem (51) is well posed in H1
0(Ω), i.e., given

Dirichlet conditions on the boundary of the
quarter-plane Ω.

The variational form for (51) is

aκ(u, v) =

∫

Ω

1
2∇u(r1, r2) · ∇v(r1, r2) dr1dr2

+

∫

Ω

(
κ(r1) + κ(r2)

)
u(r1, r2) v(r1, r2) dr1dr2,

(52)

defined for all u, v ∈ H1
0(Ω).



van der Waals coercivity
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The form (52) is coercive on H1
0(Ω), since

κ(r1) + κ(r2) ≥ 1
2 . In particular,

aκ(v, v) ≥
1

2

∫

Ω

|∇v(r1, r2)|2 + v(r1, r2)
2 dr1dr2,

for all v ∈ H1
0(Ω).

The form aκ(·, ·) is continuous on H1
0(Ω) because of the

Hardy inequality
∫ ∞

0

(
u(r)/r

)2
dr ≤ 4

∫ ∞

0

(
u′(r)

)2
dr

for u ∈ H1
0(0,∞).



van der Waals form continuity

Computational Modeling Initiative 2019 150/164

Note that it would not be continuous on all of H1(0,∞):

without the Dirichlet boundary condition, the form

would be infinite for some functions in H1(0,∞).

Here is an example of a variational form where

• coercivity is easy to demonstrate
• but continuity is delicate.



van der Waals interaction
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To be able to render this problem computationally
feasible, we replace Ω by a square ΩL of side L in
length; ΩL = [0, L]× [0, L]. Define U(r1, r2) = u(Lr1, Lr2).
Then ∆U(r1, r2) = L2∆u(Lr1, Lr2). Thus

−1

2
L−2∆U(r1, r2) = −1

2
∆u(Lr1, Lr2)

= − (κ(Lr1) + κ(Lr2)) u(Lr1, Lr2)−
L4

π
(r1r2)

2e−Lr1−Lr2

= − (κ̂L(r1) + κ̂L(r2))U(r1, r2)−
L4

π
(r1r2)

2e−Lr1−Lr2,

where κ̂L(r) = L−2r−2 − L−1r−1 + 1
2.



van der Waals interaction

Computational Modeling Initiative 2019 152/164

Therefore U satisfies

−1
2
L−2∆U(r1, r2)+(κ̂L(r1) + κ̂L(r2))U(r1, r2) = −L4

π
(r1r2)

2e−Lr1−Lr2 ,

which we can pose with homogeneous Dirichlet boundary
conditions (u = 0) on Ω1 = [0, 1]× [0, 1].

Multiplying by 2L2, we obtain the equation

−∆U(r1, r2) + (κL(r1) + κL(r2))U(r1, r2) = −2L6

π
(r1r2)

2e−Lr1−Lr2

= f(r1, r2),
(53)

where κL(r) = 2r−2 − 2Lr−1 + L2.



van der Waals computation
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Thus we introduce the variational form

aL(u, v) =

∫

[0,1]2
∇u(r1, r2) · ∇v(r1, r2)

+
(
κL(r1) + κL(r2)

)
u(r1, r2) v(r1, r2) dr1dr2

(54)

Variational problem: find uL ∈ V = H1
0([0, 1]

2) such that

aL(uL, v) =

∫

[0,1]2
f(r1, r2) v(r1, r2) dr1dr2

for all v ∈ V .

The solution is shown in Figure 14 with L = 7 computed
on a mesh of size 100 with quartic Lagrange piecewise
polynomials.
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The main quantity of interest [3, equation (3.25)] is

C6 = −32π

3

∫
∞

0

∫
∞

0
r21r

2
2e

−(r1+r2)u(r1, r2) dr1dr2

≈ −32π

3

∫ L

0

∫ L

0
r21r

2
2e

−(r1+r2)u(r1, r2) dr1dr2

≈ −32π

3

∫ L

0

∫ L

0
r21r

2
2e

−(r1+r2)U(r1/L, r2/L) dr1dr2

= −32π

3

∫ 1

0

∫ 1

0
L4R2

1R
2
2e

−(LR1+LR2)U(R1, R2)L
2 dR1dR2

= −16π2

3

2L6

π

∫ 1

0

∫ 1

0
R2

1R
2
2e

−(LR1+LR2)U(R1, R2) dR1dR2

=
16π2

3

∫ 1

0

∫ 1

0
f(R1, R2)U(R1, R2) dR1dR2,

where we made the substitution ri = LRi, i = 1, 2, and f is defined in (53).
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degree quadrature mesh no. C6 error ǫ L time
4 6 100 4.57e-07 1.00e-09 15.0 1.47
4 10 100 4.57e-07 1.00e-09 15.0 1.595
4 8 250 4.56e-07 1.00e-09 15.0 12.5
2 4 600 4.45e-07 1.00e-09 15.0 4.738
2 2 250 -1.22e-07 1.00e-09 15.0 0.786
2 3 255 -2.74e-08 1.00e-09 15.0 0.786
2 3 265 4.23e-08 1.00e-09 15.0 0.837
2 4 240 -1.87e-08 1.00e-09 15.0 0.739

