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10.5 Time discretization

The simplest discretization for the heat equation uses a spatial discretization method for
ordinary di↵erential equation in Section 11.1, for that part of the problem and a finite
di↵erence method for the temporal part. This technique of decomposing the problem into
two parts is an e↵ective technique to generate a numerical scheme, and it allows us to
reuse existing software already developed for the o.d.e. problem. Many time dependent
problems can be treated in the same manner. This technique goes by many names:

• (time) splitting since the time and space parts are separated and treated by inde-
pendent methods

• the method of lines since the problem is solved on a sequence of lines (copies of the
spatial domain), one for each time step.

10.5.1 Explicit Euler time discretization

The simplest time discretization method for the heat equation uses the forward (or explicit)
Euler di↵erence method. It takes the form
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where un(x) denotes an approximation to u(x, n�t). Applying the finite element approxima-
tion (8.5) (or the finite di↵erence approximation (11.2)) to (10.31) yields a simple algorithm.
It just involves multiplying a matrix times a vector in the finite di↵erence case at each time
step, but in the finite element case a system involving the mass matrix (see Section 8.3)
must be solved. The di�culty with this simple algorithm is that it is unstable unless �t is
su�ciently small. This will be explained in more detail in Section 11.5.

10.5.2 Implicit Euler time discretization

The simplest implicit time discretization method for the heat equation uses the backward
(or implicit) Euler di↵erence method. It takes the form
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where un(x) again denotes an approximation to u(x, n�t). Applying the finite element
approximation (8.5) (or the finite di↵erence approximation (11.2)) to (10.32) yields now a
system of equations involving the a(·, ·) form to be solved at each time step. This algorithm is
stable for all �t, but now we have to solve a system of equations (instead of just multiplying
by a matrix in the finite di↵erence case). Note however that the system to be solved is just
the same as in the ODE boundary-value problems studied earlier, so the same family of
techniques can be used.


