
COPYRIGHT NOTICE:

For COURSE PACK and other PERMISSIONS, refer to entry on previous page. For
more information, send e-mail to permissions@pupress.princeton.edu

University Press. All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher, except for reading
and browsing via the World Wide Web. Users are not permitted to mount this file on any
network servers.

is published by Princeton University Press and copyrighted, © 2005, by Princeton

L. Ridgway Scott, Terry Clark, and Babak Bagheri: Scientific Parallel Computing

Chapter One
Introduction

If you walk the footsteps of a stranger, you will learn
things you never knew you never knew—Pocahantas,
by Disney

This chapter introduces many of the basic notions of parallel compu-
tation. In Section 1.1 we give a short overview of the book, and Section 1.2
attempts to define what we mean by parallel computing. Section 1.3 in-
troduces the critical topic of performance, which is central to the entire
subject. In Section 1.4 we describe some of the motivating factors for the
development of parallel computers. This is followed by some examples of
parallelizing computational problems. The first two examples (Section 1.5)
are quite simple, but serve to introduce many of the most important con-
cepts. The next examples (Section 1.6) help to introduce further concepts
as well as to provide some numerical applications that will be developed
more in the text. Section 1.7.1 puts into context the role of parallel compu-
tation in solving technical problems, and Section 1.7.2 (also see Section 2.7)
considers parallelism in a broader context.

1.1 OVERVIEW

Parallel computing enables simulation in a variety of application areas which
would not be possible with sequential processing alone. To use it effectively,
there are diverse subjects that must be understood. This book focuses on
three main areas that contribute to overall understanding of parallel com-
puting: algorithms, architecture, and languages. All of these are essential
contributors to solving problems of interest, which we refer to as “applica-
tions” in Figure 1.1.

A basic understanding of computer architecture is needed to under-
stand and predict the behavior of programs on different machines. A variety
of fundamentally different computer architectures are commercially available
today. Some differ substantially in the way they are programmed and the
performance that can result. An introduction to computer architecture is
presented in Chapter 3 to allow us to compare and contrast existing options.
Some designs can be seen to be less appropriate for certain applications based
on the simple analysis presented there.

2 CHAPTER 1

Architecture Algorithms

Parallel
Computing

Languages

APPLICATIONS

Figure 1.1 Knowledge of algorithms, architecture, and languages contributes to effective use of
parallel computers in practical applications.

Central to the subject of parallel computing are algorithms. A gen-
eral rule for scientific applications is that there is no parallelism of any
significance occurring naturally. Parallelism must be created by removing
dependences (see Chapter 4) that exist in most algorithms. Entirely new
algorithms must be sought in some cases. Fortunately, the nature of scien-
tific applications allows one to utilize a multitude of algorithms to solve the
same problem, and highly efficient parallel algorithms can be found in most
cases.

Several computer languages are in use today for programming parallel
computers. Some languages can be used for different computer architectures
with only a change at the compilation stage: the source application code
does not change. Other languages are more closely aligned with a particular
computer architecture. In Chapter 5, the essential features of various parallel
computer languages are presented, and Chapters 8–10 introduce particular
languages.

Applications are the driving force for all of computing, and much of
the stimulus for parallel computing has come from scientific applications.
We will introduce some simple prototypical application kernels later in this
chapter as a basis for the discussion of programming languages and basic
concepts of parallel computing. Once the elementary concepts are firmly es-
tablished, basic algorithms of scientific computation are presented in Chap-
ter 12. Later, more complete scientific applications will be developed and
analyzed extensively, such as particle dynamics in Chapter 13. These can
be used as models of projects that can be done by students as part of a

INTRODUCTION 3

course. Later chapters on mesh-based computations (Chapter 14) and on
sorting (Chapter 15) are similar in approach.

1.2 WHAT IS PARALLEL COMPUTING?

We define parallel computing to be the application of two or more process-
ing units to solve a single problem. These units can be physical processors
or logical processes. A process is an abstraction provided by the operating
system to capture the state of a program in execution. Thus, a program
containing parallel units of work, or tasks, is executed by two or more co-
operating processes executing on one or more processors.

In the class of parallel programs of primary interest to this book, each
process executes the same program, but with different data. In fact, typically
the program is viewed as processes more or less moving through the same
code, but with different values according to the chunk of work assigned to
the process. Although there are exceptions, this is the guiding paradigm.

Since processes calculate values that are needed by other processes, we
need a way to distinguish among those data at different processes. It is useful
to use a process-centric view where one process is considered with respect to
all other processes. It naturally follows that the data of the one process under
consideration are considered on-process data and all the rest are off-process
data. We define a processing unit as a process executing on some processor.
In using multiple processing units to solve a problem, varying degrees of
coordination are required. Coordination primarily revolves around accessing
off-process data required by some process to compute its tasks. Already
introduced, these are referred to as dependences.

Consider a real world example of a typing pool with the job to type
the chapters of this book, one typist per chapter. After completion of a
chapter, typists may want to exchange chapter page counts so to sequentially
number the pages of the book. If we think of each typist as a processing
element, then this exchange involves somehow getting access to off-process
data. Specifically, the page count of a chapter is accessed after completion of
the chapter and not before. Current methods in parallel computing achieve
this data exchange typically in one of two ways. In one method, the process
requesting information will access the off-process information directly from
memory where it was written. This requires some form of synchronization so
that the value in memory is accessed when it is valid. In the typist example,
the page count of preceding chapters is retrieved when it is complete and not
before. Another method to acquire off-process information uses messages.
In a message, the required information is packaged, somehow identified, and
sent from the process that defined it to the process that requires it. Thus, in
this way messages have both the information (page counts in our example)
and synchronization, since the page-count message is presumably sent after
the chapter has been finished. That off-process data are required and that

4 CHAPTER 1

these data may be on another physical processing unit introduces another
dimension to the traditional memory hierarchy illustrated in Figure 1.2, that
of off-process data. The term communication is often used in reference to
accessing off-process data.

1.3 PERFORMANCE

The objective of the book is to help the reader achieve the best possible per-
formance from parallel computers. Performance can be measured in many
ways, but we will be interested primarily in the speed at which computation
is done in floating point arithmetic.

Definition 1.3.1. The (floating point) performance of a computer
code is the number of floating point operations that it can execute in a given
time unit. Performance is often stated in terms of Millions of Floating Point
Operations Per Second (megaFLOPS or MFLOPS), or Billions of Floating
Point Operations Per Second (gigaFLOPS or GFLOPS).

Sometimes it will be necessary to refer to an amount of work in units
of Floating Point OPerations (a FLOP). The plural of this will be written
FLOP’s to distinguish it from the performance figure FLOPS (which is a
number of FLOP’s per second). In particular, 10 MFLOP’s means ten
million floating point operations, whereas 10 MFLOPS means a performance
of ten million floating point operations per second. Since this combination
of units is the one most critical to describing performance, we feel it is
appropriate to introduce a new unit, the Cray.1 We define a Cray to be
109 floating point operations per second (one floating point operation per
nanosecond), since this was the level of performance being achieved by a
single processor at Seymour Cray’s untimely death.

To illustrate this definition, let us begin with a very simple example.
A look at a book of mathematical tables tells us that

π

4
= 1 − 1

3
+

1
5

− 1
7

+
1
9

− 1
11

+
1
13

− 1
15

+ · · · (1.3.1)

This is not a rapidly converging series to use to compute π, but it serves as
a good example for studying the basic operation of computing the sum of a
series of numbers:

A =
N∑

i=1

ai. (1.3.2)

1The development of the first “supercomputers” was largely the result of efforts lead by Seymour
Cray (1925-1996). Seymour Cray earned a BS in engineering from the University of Minnesota
in 1950. He co-founded Control Data Corporation (CDC) in 1957; the CDC 6600 is the primary
candidate for the title of “first supercomputer.” The series of supercomputers bearing Cray’s name
were produced by Cray Research. Started in 1972, this company was headquartered in Seymour’s
boyhood home, Chippewa Falls, Wisconsin, also home of the Jacob Leinenkugel Brewing Co.