Table 8: Using finite element computation of C6 = 6.4990267054 [3]. The
potential was modified as in (55). Computations were done with 4 cores via
MPI and a PETSc Krylov solver. Error values were the same for ǫ = 10−9

and ǫ = 10−12.
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To avoid singularities in the coefficients, we modified the potential to be

κǫL(r) = 2(ǫ+ r)−2 − 2L(ǫ+ r)−1 + L2. (55)

Computational results are shown in Table 8. The results were insensitive
to ǫ for ǫ ≤ 10−9.
The singularity (ri)

−2 is difficult to deal with. But we can integrate by parts
to soften its effect, as follows:
∫

Ω
(ri)

−2u(r1, r2) v(r1, r2) dr1dr2 = −
∫

Ω

(∂
∂ri

(ri)
−1

)
u(r1, r2) v(r1, r2) dr1dr2

=

∫

Ω
(ri)

−1∂

∂ri

(
u(r1, r2) v(r1, r2)

)
dr1dr2,

(56)

where for simplicity we define Ω = [0, 1]2 here and for the remainder of
this subsection.
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We have assumed that u, v ∈ V = H1
0 (Ω) in (56). Thus

∫

Ω

(
(r1)

−2 + (r2)
−2

)
u(r1, r2) v(r1, r2) dr1dr2

=

∫

Ω

(
(r1)

−1, (r2)
−1

)
· ∇

(
u(r1, r2) v(r1, r2)

)
dr1dr2

=

∫

Ω

(
(r1)

−1, (r2)
−1

)
·
((

∇u(r1, r2)
)
v(r1, r2) +

(
∇v(r1, r2)

)
u(r1, r2)

)
dr1dr2

Thus we introduce a new variational form (cf. (54))

âǫL(u, v) =

∫

Ω
∇u(r1, r2) · ∇v(r1, r2) +

(
κ̂ǫL(r1) + κ̂ǫL(r2)

)
u(r1, r2) v(r1, r2) dr1dr2

+ 2

∫

Ω
β̂(r1, r2) ·

(
(∇u(r1, r2)) v(r1, r2) + u(r1, r2)(∇v(r1, r2))

)
dr1dr2

where

β̂(r1, r2) =
(
(r1 + ǫ)−1, (r2 + ǫ)−1

)
, κ̂ǫL(r) = −2L(r + ǫ)−1 + 2L2.
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Instead of using finite elements, we use Laguerre
functions:

σn,α(r) = e−αrrn, n = 1, 2, . . . .

Tensor products of these functions for α = 1 are used to
approximate the solution on the infinite domain Ω.

To shorten notation, let σn = σn,1.
Integrals can be computed exactly. Thus
∫ ∞

0

σ′
nσ

′
m dr = (m+ n− 2)!

(
(m+ n)− (m− n)2

)
/2m+n+1

∫ ∞

0

σnσmr
−i dr = (m+ n− i)!/2m+n−i+1.
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Define a one-dimensional variational form

â(u, v) =

∫ ∞

0

1
2u

′v′ + κ(r)uv dr. (57)

Thus

â(σn, σm) = (m+ n− 2)!
(
(m+ n)− (m− n)2 + 8

− 4(m+ n− 1)− λ0(m+ n)(m+ n− 1)
)
/2m+n+2.

Also need the corresponding “mass” matrix

µ(σn, σm) =

∫ ∞

0

σnσm dr = (m+ n)!/2m+n+1. (58)
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Now condsider approximation by tensor products

v(r1, r2) =
k∑

i=1

k∑

j=1

cijσi(r1)σj(r2). (59)

We seek solutions u of the form (59) to

aκ(u, v) = (f, v) (60)

for all v of the form (59), where

(f, v) =

∫ ∞

0

∫ ∞

0

f(r1, r2)v(r1, r2) dr1dr2. (61)

f(r1, r2) = −σ2(r1)σ2(r2). (62)
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Typical matrix element corresponding to (60):

A(i,j),(m,n) = a(σi(r1)σj(r2), σm(r1)σn(r2))

= â(σi, σm)µ(σj, σn) + â(σj, σn)µ(σi, σm),
(63)

where µ is the mass matrix defined in (58).

When f takes the form (62), the right-hand side in the
corresponding linear equation is

−µ(σ2, σm)µ(σ2, σn) = −(m+ 2)!(n+ 2)!/2m+n+6, (64)

where µ is defined and evaluated in (58).
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The quantity of interest C6 computed as indicated in
Table 9.

k C6 values k C6 values k C6 values
6 6.499025 11 6.49902670534

2 6.17 7 6.4990266 12 6.49902670539
3 6.486 8 6.49902669 13 6.499026705401
4 6.4985 9 6.499026703 14 6.499026705404
5 6.49900 10 6.4990267051 15 6.499026705403

Table 9: Convergence of C6 values as a function of the degree k of poly-
nomials used in the Laguerre function approximation.
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Using the basis functions σn yields matrices with
extreme scales.

To compensate, we used diagonal scaling for the linear
system.

Au = f was modified to DADy = Df where u = Dy.

The diagonal matrix D was chosen to be, in octave
notation, D=inv(diag(sqrt(diag(A)))).

With this scaling, round-off errors only appeared beyond
the twelfth digits using sixteen digit computation in
octave, at least for k ≤ 15.
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