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n Integral Error
3 1.15384615384615 8.5× 10−4

5 1.15469613259669 4.4× 10−6

7 1.15470051566839 2.3× 10−8

9 1.15470053826218 1.2× 10−10

11 1.15470053837865 6.0× 10−13

Table 13.1 Errors in computing the integral (13.28) via the trapezoidal rule with n
points. The exact answer is 1.15470053837925, which is obtained with
n = 13 and does not change for larger n. The bold face digits are the
first incorrect digits for each n.

13.2 PEANO KERNEL THEOREM

There is a general abstract result due to Peano4 that gives a representation
of the error for a wide class of numerical approximations. The error in
quadrature is a typical example. Consider the setup in theorem 13.2 and
define

Ef = Qf −
∫ b

a
f(x)w(x) dx. (13.29)

Note that EP = 0 for all polynomials of degree k, where k is the order of
exactness of Q, and that E is linear,

E(f + cg) = Ef + cEg, (13.30)
as long as the same is true ofQ, since this holds for the integral. In particular,
Ef = E(f − P ) for any polynomial P of degree k.

Recall Taylor’s theorem with integral remainder (7.81):

f(x)− Pk(x) =
1

k!

∫ x

a
(x− t)kf (k+1)(t) dt , (13.31)

where Pk is the Taylor polynomial

Pk(x) =
k∑

j=0

f (j)(a)

j!
(x− a)j . (13.32)

Let us use the notation (X)+ to mean X if X ≥ 0 and 0 if X ≤ 0. Then we
can rewrite (13.31) as

f(x)− Pk(x) =
1

k!

∫ b

a
(x− t)k+f

(k+1)(t) dt . (13.33)

Since E is linear, we have

Ef =E(f − P ) =
1

k!
E

[∫ b

a
(x− t)k+f

(k+1)(t) dt

]

=
1

k!

∫ b

a
E
[
(x− t)k+

]
f (k+1)(t) dt.

(13.34)

4Giuseppe Peano (1858–1932) is best known for his contributions to the foundations
of mathematics. But he also did research on numerical analysis [130].
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The last equality may seem like a leap of faith, and in any case the notation
needs to be made more precise. Define

φ(x) =

∫ b

a
(x− t)k+f

(k+1)(t) dt (13.35)

for x ∈ [a, b]. Then (13.33) says that f − Pk = (k!)−1φ, so Ef = (k!)−1Eφ.
Similarly, define a one-parameter family of functions ψk

t (x) = (x − t)k+ for
x ∈ [a, b] and let

K(t) = Eψk
t . (13.36)

Then we claim that

Ef =

∫ b

a
K(t)f (k+1)(t) dt. (13.37)

13.2.1 Continuity of Peano kernels

To make sense of the integral in (13.37), we need to know some regularity
properties of K. Let us assume that Qf is defined for any f ∈ Cm([a, b])
for some m ≥ 0. More precisely, we assume that there is a positive constant
CQ <∞ such that

|Qf | ≤ CQ‖f‖Cm,[a,b] (13.38)

for all f ∈ Cm([a, b]), where

‖f‖Cm,[a,b] = max
0≤i≤m

‖f (i)‖∞,[a,b]. (13.39)

In particular, we can take m = 0 for trapezoidal rule, m = 1 for the Hermite
rule, and m = 2k − 1 for the Euler-Maclaurin quadrature rule using k end
corrections (k = 1 is the Hermite case). Note that (13.38) implies that

|Ef | ≤ (CQ + (b− a))‖f‖Cm,[a,b]. (13.40)

Then

|K(t+ h)−K(t)| = |Eψk
t+h − Eψk

t | = |E(ψk
t+h − ψk

t )|
≤ (CQ + (b− a))‖ψk

t+h − ψk
t ‖Cm,[a,b] → 0

(13.41)

as h→ 0, provided m < k. In fact, it is sufficient to show that

‖ψk
t+h − ψk

t ‖C0,[a,b] → 0 as h→ 0, (13.42)

for k > 0, since (ψk
t )