INTRODUCTION 5

En
tir

e
pr

ob
le

m
 fi

ts
 w

ith
in

 re
gi

st
er

s

En
tir

e
pr

ob
le

m
 fi

ts
 w

ith
in

 c
ac

he

En
tir

e
pr

ob
le

m

fit
s

w
ith

in

m
ai

n
m

em
or

y

Pr
ob

le
m

re
qu

ire
s

se
co

nd
ar

y
(d

is
k)

m
em

or
y

Problem too big
for system!P

er
fo

rm
an

ce
 o

f
co

m
p

u
te

r
sy

st
em

Size of problem being solved

P
er

fo
rm

an
ce

 o
f

co
m

p
u

te
r

sy
st

em

Size of problem being solved

Figure 1.2 Hypothetical model of performance of a computer having a hierarchy of memory sys-
tems (registers, cache, main memory, and disk).

The computation of A requires N − 1 floating point additions and N + 1
memory references. If it takes TN seconds to compute this for a given
implementation (meaning for a given code compiled for a given computer),
then the performance is (N −1)/TN FLOPS. Since this is likely to be a very
large number, we usually say that it is either (N−1)/(TN ×106) MegaFLOPS
or (N − 1)/(TN × 109) GigaFLOPS (or Crays).

1.3.1 Performance analysis

There is often a theoretical maximum floating point performance for a given
computer, and the performance of any code run on it is guaranteed not to
exceed this figure. The goal of performance analysis is to understand
not only the performance being achieved by a given code, but the reasons
why this may differ from the theoretical maximum. In many cases, this
is quite difficult to do with sufficient precision since computer clocks have
a finite resolution. Any given operating system may have different timers
available. It is crucial to understand the advertised accuracy of the timer
you are using, and to compare that with your own estimate of how small a
time it can measure accurately. In timing the computation of the sum in
(1.3.2), this may mean that the observed time TN = 0 for N < Nc for a
critical size Nc depends on the resolution of the timer.

Even if the timer never returns zero, it may be that it reports TN = 1
time unit for all N < Nc, which is equally uninformative. One can estimate
the minimum measurable time in various ways, but one useful way is to plot
the ratio of the observed time to a predicted time based on some model

6 CHAPTER 1

of the computation. For example, we assume that the summation (1.3.2)
should take an amount of time proportional to N . So the ratio TN/N should
be more or less constant. But when TN = 0 it will drop to zero; before that
happens, for slightly larger N , it may become erratic.

To get reliable information on performance for very short computa-
tions, it may be necessary to repeat computations during the timing cycle
until the total time is large with respect to the smallest measurable time.
Dividing by the number of repeats (see Exercise 1.7) can give an estimate
of small times that would otherwise be too short to be measured.

Another feature of self-measurement is a kind of computer uncer-
tainty principle similar in spirit to the Heisenberg Uncertainty Principle of
quantum mechanics.2 One cannot achieve arbitrary precision in measuring
the performance of most computers since we usually use the computer itself
to do the measurement. Introduction of timing analysis code can alter the
time to completion by interfering with the calculation under measurement.
In a parallel program it is important to assign time costs to sections of a
program. In addition to determining the time for various procedures com-
prising a problem solution, it is frequently useful to separate out the costs to
access remote data. The point is that timing a code can have subtle issues
requiring careful engineering of a suitable timing strategy.

1.3.2 Memory effects

A critical feature of any algorithm is the relationship between the amount
of work done and the amount of memory that must be accessed. In many
cases, it is possible to quantify the relationship by a ratio measuring, at least
in an asymptotic sense for sufficiently large problems, the number of floating
point operations done per unit of memory accessed (via either a read or a
write).

Definition 1.3.2. The work/memory ratio of an algorithm is the
ratio ρWM of the number of floating point operations to the number of memory
locations referenced (either reads or writes).

There is delicate wording in Definition 1.3.2. The denominator counts
the number of memory locations referenced, L, not the number of mem-
ory references made, R. For example, should a program consist solely of
the senseless but valid loop for(i=0; i<1000; i++) j = i; then R >> L

2Werner Heisenberg (1901–1976) invented matrix mechanics in 1925, the first version of quan-
tum mechanics, and in 1932 was awarded the Nobel Prize in physics for this work. Heisenberg
is best known for the Heisenberg Uncertainty Principle which he discovered in 1927. The uncer-
tainty principle states that if you become more certain about a particle’s position, then you must
become less certain about its momentum, and vice versa. The uncertainty in position, δx, and in
momentum, δp, are related by 2δxδp = !, a very small number equal to 1.05×10−34Joule seconds,
not noticeable in everyday life.

INTRODUCTION 7

Computation
done here Pathway to memory

Main data
stored here

Figure 1.3 A simple memory model with a computational unit with only a small amount of local
memory (not shown) separated from the main memory by a pathway with limited
bandwidth µ.

since two memory locations are referenced 1000 times. The number of mem-
ory references made by a program depends on the particular implementation
used to do the computation, whereas the number of memory locations used
measures the total number of data (or memory locations) involved. We will
see that simplified but useful definition can require quite complex analysis
with the introduction of compiler optimization and additional components
to the memory hierarchy. This distinction is further illustrated in Exam-
ple 1.3.5 and Exercise 1.3.

Example 1.3.3. The computation of A in equation (1.3.2) requires
N −1 floating point additions and involves N +1 memory locations: one for
A and n for the ai’s. Therefore, the work/memory ratio for this algorithm
is ρWM = (N − 1)/(N + 1) ≈ 1 for large N . In most cases, we will only
be interested in such quantities for large data sizes, so we will loosely say
that ρWM = 1 for this algorithm. See Section 1.3.3 for a more precise way of
simplifying such approximations.

It is uncommon to have ρWM much less than one, but it is not unusual
to have it become arbitrarily large as a function of data size. In fact, we
will see that certain computer architectures perform significantly better with
algorithms having a large ρWM. One goal of this book is to help in either
choosing or designing algorithms with large ρWM.

The observed performance of a computer system depends on its ability
to access the memory required by a given computation. If the maximum
speed that the memory system can deliver information is µ words per time
unit, then the maximum performance that can be achieved is µρWM. We
formalize this observation in the following theorem. We will assume that
the computer system has a very simple structure as indicated in Figure 1.3:
the computational unit has only a small amount of memory available locally,
with the main memory accessible only via a channel of limited bandwidth.

Theorem 1.3.4. Suppose that a given algorithm has a work/memory
ratio ρWM, and it is implemented on a system as depicted in Figure 1.3
with a maximum bandwidth to memory of µ million floating point words
per second. Then the maximum performance that can be achieved is µρWM

MFLOPS.

Theorem 1.3.4 provides an upper bound on the number of operations

8 CHAPTER 1

per unit time, by assuming the floating point operation blocks until data
are available to the cpu. Therefore the cpu cannot proceed faster than the
rate data are supplied, and it might proceed slower. Note again that ρWM

measures the amount of memory referenced, not the number of memory
references (the same memory location could be referenced multiple times in
a given algorithm).

