There is a subtle dependence of the regularity of the solution in the case of discontinuous coefficients [219]. It is not in general the case that the gradient of the solution is bounded. However, from the variational derivation, we see that the gradient of the solution is always square integrable. A bit more is true, that is, the p-th power of the solution is integrable for $2 \leq p \leq P_{\varepsilon}$ where P_{ε} is a number bigger than two depending only on the ellipticity constant ε in (17.7) (as ε tends to zero, P_{ε} tends to two).

17.1.1 Coercivity and continuity

The assumption (17.5) immediately implies coercivity of the bilinear form (17.3). For each $\mathbf{x} \in \Omega$, we take $\xi_{i}=v_{, i}(\mathbf{x})$ and apply (17.5):

$$
\begin{equation*}
\int_{\Omega}|\nabla \mathbf{v}(\mathbf{x})|^{2} d \mathbf{x}=\int_{\Omega} \sum_{i=1}^{d} v_{, i}(\mathbf{x})^{2} d \mathbf{x} \leq c_{0} \int_{\Omega} \sum_{i, j=1}^{d} \alpha_{i j}(\mathbf{x}) v_{, i}(\mathbf{x}) v_{, j}(\mathbf{x}) d \mathbf{x}=c_{0} a_{\alpha}(v, v) \tag{17.8}
\end{equation*}
$$

Similarly, (17.6) implies that the bilinear form (17.3) is bounded:

$$
\begin{align*}
a_{\alpha}(u, v) & =\int_{\Omega} \sum_{i, j=1}^{d} \alpha_{i j}(\mathbf{x}) u_{, i}(\mathbf{x}) v_{, j}(\mathbf{x}) d \mathbf{x} \leq c_{1} \int_{\Omega}|\nabla u(\mathbf{x})||\nabla v(\mathbf{x})| d \mathbf{x} \tag{17.9}\\
& \leq c_{1}\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)}
\end{align*}
$$

using the Cauchy-Schwarz inequality (3.15).

17.1.2 Flux continuity

Using the variational form (17.3) of the equation (17.1), we will see that the flux

$$
\begin{equation*}
\sum_{i=1}^{d} \alpha_{i j}(\mathbf{x}) \frac{\partial u}{\partial x_{i}}(\mathbf{x}) n_{j} \tag{17.10}
\end{equation*}
$$

is continuous across an interface normal to \mathbf{n} even when the $\alpha_{i j}$'s are discontinuous across the interface. This implies that the normal slope of the solution must have a jump (that is, the graph has a kink).

The derivation of (17.10) is just integration by parts. Suppose that $\Omega=\Omega_{1} \cup \Omega_{2}$ and that the coefficients are smooth on the interiors of $\Omega_{i}, i=1,2$, but have a jump across $\Gamma=\overline{\Omega_{1}} \cap \overline{\Omega_{2}} .{ }^{1}$ Suppose that $v=0$ on $\partial \Omega$. Define $\mathbf{w}=v \boldsymbol{\alpha} \nabla \mathbf{u}$ and apply the divergence theorem on each Ω_{i} separately to get

$$
\oint_{\Gamma} v \mathbf{n}_{i} \cdot \boldsymbol{\alpha} \nabla \mathbf{u} d s=\int_{\Omega_{i}} \nabla \cdot \mathbf{w} d x=\int_{\Omega_{i}}(\boldsymbol{\alpha} \nabla \mathbf{u}) \cdot \nabla v d x+\int_{\Omega_{i}} v \nabla \cdot(\boldsymbol{\alpha} \nabla \mathbf{u}) d x
$$

Summing this over i and using (17.1) we get

$$
\begin{equation*}
\oint_{\Gamma} v[\mathbf{n} \cdot \boldsymbol{\alpha} \nabla \mathbf{u}]_{\Gamma} d s=a(u, v)-\int_{\Omega} f v d \mathbf{x}=0, \tag{17.11}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ We are being a bit picky here about whether the sets Ω_{i} include their boundaries (that is, are closed) or not. To write $\Omega=\Omega_{1} \cup \Omega_{2}$, one of the Ω_{i} 's has to include the overlap Γ.