′ = kψk−1
t for k > 1. We leave the proof of (13.42) as

exercise 13.20. This shows that K is continuous.
The proof of (13.37) relies on the linearity of E and the linearity of the

integration process. For example, this can be verified by approximating
the integral by Riemann sums (exercise 13.6). Thus we have proved the
following.
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Theorem 13.5 Suppose that the quadrature Q is linear, exact of order k,
and satisfies the bound (13.38) for m < k. Then the error E defined by
(13.29) satisfies

Ef =
1

k!

∫ b

a
K(t)f (k+1)(t) dt, (13.43)

where K is defined by (13.36).

The function K is called the Peano kernel for this error relation. We can
provide an error estimate using the Peano kernel:

|Ef | ≤ 1

k!

∫ b

a
|K(t)| dt ‖f (k+1)‖∞,[a,b], (13.44)

which can be compared with (13.5) (see exercise 13.7).
For t ≤ x, ψk

t ≡ 0, and so the kth derivative of ψk
t is discontinuous at

x = t. However, it is easy to see that ψk
t ∈ Ck−1(R) and

K ′(t) = lim
h→0

h−1 (K(t+ h)−K(t)) = lim
h→0

h−1
(
Eψk

t+h − Eψk
t

)

= lim
h→0

E
(
h−1

(
ψk
t+h − ψk

t

))
.

(13.45)

Similar to (13.42), we can show (exercise 13.21) that

‖h−1(ψk
t+h − ψk

t )− kψk−1
t ‖Cm,[a,b] → 0 as h→ 0, (13.46)

for k ≥ m+ 2. Therefore by (13.40)

K ′(t) = lim
h→0

E
(
h−1

(
ψk
t+h − ψk

t

))
= E

(
lim
h→0

h−1
(
ψk
t+h − ψk

t

) )

= kE
(
ψk−1
t

)
,

(13.47)

provided that Q satisfies (13.38). By definition, ψ0
t (x) is the Heaviside func-

tion that is 0 for x < t and 1 for x > t.
When t = a, ψk

a(x) = xk on [a, b], so we have K(a) = 0 because Q is
exact of order k. Similarly, when t = b, ψk

b ≡ 0 on [a, b], so again K(b) = 0.
Therefore, (13.45) implies that

K(i)(a) = K(i)(b) = 0 (13.48)

for i = 0, 1, . . . , k−1−m, provided that Qf is well-defined for f ∈ Cm([a, b]).
In the case of the Hermite quadrature rule (13.21), we have m = 1.

13.2.2 Examples of Peano kernels

Now let us see if we can figure out what K might look like in examples. Let
us start with Q = midpoint rule on [0, 1], which is exact for polynomials of
degree k = 1. In this case, the statement is

Ef = f( 12 )−
∫ 1

0
f(t) dt =

∫ 1

0
KMR(t)f

(2)(t) dt. (13.49)
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The quadrature rule Qf = f( 12 ) is well-defined for f ∈ C0, so we conclude
from (13.45) that KMR ∈ C0 and that K ′

MR
is defined for x *= 1

2 and bounded.
Thus we can integrate by parts to find

Ef = f( 12 )−
∫ 1

0
f(t) dt = −

∫ 1

0
K(1)

MR(t)f
(1)(t) dt. (13.50)

We can integrate by parts again, but we have to be careful since KMR is not
C1. However, the only point where KMR fails to be smooth is x = 1

2 , and so
we can break the integral into two parts and integrate by parts again. To
make a long story short, we find that

KMR(t) = −
{

1
2 t

2 t ≤ 1
2

1
2 (t− 1)2 t ≥ 1

2 .
(13.51)

We leave as exercise 13.8 verification that this KMR satisfies (13.49) for all
f ∈ C2. Similarly, it is not hard to see (exercise 13.7) that the kernel for the
trapezoidal rule is

KTR(t) =
1
2 t(1− t) (13.52)

and the kernel for Hermite quadrature (13.21) is

KH(x) = − 1
24x

2(1− x)2. (13.53)

We will consider the form of the general kernels KEM

k for the Euler-Maclaurin
quadrature subsequently.