Example 1.3.5. Consider the computation of the product of a square
matrix A = (aij) and a vector V = (vi), defined by

(AV)i :=
n∑

j=1

aijvj for i = 1, . . . , n. (1.3.3)

Then the number n of floating point operations is n multiplies and n − 1
adds for each (AV)i for a total of (2n − 1)n FLOP’s to compute AV. The
number of memory locations involved is n2 for A, and n each for V and
AV. Thus the ratio ρWM of the number of floating point operations to the
number of data values (i.e., number of memory locations) involved in the
algorithm is

ρWM =
2n2 − n

n2 + 2n
≈ 2

for n large. Note that the number of memory references can be larger. If we
have to read vj from memory every time we compute aijvj (for i = 1, . . . , n)
then we read V a total of n times. In this worst case, the ratio of work to
memory references is one instead of two, worse by a factor of two.

Theorem 1.3.4 refers to a machine with a single path to memory, but
this model is too simplistic for real systems. The typical memory subsystem
is a multi-component system with a hierarchy of components organized from
fast and costly to slower and less costly. In general, the memory components
closest to the cpu are fastest, with the slower memory components feeding
the faster ones using various strategies to amortize the cost to pull data from
a slower component into a faster one. Memory cache (Section 3.1.2) supplies
resident data to the cpu in a few machine cycles, and nonresident data are
obtained from slower main memory in blocks consisting of contiguous mem-
ory locations. Consequently, programs that access data in some memory
locale and reuse data will get more usage of data in the cache, resulting in
better performance. In terms of the previous discussion, data reuse makes
the most of data fetched to the cache by accessing the same memory loca-
tion multiple times. For a cpu to access a datum already in cache is called a
cache hit. Figure 1.4 presents a simple picture of such a system. Note that
to access the same memory location multiple times in a program does not
guarantee a cache hit. The size of the cache is much smaller than the size of
main memory, so that it follows that many locations in main memory share

INTRODUCTION 9

Computation
done here Pathway to memory

Main data
stored here

Local data
cache here
Local data
cache here

Figure 1.4 A memory model with a large local data cache separated from the main memory by a
pathway with limited bandwidth µ.

only a few locations in the cache; we leave this important detail aside for
the present discussion.

Consider the matrix-vector multiplication algorithm (1.3.3). Let us
assume that after the vector V has been read from memory once, it stays in
cache. Then the number of memory references is the same as the amount of
memory referenced, and the maximum performance in Theorem 1.3.4 can
be achieved. That is, ρWM correctly measures the amount of memory traffic
under these assumptions. Of course, this can only happen if the cache size
is sufficiently large to hold all of the vector V.

In addition to particular analyses for particular algorithms like (1.3.3),
a general model of behavior for cache systems can be developed as in the
next example based on average cache hit rates. We will use notation familiar
from physics such as words

second to mean “words per second” (denoting a rate
of transmission). Of course, this notation is convenient for seeing how to
cancel units of time, operations, or memory.

Example 1.3.6. The performance of a two-level memory model (as
depicted in Figure 1.4) consisting of a cache and a main memory can be
modeled simplistically as

average cycles
word access

=%hits × cache cycles
word access

+ (1 - %hits) × main memory cycles
word access

,
(1.3.4)

where %hits is the fraction of cache hits among all memory references. For
a main memory access time of 100 cycles per word and a cache access time
of 2 cycles per word, the average cycles

word for 10% and 90% hit rates are 90.2
and 11.8, respectively. The average number of words per time unit is

words
second

=
(

average cycles
word access

)−1
× cycles

second
.

On a 2 GHz processor, the corresponding average memory rates would be
22.2 and 169.5 million words per second. The performance of programs
exhibiting an average memory access time of n cycles per word on a 2 GHz
processor is bounded by

(
n

cycles
word access

)−1
×

(
2 × 109 cycles

second

)
× ρWM =

2 × 109ρWM

n
FLOPS.

10 CHAPTER 1

For an average of ρWM = 2 floating point operations per word, with 10%
and 90% cache-hit cases, the bounds on performance are 44.3 MFLOPS and
330 MFLOPS, respectively.

Modeling the speed of access to memory is quite complex on mod-
ern high-performance computers. Figure 1.2 indicates the performance of a
hypothetical application, depicting a decrease in performance as a problem
increases in size and migrates into ever slower memory systems [6] [5]. Even-
tually the problem size reaches a point where it can not ever be completed
for lack of memory.

Such degradation would, e.g., result for an algorithm that has a fixed
and sufficiently small work/memory ratio ρWM, so that peak performance
cannot be achieved for data not resident in cache. In this case, Figure 1.2
represents a plot of the bandwidth µ of the various memory systems, in view
of Theorem 1.3.4. It is typical for a computer’s various memory systems to
be progressively slower, larger, and cheaper per word of memory. See Exer-
cise 1.7 for a specific example of this behavior for the summation problem
(1.3.2).

For computers having a performance profile as indicated in Figure 1.2,
algorithms with a larger work/memory ratio ρWM will perform better than
ones with smaller ones. It is sometimes possible to choose algorithms that
produce equivalent answers but have vastly different work/memory ratios.

1.3.3 Asymptotic analysis

In much of our analysis of algorithms and performance we will be interested
in the order of the growth of a function excluding the details of multiplicative
constants and lower order terms. When we look at the growth of f(n) in
this way, we are considering the asymptotic growth in the limit of large n.

For our purposes we will use the O-notation as defined below to de-
scribe an asymptotic upper bound of a function.

Definition 1.3.7. For a function f(n) the asymptotic upper bound
O(g(n)) implies that there exists a constant c1, satisfying 0 < c1 < ∞, and
an integer n0 ≥ 0 such that f(n) ≤ c1g(n) for all n ≥ n0.

Example 1.3.8. To show that the upper bound of function f(n) =
an2 + bn is O(n2) we seek c1 so that the inequality

an2 + bn ≤ c1n
2

holds for large n. Provided that c1 > a, this does hold for any n ≥ b/(c1−a).

It is important to understand that the asymptotic upper bound, say,
O(n2) for some performance metric, does not say the performance is O(n2).
Rather it does say that the worst case running time for any n is O(n2). For

INTRODUCTION 11

example, bubblesort (Figure 15.1) can sort an already sorted list with an
operation count cn, although bubblesort has a worst-case asymptotic upper
bound of O(n2).

Example 1.3.9. In Example 1.3.3 we found the work/memory ratio
for computing A in (1.3.2) to be ρWM = (N − 1)/(N + 1), and we concluded
ρWM ≈ 1. Now let us compare (N − 1)/(N + 1) to one:

N − 1
N + 1

− 1 =
N − 1 − (N + 1)

N + 1

=
−2

N + 1
= O(N−1).

Thus we can say more precisely that ρWM = 1 + O(1
N).

Example 1.3.10. In some instances asymptotic analysis can be mis-
leading. A common source of confusion arises using the notation without
taking into account the constant factors. Suppose we have two algorithms
to solve the same problem. Algorithm F has running time f(n) = an2, and
algorithm G has running time g(n) = bn. By solving the inequality an2 < bn
we find that g(n) > f(n) for n < b

a . Therefore, for n < b
a , algorithm F is

the better choice even though f(n) = O(n2) and g(n) = O(n).

1.4 WHY PARALLEL?

Several factors spurred the development of parallel supercomputers. Many
of these factors can be categorized as follows:

• physical limitations, e.g., the speed of light;

• economic factors (economies of scale);

• scalability (matching the computer to the problem size);

• architectural improvements (reflecting the increasing role of memory
compared to processing power).

We will discuss examples of all of these, although our list is meant to be
simply illustrative, not exhaustive.

