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There is a subtle dependence of the regularity of the solution in the case of discontinuous
coe�cients [219]. It is not in general the case that the gradient of the solution is bounded.
However, from the variational derivation, we see that the gradient of the solution is always
square integrable. A bit more is true, that is, the p-th power of the solution is integrable for
2  p  P" where P" is a number bigger than two depending only on the ellipticity constant
" in (17.7) (as " tends to zero, P" tends to two).

17.1.1 Coercivity and continuity

The assumption (17.5) immediately implies coercivity of the bilinear form (17.3). For each
x 2 ⌦, we take ⇠i = v,i(x) and apply (17.5):
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Similarly, (17.6) implies that the bilinear form (17.3) is bounded:
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using the Cauchy-Schwarz inequality (3.15).

17.1.2 Flux continuity

Using the variational form (17.3) of the equation (17.1), we will see that the flux
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is continuous across an interface normal to n even when the ↵ij ’s are discontinuous across
the interface. This implies that the normal slope of the solution must have a jump (that is,
the graph has a kink).

The derivation of (17.10) is just integration by parts. Suppose that ⌦ = ⌦
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� = ⌦

1

\ ⌦
2

.1 Suppose that v = 0 on @⌦. Define w = v↵ru and apply the divergence
theorem on each ⌦i separately to get
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Summing this over i and using (17.1) we get
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1We are being a bit picky here about whether the sets ⌦i include their boundaries (that is, are closed)
or not. To write ⌦ = ⌦1 [ ⌦2, one of the ⌦i’s has to include the overlap �.