13.2.3 Uniqueness of Peano kernels

Suppose that there were two kernels K and K̃ in C0[a, b] such that (13.43)
holds. Then we claim that we must have K = K̃. To prove this, we use
(13.43) twice to see that

∫ b

a
(K(t)− K̃(t))f (k+1)(t) dt = 0 (13.54)

for all f ∈ Ck+1([a, b]). For any g ∈ C0[a, b], we can write

f(x) =

∫ x

a

∫ t

a
· · ·
∫ s

a
g(s) ds, (13.55)

where there are k+1 integrals. Then we conclude that g(x) = f (k+1)(x) for
all x ∈ [a, b]. Thus (13.54) implies

∫ b

a
(K(t)− K̃(t))g(t) dt = 0 (13.56)

for any g ∈ C0[a, b]. Define e(t) = K(t) − K̃(t) for t ∈ [a, b]. Suppose that
there is some t0 ∈ [a, b] such that e(t0) *= 0. Without loss of generality,
we can assume that a < t0 < b, because if e(a) *= 0 then by continuity
of e we must have e(t) *= 0 for some t > a, and the analog would hold if
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e(b) *= 0. Then there are some ε > 0 and δ > 0 such that e(t0)e(t) ≥ δ for
all t ∈ [t0 − ε, t0 + ε] ⊂ [a, b]. Define g ∈ C0[a, b] by

g(t) =

{
e(t0)(ε2 − (t− t0)2) |t− t0| ≤ ε

0 |t− t0| ≥ ε
. (13.57)

Then ∫ b

a
(K(t)− K̃(t))g(t) dt =

∫ t0+ε

t0−ε
e(t) g(t) dt

≥ δ
∫ t0+ε

t0−ε
(ε2 − (t− t0)

2) dt > 0,

(13.58)

contradicting (13.56). Thus we must have K(t) = K̃(t) for all t ∈ [a, b].

13.2.4 Composite Peano kernels

If we make a simple change of variables in the integration, the Peano kernel
changes in a predictable way. Suppose that K̂ denotes the Peano kernel for
the interval [0, 1]. Then the kernel for the interval [a, a+ h] is

K(a+ ht) = hkK̂(t), (13.59)

where k is the order of exactness.
To see why this is so, we need to perform the corresponding transforma-

tions for both the integral and the quadrature rule. Define g(x) = a + hx.
Then for f : [a, a+ h]→ R

∫ 1

0
f ◦ g(x) dx = h

∫ a+h

a
f(t) dt (13.60)

Suppose that

Q[0,1](f ◦ g(x)) = hQ[a,a+h](f). (13.61)

Then
hk+1

k!

∫ 1

0
K̂(t)(f (k+1) ◦ g)(t) dt = 1

k!

∫ 1

0
K̂(t)(f ◦ g)(k+1)(t) dt

= E[0,1](f ◦ g(x)) = hE[a,a+h](f)

=
h

k!

∫ a+h

a
K(t)f (k+1)(t) dt,

(13.62)

for any f ∈ Ck+1([a, a+ h], proving (13.59).
For the Euler-Maclaurin formula (13.25), we have

h

(
1
2f(a) +

n−1∑

i=1

f(ξi) +
1
2f(b)

)
+

k∑

i=1

cih
2i(f (2i−1)(a)− f (2i−1)(b))

=

∫ b

a
f(x) dx+ h2k+3

n−1∑

i=0

∫ 1

0
KEM

k (x)f (2k+2)(a+ h(i+ x)) dx.

(13.63)

This completes the proof of theorem 13.4. The kernels KEM

k are related to
the Bernoulli polynomials [43, 102].