1.4.1 Physical limits

At the most elementary level, physical limitations such as the speed of light3
(see Figure 1.5) make it difficult to construct large computers that operate

3The speed of light imposes a physical limit on signal propagation times across computer
circuitry. This physical constant is approximately 3×1010 cm/sec in a vacuum, an upper limit on
the speed of electromagnetic propagation in various physical media, such as copper wire. Grace
Murray Hopper (1906–1992) was an early pioneer in computing who was famous for handing out
a nanosecond’s worth of copper wire to students and admonishing them not to waste nanoseconds
in their codes.

12 CHAPTER 1

0
cm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Answer:
About thirty centimeters.

Figure 1.5 Light travels about one foot (in a vacuum) in a nanosecond.

with a clock speed on the order of a nanosecond or less. In this time, light
travels only a foot or so in a vacuum (electrical signals are even slower in
copper wire). This forces tolerances to be very precise in order to guaran-
tee synchronization of even the simplest operations such as reading a word
of data from memory, while demanding increasingly compact packaging of
components.

Historically, processor speeds have increased exponentially, with a dou-
bling time of something less than two years. In the last two decades, this has
been exemplified by the rapid increase in performance of microprocessors.
For example, Figure 1.6 depicts this increase for the Intel “86” family of
computer chips which powered the personal computer revolution. Here, a
fifteen-year period has led to a performance increase at the processor level
by a factor of more than one hundred.

Due in part to speed-of-light limitations on the rate of data move-
ment and lagging performance of memory subsystems, the increase in per-
formance of vector supercomputers has been much less dramatic in the last
three decades (see also Figure 1.6) than the increases in processor cycle
speeds. Similarly, the performance increase of a uniprocessor workstation
does not directly track processor cycle speed increases due in part to more
slowly increasing memory performance with an increasing differential be-
tween processor speed and memory access time. The problem, however, has
been more complex in vector processing systems due to the characteristically
large memories and faster processing units.

1.4.2 Economic factors and scaling

It has always cost more to produce high-end computers than “commod-
ity” single-processor workstations. Figure 1.7 shows this behavior with the
family of workstations provided by Digital based on the SPECint92 perfor-

INTRODUCTION 13

M
ill

io
n

s
of

 o
p

er
at

io
n

s
p

er
 s

ec
on

d

Year of introduction of various supercomputers and micro processors

1970 1975 1980 1985 1990 1995 2000
10-1

10 0

101

10 2

10 3

10 4

Cray XMP

Cray 1

Cray T90

NEC SX3
Pentium III

Pentium II
Pentium Pro

Pentium

80486

80386

80286

8080
8086

Figure 1.6 Performance of various “supercomputers” and the Intel “86” family of computer chips.

mance4 for the DEC “alpha” workstations. It is clearly more cost effec-
tive to buy three of the lowest performance workstations than one of the
higher-performance ones, in terms of the aggregate performance available.
It is natural to consider combining several less powerful processors to form
a single, more cost-effective computer. Of course, in doing so there may
be additional costs related to providing space, electricity, sufficiently fast
communications, and other factors that complicate the price/performance
equation. However, the economies of scale due to using many commodity
computers will frequently compensate for this.

A significant topic of this book will be how to partition a large cal-
culation into component parts which can then be performed by a collection
of individual computers with minimal interaction. If this can be done, one
extra benefit is that the individual calculations done by each of the comput-
ers are smaller, e.g., in terms of the size of the data set or the number of
operations performed. Figure 1.2 indicates how performance can decrease as
the problem size increases due to migration of data into ever slower memory
systems. In this case, a problem which can be decomposed into smaller parts
can potentially run with greater than linear speedup (see Definition 2.2.1)

4The System Performance Evaluation Cooperative (SPEC) is a nonprofit organization founded
by computer vendors in 1988 with the goal to provide realistic, standardized performance tests.

14 CHAPTER 1

SPECint92 performance

P
ri

ce
 in

 t
h

o
u

sa
n

d
s

o
f U

S
d

o
lla

rs

45

40

35

30

25

20

15

10

5

0
0 50 100 150

Model 800

Model 600

Model 300

Model 300L

2 Model 300Ls

3 Model 300Ls

Quadratic Price Model = 1 + .0018*performance2:

Figure 1.7 The cost of a particular computer architecture grows quadratically as a function of the
performance of the computer. Plotted is the price of four Digital “alpha” workstation
models (the circles on the graph) as a function of their SPECint92 performance. A
quadratic curve has been fitted to the data to clarify its nonlinear behavior. Data were
drawn from the 19 October 1993 Wall Street Journal. The dotted line indicates the
price/performance associated with buying multiple machines of the cheapest model.

since the problem size for each individual computer is decreasing as the
number of processors is increased. As indicated following Definition 1.3.2,
the ratio of the amount of work done to the amount of memory that must
be accessed is a critical factor determining performance. In any case, the
ability to match the size of a parallel computer to a given problem (many
processors for big problems, few for small ones) provides a way to “right
size” the computer resources to ensure better resource utilization.

1.4.3 Memory

A recent but perhaps overarching reason for the success of parallel computers
is that they allow the aggregate bandwidth between the processor(s) and
memory to be made much larger at minimal expense. With a conventional
pathway to memory, such as a bus (see Section 3.1.1), there are significant
limits to how fast information can be moved between the processor and main
memory. As one might expect, the cost of such a pathway also increases
greater than linearly with the bandwidth achieved. A parallel computer

INTRODUCTION 15

allows one to have many pathways (as many as the number of processors or
more) and thereby to keep a balance between processing power and memory
bandwidth at reasonable cost.

1.4.4 Parallel conclusions

In summary, parallel computers provide the following advantages which we
have emphasized:

• they postpone the limitations of the speed of light that hampered the
design and manufacture of conventional supercomputers;

• they allow cheaper components to be used to achieve comparable levels
of aggregate performance;

• they allow problem sizes to be subdivided and thereby achieve a better
match between algorithm and appropriate system components, such
as cache and RAM, leading to better system performance;

• they allow aggregate bandwidth to memory to be increased together
with the processing power at reasonable cost.

1.5 TWO SIMPLE EXAMPLES

For the sake of orientation, we give two extended but simple examples which
exhibit key features of parallel computing without requiring much mathe-
matical background. This will give us some basic examples to work with
as we develop ideas in the first few chapters. They illustrate the concepts
introduced so far in Definition 1.3.1 and Definition 1.3.2, and they introduce
some additional key concepts, presented also in a series of definitions.

1.5.1 Simple sums

We begin with the summation problem (1.3.2):

A =
N∑

i=1

ai.

This sort of operation is often called a reduction; it reduces the vector
(a1, . . . , aN) to the scalar A. The formal definition of a reduction will be
given in Chapter 6.

Assume for simplicity that N is an integer multiple, k, of P : N = k ·P .
Then we can divide the reduction operation into P partial sums:

Aj =
jk∑

i=(j−1)k+1

ai (1.5.1)

16 CHAPTER 1

for j = 1, . . . , P . Then

A =
P∑

i=1

Ai. (1.5.2)

Leaving aside the last step (1.5.2), we have managed to create P parallel
tasks (1.5.1) each having k = N/P additions to do on k = N/P data points.

Definition 1.5.1. A task is a part of a computation that can be
thought of independently from other parts. We think of a task as something
that can be computed by a separate procedure, such as a subroutine in
Fortran, a function in C, or a method in Java.

Recall that the work/memory ratio (Definition 1.3.2) for these compu-
tations is 1 (for k sufficiently large); that is, there is only one floating point
operation to be done for each data point ai. The ratio k = N/P is often
called the granularity of the parallel tasks.

