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Abstract

We provide alternate derivations of some results in numerical linear

algebra based on a representation of the action of a real matrix on

real vectors in the case that it has complex conjugate eigenvalues.

We consider two applications of this representation. The first one

is to the relationship between the spectral radius and the norm of a

matrix. The second relates the spectral radius and the limits of norms

of roots of powers of a matrix.

There has been significant recent interest in the distinction between real
and complex operator norms [1, 2]. Given a vector space, there is a natural
way to complexify it, but this does not carry over to norms. A natural, but
not unique, complexification of norms is the Taylor norm [2]

‖x+ iy‖T = sup
θ∈[0,2π]

‖(cos θ)x− (sin θ)y‖. (1)

The relation to the current work will be evident, but we do not exploit this
in any way.

It is possible to extend many results for complex matrix norms to the
corresponding real norms, but often the extension is not straightforward.
Our objective is to provide simpler derivations. Our results are based on a
representation of the action of a real matrix on real vectors in the case that
it has complex conjugate eigenvalues. We consider two applications of this
representation. The first one is an inequality relating the spectral radius and
the norm of a matrix. The second equates the spectral radius with the limits
of norms of roots of powers of a matrix.
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1 Spectral radius and real norms

It is commonly stated [3] that

‖A‖O ≥ ρ(A) (2)

for any matrix A and any norm, where ρ(A) is the spectral radius of A and
the operator norm is defined by

‖A‖O = max
v 6=0

‖Av‖

‖v‖
. (3)

The “proof” is deceptively simple: pick any eigenvalue λ and corresponding
eigenvector X 6= 0, so that AX = λX. Choose v = X in (3), and we find

‖A‖O ≥
‖AX‖

‖X‖
=

‖λX‖

‖X‖
= |λ|. (4)

The difficulty with this argument arises if the norm has been defined over
real vector spaces, not complex ones [1]. The issue is that the maximum in
(3) is taken over only real vectors v and yet we need to apply this with a
complex vector. Here we present a proof of (2) that avoids this pitfall. We
will prove the following.

Theorem 1 Suppose A is a real matrix and ‖ · ‖ is any norm. Then there
is a real vector X such that ‖AX‖ = ρ(A)‖X‖.

If there is a real eigenvalue/eigenvector pair λ, X with |λ| = ρ(A), then
we are done. So suppose we have a real matrix A with a complex pair of
eigenvalues, λ and λ, where |λ| = ρ(A) (the pair of eigenvalues are complex
conjugates). Write X = Y + iW where both Y and W are real vectors, and
also λ = µ + iν where both µ and ν are real numbers. We can assume that
ν 6= 0 since ν = 0 is the previously considered case.

We have AX = AY + iAW since A is real. Writing out AX = λX we
find

AY + iAW = AX = λX = µY − νW + i(νY + µW ). (5)

Equating real and imaginary parts, we thus find

AY = µY − νW

AW = νY + µW.
(6)
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This says that A maps the space spanned by Y and W into itself. Call this
space V . We will see that V has to be two-dimensional, although this is not
essential for the proof. We will find Z ∈ V such that ‖AZ‖ = |λ|‖Z‖.

If Y and W were collinear, that is, W = αY , with α real, then we would
have

(1 + iα)AY = A(Y + iαY ) = λ(Y + iαY ) = (1 + iα)λY, (7)

so that (dividing by 1+ iα) AY = λY . But this is not possible because both
A and Y are real. Thus V must be two dimensional.

Any vector in V can be written as c1Y + c2W , and we easily compute
from (6) that

A(c1Y + c2W ) = d1Y + d2W (8)

where
(

µ ν

−ν µ

)

c = d. (9)

The matrix in (9) is a rotation and scaling:

(

µ ν

−ν µ

)

=

(

|λ| cos θ |λ| sin θ
−|λ| sin θ |λ| cos θ

)

= |λ|R(−θ), (10)

since |λ|2 = µ2 + ν2. Here R(θ) denotes the matrix that rotates a vector by
an angle θ.

Let us consider a parameterization of vectors in V where

c(φ) = (cosφ, sinφ) = R(φ)E, (11)

where

E =

(

1
0

)

. (12)

The image vectors d(φ) = R(φ− θ)E.