Definition 1.5.2. The granularity of a set of parallel tasks is the
amount of work (of the smallest task) that can be done independently of
any other computation.

The basic job of parallelizing scientific computation is to discover,
create, or otherwise expose independent calculations that can be done in
parallel with minimal communication. When no communication is required,
we give these a special name.

Definition 1.5.3. Tasks that can be done independently of any other
computation, without any communication required among them, are called
trivially parallel or embarrassingly parallel.5

The tasks in (1.5.1) are trivially parallel. However, the final step
of summing the Ai’s in (1.5.2) requires some form of cooperation, either
communication of data or synchronization, among the P processors that
computed them. We postpone detailed discussion of algorithms for forming
this sum until Chapter 6, but simple algorithms will be given as examples
in the sequel.

There are very few exceptions to the rule that any scientific program
consists of loops, typically many. The computation of the sum (1.3.2) will

5Parallel computing for scientific and engineering applications remains a difficult undertak-
ing. The act of parallelizing an application can involve Herculean efforts, or a sizable piece of
a graduate student’s career. Yet, there are some applications without data dependences (Chap-
ter 4) along a richly parallel dimension, whereby the applicationists may avoid dramatic efforts
in parallelization. The cliché embarrassingly parallel pokes fun at the good fortune of having
readily available parallelism, permitting routine methods. Jay Boris, computational fluid dynam-
icist speaking at the 1997 DOD High-Performance Computing Modernization meeting, however,
summed up the practical side of the matter: “I am not embarrassed about the [trivial] parallelism
in my application, I am happy about it!”

INTRODUCTION 17

be programmed typically in a loop, e.g., a DO loop in Fortran or a for loop
in C. The concept of iteration space is useful to understand how to deal with
parallelism in loops.

Definition 1.5.4. The iteration space of a given set of (possibly
nested) loops is a subset of the Cartesian product of the integers consisting of
the set of all possible values of loop indices. The dimension of the Cartesian
product is the number of nested loops (it is one if there is only one loop).
When the exact set of loop indices is not known without running the code,
the iteration space is taken to be the smallest set known to contain all of
the loop indices.

The iteration space for a single loop implementing (1.3.2) is simply
the integers from 1 to N . The parallel algorithm embodied in (1.5.1) and
(1.5.2) corresponds to dividing this set into P contiguous segments, which
we call a decomposition of the iteration space:

Definition 1.5.5. An iteration space decomposition consists of a
collection of disjoint subsets of the iteration space whose union is all of the
iteration space.

The algorithm (1.3.2) has been parallelized using an approach referred
to as data parallelism.

Definition 1.5.6. The concept of data parallelism refers to paral-
lelizing a composite operation on a large data set in which the same (or
similar) individual operations are carried out on each data item.

The data-parallel operation in (1.3.2) is summation. The key point is
the homogeneity of the overall task, which allows it to be divided in arbitrary
ways through multiple instances in execution of the same procedure where
each instance operates on a portion of the iteration space. This kind of
parallelism is very similar to the type of loop parallelism we will study in
Section 4.2.

1.5.2 Load balancing

Figure 1.8 depicts graphically the iteration space for the summation problem
(1.3.2) parallelized using the decomposition in (1.5.1). One requirement for
a decomposition (which we have satisfied in the one depicted in Figure 1.8)
is that the work to be done by each processor be balanced among all the
processors. If the work is not distributed equally, then one processor may
end up taking longer than the others. Since we are doing a cooperative
project, the entire job cannot be finished until the slowest subtask is finished.
We formalize the notion of balancing the work, or load, in the following
definition.

18 CHAPTER 1

Processor 1 Processor 2 Processor P

1 2 3 4 5 6 7 8 9 N

Figure 1.8 The iteration space for the summation problem with a simple decomposition indicated
by dotted lines for a granularity of k = 4.

Definition 1.5.7. Suppose that a set of parallel tasks (indexed by i =
1, . . . , P) execute in an amount of time ti. Define the average execution time

ave {ti : 1 ≤ i ≤ P} :=
1
P

∑

1≤i≤P

ti. (1.5.3)

The load balance β of this set of parallel tasks is

β :=
ave {ti : 1 ≤ i ≤ P}
max {ti : 1 ≤ i ≤ P} . (1.5.4)

A set of tasks is said to be load balanced if β is close to one.

The amount the load balance β differs from the ideal case β = 1
measures the relative difference between the longest task and the average
task, measured in terms of run time. That is,

1 − β =
max {ti : 1 ≤ i ≤ P} − ave {ti : 1 ≤ i ≤ P}

max {ti : 1 ≤ i ≤ P} . (1.5.5)

A set of tasks is said to be load balanced if this difference is negligible.
Note that we have compared the average time with the maximum time, not
the minimum time. The relevance of this will become clearer below and in
Section 2.3.3.

We have also defined load balance in terms of time of execution in-
stead of amount of computational work to be done. This is because the
performance (Definition 1.3.1) need not be the same for different tasks, and
the cost of the computation is proportional to the time it takes, not to how
many floating point operations get done. Of course, we will often try to
achieve load balance by balancing the amount of work to be done, since we
can frequently predict this in advance, whereas we rarely know the exact
execution time in advance.

Example 1.5.8. Load balancing in the summation problem is effected
by assigning the same number k of summands to each processor (cf. (1.5.1)).
For perfect load balance, this requires that N = Pk. If N is not divisible
by P , then this will not be possible. For the sake of argument, suppose that
N = k(P − 1) + 1. One way to distribute the work is to let the first P − 1

INTRODUCTION 19

processors sum k elements, with the last processor doing nothing. The time
of execution is then proportional to k. For definiteness, suppose that the
time units are chosen so that the constant of proportionality is one. Thus
the execution time for process i is ti = k for i = 1, . . . , P −1 and tP = 0, and
the minimum time is zero. We can increase the minimum time by decreasing
the load of other processors, but unless we can reduce them all there will
be no reduction in total (parallel) run time. Therefore the minimum time
plays very little role in determining the run time.

Our goal, then, is to create embarrassingly parallel sections of code
(cf. (1.5.1)) with the largest possible granularity and the smallest possible
amount of nonlocal memory references (often by communication) at the
points where the independent results have to be merged (cf. (1.5.2)). More-
over, we must keep the load balanced among the different processors. Of
course, it may not be possible to increase granularity and decrease commu-
nication simultaneously, and increasing the granularity often is equivalent
to decreasing the parallelism, as in the summation problem parallelized via
(1.5.1) and (1.5.2). Also, as the granularity gets smaller, the load balancing
problem often becomes more difficult. For all of these reasons, the op-
timization problem for parallel computing can be quite complex and will
likely entail significant compromise.

1.5.3 Prime number sieve

The prime number sieve6 provides an interesting example with a varying
amount of parallelism. Recall that a prime number is an integer having
no divisors other than itself and one. (An integer j is a divisor of another
integer p if p/j is exactly an integer.)

The sieve works as follows. For a given integer k, suppose we have
recorded the set S(k) of prime numbers less than k (for example, S(16) =
{2, 3, 5, 7, 11, 13}). Then we can check the primality of integers n less
than k2 by testing to see whether there are any divisors of n in S(k) (if
n = j · i < k2 then either i or j has to be less than k). So an algorithm for
computing all primes is as follows.

Suppose S(k) is known. Test the integers, n, in the range k ≤ n < k2

for divisors and if any primes are found, add them to S(k2). Note that
each of these tests can be done independently of the others by a separate
processor as long as it has access to all of S(k). If done in parallel, the
contributions to S(k2) have to be merged. Then set k ← k2 and continue.

A pseudo-code for this algorithm is written as follows. It is a nested

6The sieve of Eratosthenes (276–196 B.C.) is a a close cousin of the method we describe here.
In addition to work in various areas of mathematics, Eratosthenes is also credited with a very
accurate measurement of the diameter of the earth, and he was the third director of the famous
library of Alexandria, which is thought to have contained hundreds of thousands of papyrus and
vellum scrolls.

20 CHAPTER 1

S(k)

2
3
5
7

11
13
17
19
23

k k2 n

Figure 1.9 The iteration space for the prime number sieve. The n-axis has been modified to
eliminate even numbers, numbers divisible by three, and so forth. The darkly shaded
areas correspond to the actual values of n and π for which computation occurs, and
the lightly shaded region is the maximum possible set of n and π values.

loop, three deep, but we omit the outermost loop which increments k.

loop on n = k, k + 1, . . . , k2 − 1
loop on π ∈ S(k)

see if π divides n integrally
if it does, exit the π loop since n is not prime

end loop on π
if loop completes for all π ∈ S(k), add n to S(k2)

end loop on n

As written, this code will waste a great deal of time finding even values
of n, so making the stride equal to two in the loop on n, and starting with k
odd, will eliminate a substantial amount of unnecessary work. Further, we
will assume that n divisible by three and five and perhaps more small primes
are eliminated by adjusting the loop indices appropriately (see Exercise 1.9).

Note that the innermost operation of dividing π by n can be done
independently of all others. Thus the loops can be parallelized in a number
of ways. We could divide the “n” loop into P different parts, or we could
divide the “π” loop into P different parts, or we could have a more complex
organization. Recall the concept of iteration space in Definition 1.5.4. Fig-
ure 1.9 depicts graphically the iteration space for the prime number sieve.
In this case, the iteration space is a subspace (shown in dark shading) of
the Cartesian product (shown in light shading) of intervals [k, k2 − 1] and
the set S(k). The reason it is not all of the Cartesian product is that in

INTRODUCTION 21

S(k)

Processor

1 2 3 4

Figure 1.10 Parallelizing the prime number sieve with respect to the n loop using a strip decom-
position.

executing the loops in the order indicated, the π index may not traverse all
of its potential range (when a divisor is found). Note that in this case the
precise iteration space is not known in advance but is determined as part of
the computation.

The iteration space does not indicate whether loops are parallel or
not. This can be only determined by studying the dependences in loops (see
Chapter 4). However, for loops that are known to be trivially parallel, as in
the sieve problem, different ways of parallelizing loops correspond to different
geometric decompositions (Definition 1.5.5) of the iteration space. There are
a variety of standard decompositions that are useful in parallelizing loops.

Definition 1.5.9. A strip decomposition or slab decomposition
corresponds to a subdivision of only one of the dimensions, usually into
segments of (about) equal length and consisting of contiguous elements in
the iteration space. This corresponds to subdividing only one of the loops
in a nested set of loops.

For example, Figure 1.10 shows a division of the “n” loop in the prime
number sieve into P different strips. The corresponding pseudo-code looks
like

b := (k2 − k)/P
for each processor p = 1, . . . , P

loop on n = k + (p − 1)b, . . . , k + p · b
loop on π ∈ S(k)

22 CHAPTER 1

see if π divides n integrally
if it does, exit the π loop since n is not prime

end loop on π
if loop completes for all π ∈ S(k), add n to Sp(k2)

end loop on n
end loop on p
combine different Sp(k2) into S(k2)

Note that the variable p plays the role of a unique processor identifier.
Sp(k2) is the set of primes found by the p-th processor, and

S(k2) =
P⋃

p=1

Sp(k2). (1.5.6)

We did not describe an algorithm to form the union. This requires merging
the separate sets into one set. It may not matter whether the primes come
in any order, or one might decide smaller divisors are more likely and that
it is more efficient to start checking with smaller primes first. In that case,
the separate sets needed to be merged in sorted order. Parallel algorithms
for sorting and merging will be discussed in Section 15.2.2.

Each processor will do different work (starting with the n loop) because
p takes on different values. In this way, a single program executed by different
processors can evaluate a portion of the iteration space described by the n
and π loops, each processor producing different results even though the code
is the same.

Definition 1.5.10. The single program parallel approach involves
having only one program which will execute differently on different proces-
sors. The differences can occur through either implicit mechanisms such as
compiler directives or explicit constructs such as references to the processor
number executing the code. This approach is known as SPMD (single
program, multiple data).7

In the sieve example, the differences in execution on different proces-
sors all originate in the different values of the “processor I.D.” reflected in
the value of p. The ability to use a single code to do parallel work greatly
simplifies the task of writing parallel programs. This will be discussed more
formally in Section 5.5. An alternate parallelization of the sieve is given in
the following.

7Convention is that SPMD programs are written in per-process name spaces, in contrast to data
parallel programs, which are written in a global name space. We will occasionally use the term data
parallel loosely to include SPMD programs. Strictly speaking, HPF is a data parallel approach
whereas IPfortran is an SPMD approach. These topics are discussed further in Chapters 5, 8
and 9.

INTRODUCTION 23

S(k)

processor 1

processor 2

processor 3

processor 4

n

Figure 1.11 Parallelizing the prime number sieve with respect to the π loop using a strip decom-
position.

Example 1.5.11. Dividing the π loop among processors as shown in
Figure 1.11 corresponds to having each processor use only a restricted set of
primes in its tests, but test all of the n ∈ [k, k2 −1]. In this case, some n will
be divided by a larger set of primes π, involving more arithmetic work. The
additional dark areas in Figure 1.11 indicate hypothetical extra work each
processor would have to do (none of the integers in the dark area is a divisor,
so the loop will not terminate until all in that area have been tested). Even
if there is more arithmetic work done overall, it does not necessarily mean
that the execution time is longer on a given parallel computer.

At the end, each processor has a set of candidate primes (numbers
not divisible by its subset of primes), and the intersection of these must
be formed to determine the actual set of primes. We postpone the dis-
cussion of parallel algorithms for forming set intersections until Chapter 6,
Section 6.4.5.

The prime number sieve displays a number of interesting features.
First of all, the amount of parallelism increases as k increases. Second, var-
ious parallelization strategies can be used, leading to quite different parallel
algorithms for solving the same problem. Third, the amount of information
that needs to be communicated (the merging of contributions to S(k2)) can-
not be predicted in advance. Finally, the load balance (Definition 1.5.7) is
also unpredictable since the primality test may fail (when a divisor is found)
after just a few tries, or it may succeed (the worst case: all potential divi-
sors in S(k) have to be tested). We leave the problem of load balancing the
prime number sieve to the exercises (see Exercises 1.8 and 1.12).

The iteration space for the complete algorithm is of course three-
dimensional. However, there is an essential dependence (see Chapter 4)

24 CHAPTER 1

between the k iterations (which go k2, k4, k8, . . . , k2i

, . . .) since we do not
know S for one iteration until all previous iterations have been completed.
This dependence makes it impossible to parallelize the outermost (k) loop
in a straightforward way.

1.6 MESH-BASED APPLICATIONS

We now give some examples of the type of applications that will be consid-
ered as one of the main topics of this book. We start with ordinary differen-
tial equations and standard types of discretizations. An ordinary differential
equation (o.d.e.) provides a model in which the rate of change of a quantity
is related to that quantity by an explicit function. The o.d.e. is solved for
a function, rather than a number. Few such practical equations admit an
explicit solution, making way for the application of numerical solutions.