Define Z(φ) = c1(φ)Y + c2(φ)W and

f(φ) =
‖AZ(φ)‖

‖Z(φ)‖
. (13)

It is helpful to define an induced norm

‖c‖V = ‖c1Y + c2W‖ (14)
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for all c ∈ R
2. Then

f(φ) =
‖AZ(φ)‖

‖Z(φ)‖
=

‖d(φ)‖V
‖c(φ)‖V

= |λ|
‖R(φ− θ)E‖V
‖R(φ)E‖V

. (15)

Define g(φ) = ‖R(φ)E‖. Then g is periodic and continuous. Define

φ∗ = argminφ∈[0,2π]g(φ) and φ∗ = argmaxφ∈[0,2π]g(φ). (16)

Then
g(φ∗) ≤ g(φ∗ − θ) and g(φ∗ − θ) ≤ g(φ∗), (17)

and thus f(φ∗) ≥ |λ| ≥ f(φ∗). By the intermediate value theorem, there is a
φ̂ such that f(φ̂) = |λ|. Therefore Z = Z(φ̂) is the desired vector. QED

2 Limiting relations

The following is frequently called Gelfand’s equality:

ρ(A) = lim
k→∞

‖Ak‖1/k. (18)

Here we let ‖A‖ denote any norm, not necessarily one derived as an operator
norm. To prove this, we begin with the following result.

Theorem 2 Suppose A is a real n × n matrix and ‖A‖ denotes any norm
on R

n2

. If ρ(A) > 1, then

lim
k→∞

‖Ak‖ = ∞. (19)

First we assume that there is a complex pair of eigenvalues as in the proof
of Theorem 1. Iterating the representation (8), we find

Ak(c1Y + c2W ) = d
(k)
1 Y + d

(k)
2 W, (20)

where

d(k) =

(

µ ν

−ν µ

)k

c = |λ|kR(−kθ)c. (21)

Suppose that for some (finite or infinite) set of positive integers K, we have

‖Ak‖ ≤ C0 for all k ∈ K. (22)
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Then the same bound is true for any norm, with a different constant, by
the equivalence of norms on a finite dimensional vector space. In particular,
‖Ak‖∞ ≤ C1, where this is the component-wise max norm, for all k ∈ K.
That is, |(Ak)ij| ≤ C1 for all i, j and for all k ∈ K. Thus we conclude that

|d1Y + d2W |∞ ≤ C2|c|2, (23)

where the latter norm is the Euclidean norm in R
2. The first term in (23)

defines a norm on two-space:

|d|∗ = |d1Y + d2W |∞. (24)

Thus
|λ|k|R(−kθ)c|∗ ≤ C2|c|2 = C2|R(−kθ)c|2, (25)

since the 2-norm is invariant under rotation. Since the 2-norm and the *-
norm are equivalent, we have

|λ|k ≤ C3 (26)

for all k ∈ K. If |λ| > 1, K must be a finite set. Since C0 was arbitrary, (19)
holds.

If there is a real eigenvalue λ = ±ρ(A), with eigenvector X 6= 0, the
result follows from the fact that AkX = λkX by similar arguments. QED

The remainder of the proof of (18) is standard. Let ǫ > 0 be arbitrary,
but with ǫ < ρ(A). (If ρ(A) = 0, the result is trivial.) We define

A± =
1

ρ(A)± ǫ
A. (27)

We have ρ(A+) < 1 and ρ(A−) > 1.
Applying Theorem 2, there is an N such that

‖Ak
−‖ ≥ 1, (28)

for all k ≥ N . Thus

‖Ak‖1/k = (ρ(A)− ǫ)‖Ak
−‖

1/k ≥ (ρ(A)− ǫ), (29)

for all k ≥ N . Thus

lim inf
k→∞

‖Ak‖1/k ≥ (ρ(A)− ǫ). (30)
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Since this holds for any ǫ > 0, we must have

lim inf
k→∞

‖Ak‖1/k ≥ ρ(A). (31)

Since ρ(A+) < 1, we have Ak
+ → 0 as k → ∞. This is a deep result, but

it is independent of any norm. Therefore there is an N such that

‖Ak
+‖ ≤ 1, (32)

for all k ≥ N , by the continuity of the norm. Thus

‖Ak‖1/k = (ρ(A) + ǫ)‖Ak
+‖

1/k ≤ (ρ(A) + ǫ), (33)

for all k ≥ N . Thus

lim sup
k→∞

‖Ak‖1/k ≤ (ρ(A) + ǫ). (34)

Since this holds for any ǫ > 0, we must have

lim sup
k→∞

‖Ak‖1/k ≤ ρ(A). (35)

Since lim infk→∞ ak ≤ lim supk→∞ ak for any nonnegative real numbers
ak, (31) and (35) imply that

lim
k→∞

‖Ak‖1/k = ρ(A). (36)

QED

3 Other proof

We can prove (2) using (18) as follows for submultiplicative norms, that is,
ones that satisfy ‖AB‖ ≤ ‖A‖‖B‖:

ρ(A) = lim
k→∞

‖Ak‖1/k ≤ ‖A‖. (37)

4 Remarks

Theorem 2 is often proved using the Jordan decomposition, together with
careful analysis of powers of Jordan blocks. The approach taken here shows
that this result is fairly elementary, susceptible to a two-dimensional analysis.
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