Ordinary differential equations and their numerical solution will give
us some more challenging examples to study and will also introduce more
fundamental concepts. We will necessarily draw upon some ideas from el-
ementary numerical analysis, but we will introduce the necessary notation
and background as we go.8

1.6.1 Initial value problems

Let us begin with an ordinary differential equation
du

dt
= f(t, u) (1.6.1)

with an initial condition provided at t = 0:

u(0) = u0

for some given data value u0. Under suitable smoothness conditions on f ,
this equation has a unique solution, u, which exists for some time interval
0 ≤ t ≤ T .

We may be able to solve this analytically in terms of expressions that
are familiar to us. For example, if

f(t, u) = f(u) := −u2, (1.6.2)

then
u(t) =

1
t + 1/u0

(1.6.3)

is the solution (see Figure 1.12).

8The differential calculus is credited to Sir Isaac Newton (1642–1727) and Gottfried Wilhelm
von Leibniz (1646–1716). The controversy about priority regarding this development has been
discussed in recent popular literature [137]. Newton’s discoveries in physics and celestial mechanics
culminated in the theory of universal gravitation, which will appear in Chapter 13.

INTRODUCTION 25

Exac t solution

Finite
difference approximation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1.12 Solution of the ordinary differential equation du
dt = −u2 and the finite difference

approximation using the explicit Euler discretization.

More likely, we will not be able to recognize a solution as a combina-
tion of known functions. However, we may be primarily interested in only
numerical values of u at specified points in time, or we may just want a
graph of u that indicates its general behavior.

A discretization scheme can be used to generate approximations to the
values of u at a discrete set of points. For example, let ∆t > 0 be a fixed
parameter, and use the definition of derivative to make the finite difference
approximation

du

dt
(t) ≈ u(t +∆t) − u(t)

∆t
. (1.6.4)

Inserting this approximation into equation (1.6.1) we find

u(t +∆t) − u(t)
∆t

≈ f(t, u(t)). (1.6.5)

Define a sequence of time values tn := n∆t, and using (1.6.5), a cor-
responding sequence of values un via the explicit Euler method

un+1 = un +∆tf(tn, un). (1.6.6)

Here, un is intended to be an approximation to u(tn). Under suitable
smoothness conditions on f , one can show that

|un − u(tn)| ≤ C∆t ∀n ≤ T/∆t, (1.6.7)

26 CHAPTER 1

Proc
1

Proc
2

v = u
u = u + (dt/2)*(f1 + f2)
t = t + dt

f1 = f(t,u) f2 = f(t+dt, 2u - v)

Figure 1.13 Flow chart for trapezoidal rule algorithm displaying independent tasks for P = 2
processors. Processor 1 computes the function f1, and processor 2 computes the
function f2.

where C is a constant depending only on f and T . Figure 1.12 shows un for
0 ≤ n ≤ 20 for ∆t = 0.25 and f as defined in (1.6.2).

It is not at all necessary to have a fixed time step ∆t. The approxi-
mation (1.6.4) allows one to define

un+1 = un + (tn+1 − tn)f(tn, un). (1.6.8)

for arbitrary sequences 0 = t0 < t1 < · · · < tn.
Note that un depends on all ui for i < n and there is no simple way

to remove these dependences. One approach to creating parallelism is to
switch to a more complex difference method, with the side benefit of having
a higher order of convergence. Consider

un+1 = un +
tn+1 − tn

2
(f(tn, un) + f(tn+1, 2un − un−1)) . (1.6.9)

Here 2un − un−1 is a second order approximation to un+1, so (1.6.9) cor-
responds to a variant of the trapezoidal rule [27]. If the function f is
expensive to calculate, then it can be useful to compute f(tn, un) and
f(tn+1, 2un − un−1) on separate processors. The resulting scheme can po-
tentially use larger time steps since (Exercise 1.17)

|un − u(tn)| ≤ C max
i

(ti − ti−1)2 ∀tn ≤ T. (1.6.10)

The basic loop implementing (1.6.9) can be parallelized using an ap-
proach referred to as task or procedural parallelism.

Definition 1.6.1. An algorithm can be parallelized using task paral-
lelism or procedural parallelism when there are independent parts that
can be executed as separate procedures (Definition 1.5.1) without the need
for communication between them.

The independent parts of an algorithm in task (procedural) parallelism

INTRODUCTION 27

are trivially (embarrassingly) parallel in the terminology of Definition 1.5.3.
Using task or procedural parallelism to parallelize (1.6.9) is depicted

in Figure 1.13. The two dotted boxes indicate the parts of the algorithm
that can be done in parallel, namely, the function evaluations f(·, ·) with
different arguments. Here we make the fundamental assumption that there
are no side effects (see page 99) associated with evaluating f(·, ·). In many
cases, this step can be a large part of the computation (see Exercises 8.7
and 10.3 for a contrived example).

In the case that the function f in (1.6.1) is an affine function inde-
pendent of t (i.e., f(t, x) = a + bx), then difference methods such as (1.6.9)
become a linear recursion. Solving such a system is equivalent to solving a
banded triangular linear system of equations, something discussed at length
in Chapter 12.

1.6.2 Boundary value problems

Ordinary differential equations of higher order can have more than one data
value specified. An important special case of this occurs when data are given
at different points which form the end points for the interval of interest for
the solution. These points are then the boundary points, and the data are
known as the boundary values. In such a case, the independent variable
often connotes something distinct from “time,” so we will switch to calling
the variable x instead of t.

Consider the simple second order ordinary differential equation

−d2u

dx2 = f(x) (1.6.11)

together with specified boundary values

u(0) = a, u(1) = b (1.6.12)

for some given data values a and b.
Using an approximation such as (1.6.4) twice we obtain a system of

equations
−un−1 + 2un − un+1 = (∆x)2f(xn). (1.6.13)

Here we take xn = n∆x with ∆x = 1/(N + 1) for some integer N . Equa-
tion (1.6.13), for n = 1, . . . , N , forms a system of equations for u1, . . . , uN ,
where we interpret u0 := a and uN+1 := b where they occur in (1.6.13) (see
Exercise 1.14).

A more general set of equations can be derived, analogous to (1.6.8),
on an arbitrary mesh 0 = x0 < x1 < · · · < xn < · · · < xN+1 = 1. These
equations are of the form

− 2
xn+1 − xn−1

(
un+1 − un

xn+1 − xn
− un − un−1

xn − xn−1

)
= f(xn). (1.6.14)

28 CHAPTER 1

These equations can be simplified somewhat by collecting terms, in-
troducing notation for the local mesh size, e.g.,

hn := xn − xn−1, (1.6.15)

and scaling the equations by the factor hn+1+hn

2 in the form

hn+1 + hn

2
f(xn) = −un+1 − un

hn+1
+

un − un−1

hn

=
(

1
hn+1

+
1
hn

)
un − 1

hn+1
un+1 − 1

hn
un−1.

(1.6.16)

This represents a symmetric, tridiagonal matrix, and it can be shown to be
positive definite. In particular, the i-th row of the matrix has entries

ai,i−1 =
−1
hi

, ai,i =
1
hi

+
1

hi+1
, ai,i+1 =

−1
hi+1

(1.6.17)

for 1 < i < N . See Exercise 1.15 regarding the remaining two equations.
The set of equations (1.6.16) (together with the two equations from

Exercise 1.15) can be written succinctly in matrix form as

AU = F, (1.6.18)

where A is the matrix with entries (ai,j), F is the vector whose i-th entry
is f(xi), and U is the vector whose i-th entry is ui.

Gaussian elimination is a “direct” (non-iterative) method for solving
the system (1.6.16) which will be discussed at length in Chapter 12. For the
moment, we will turn to a discussion of iterative methods whose paralleliza-
tions are easier to describe.

1.6.3 Iterative equation solvers

The solution of the system (1.6.16) can be done by a variety of iterative
methods. We will consider several techniques, such as stationary methods,
conjugate gradients, and multigrid. One of the simplest is the Jacobi9 iter-
ation. Equation (1.6.16) can be rewritten in “fixed point” form as

(
1

hn+1
+

1
hn

)
un =

1
hn+1

un+1 +
1
hn

un−1 +
hn+1 + hn

2
f(xn). (1.6.19)

Rescaling each equation yields

un =
hn

hn+1 + hn
un+1 +

hn+1

hn+1 + hn
un−1 +

hnhn+1

2
f(xn). (1.6.20)

9Carl Jacobi (1804–1851) is widely known for the determinant appearing in the formula for
changing variables in integration, but he was also a pioneer in computational techniques and in
studying first-order systems of partial differential equations.

INTRODUCTION 29

Iteration k+1 1 2 3 4 5 6 7 8 N-1 N

Iteration k 1 2 3 4 5 6 7 8 N-1 N

proc 1 proc 2 proc 3 proc P

Figure 1.14 Data dependence in the Jacobi iteration.

This suggests an iterative method known variously as “fixed point” iteration
or Jacobi’s method:

uk+1
n =

hn

hn+1 + hn
uk

n+1 +
hn+1

hn+1 + hn
uk

n−1 +
hnhn+1

2
f(xn). (1.6.21)

When (1.6.21) converges (it does for arbitrary initial vectors
(
u0

n

)
, e.g., u0

n =
0 for all n), then the limit naturally must solve (1.6.20) and equivalently
(1.6.16).

The algorithm (1.6.21) can be parallelized using data parallelism as
defined in Definition 1.5.6. The data-parallel operation in (1.6.21) can be
represented as multiplying a matrix times the vector

(
uk

n

)
, followed by a

vector addition. Operations on vectors are typical data-parallel operations.
They are parallelized simply by dividing the index space for the index n for
the various vectors. This is depicted in Figure 1.14. Here, several indices
are assigned to a given processor, p, say the interval np ≤ n < np+1. Then
processor p computes (1.6.21) for these n. To do so, it must know the values
uk

n for np − 1 ≤ n ≤ np+1 (we ignore for the moment the very ends of the
index set, and assume some meaning is attached to n = 0 and n = N + 1).

In order to repeat the calculation (to perform the iteration), the values
uk

np−1 and uk
np+1

will have to be obtained from neighboring processors as
shown in Figure 1.14. The arrows indicate dependences (see Definition 4.1.3)
from one iteration to the next.

There is no natural task parallelism as in Figure 1.13 since everything
depends on something. On the other hand, there is data parallelism in the
sense that the single operation of updating (un) acts on a large amount
of data in parallel. Subdividing this single operation creates independent
tasks, although communication between them is generated as a byproduct.
However, the specific tasks are arbitrary, depending on the choice of subdi-
vision of the index set, as opposed to being naturally part of the algorithm
as in Section 1.6.1.

Data parallelism can be found in solving an ordinary differential equa-
tion (1.6.1) when the unknown u denotes a vector of substantial size. In
such a case, the computation of the vector quantity f(t,u) can often involve

30 CHAPTER 1

opportunities for data parallelism. An example of this type can be found in
Section 2.6.

Nonlinear problems can be solved by iterative methods as simply as
linear ones. For example, the fixed-point iteration

uk+1
n =

hn

hn+1 + hn
uk

n+1 +
hn+1

hn+1 + hn
uk

n−1 +
hnhn+1

2
f(xn, uk

n) (1.6.22)

can be computed for an arbitrary nonlinear function f(x, u). This corre-
sponds to solving a finite difference equation for the boundary value problem

−du2

dx2 = f(x, u),

u(0) = a, u(1) = b.
(1.6.23)

1.7 PARALLEL PERSPECTIVES

It is useful to understand the role of parallelism as a potential tool in problem
solving. Parallelization is not a game unto itself, to be pursued in a vacuum.
Rather it is a tool that can be effective in appropriate situations. If it does
not provide significant performance gains, it may not be of interest. Here
we give a brief example of how parallelization might play a role in a larger
context, and we also review its historical role in computing.

1.7.1 Other options

Solving technical problems can be done in a variety of ways. We have
described in Figure 1.15 a number of options that can occur. First, it is not
necessary to do computation at all. Some paths in the tree refer to using
analytical or experimental methods. The beginning point is not a sequential
code, although often this is the case.

A good example of a problem of this type is drug discovery, the
endeavor of finding new pharmaceuticals to fight disease. One popular ap-
proach involves combing the rain forests of the equatorial regions for exotic
plants and testing them for efficacy. Another involves primarily laboratory
work with test-tubes of chemicals. Another uses the computer to postulate
and analyze new compounds at the molecular level. In creating any one
pharmaceutical, all three of these approaches might be brought to bear in
combination at various stages, so the real problem graph will not be a tree
but something with more complex interactions.

Even when the computational option has been chosen for some reason,
there still remain a variety of choices one can make at different stages. There
are different models which provide the same level of accuracy for a given
physical phenomenon, so it may be useful to choose different models for
different purposes. Any given model will typically have different ways to

INTRODUCTION 31

Technical Problem to be Analyzed

Direct elimination equation solver

Discretization "A"

Scientific Model "A"

Sequential implementationParallel implementation

Iterative equation solver

Discretization "B"

Consultation with experts

Model "B"

Experiments

Theoretical analysis

Figure 1.15 The “problem tree” for scientific problem solving. There are many options to try to
achieve the same goal.

discretize it, and any discretization will have multiple ways to solve the
resulting discrete equations.

It is always allowed to climb higher in the tree to find better path
to the solution using new technology, such as parallel computation. Any
given physical model, or discretization, or equation solver may lead to a dif-
ficult parallel computation. However, an equivalent result may be obtained
more efficiently using a parallel computer by using a different model or dis-
cretization or equation solution strategy. This alternative approach should
always be kept in mind when trying to utilize a parallel computer to solve
a problem.

1.7.2 Parallelism in computing history

Parallelism has a long history in the development of computer systems.
One early example is the representation of natural numbers as a collection
of bits and the corresponding development of hardware that could work on
such pairs of collections to do arithmetic. Such arithmetic units are in effect
parallel computers. This type of parallelism is in use in microprocessors
which now permeate everyday life, not only in pocket calculators, but in
the “smart” electronics in automobiles, microwave ovens, and other home
appliances.

Operating systems provided early impetus to parallel (or concurrent)
programming and many of the early concepts in parallel programming lan-
guages [78, 46] were developed in this context. Much of the early work
in synchronization using semaphores, guards, and critical sections had its

32 CHAPTER 1

roots in operating system problems. Indeed, a steadfast component of Unix
kernels is the message queue, an interprocess communication primitive not
unlike its parallel scientific counterpart, the MPI library. Unlike operat-
ing systems, however, the scientific program parallelism we are primarily
concerned with is the data parallel model defined above.

I/O devices have always functioned at a slower rate than the proces-
sors to which they are connected. The use of a separate processor (or just a
separate process) to handle I/O is an example of parallel processing. These
methods were employed as early as the 1950s in the Univac 1, the first com-
puter to overlap program execution with some I/O [83].10 Early operating
systems for personal computers were able to allow printers to queue data
and allow control of the computer to return to the user.

Vector processor architectures introduced in the 1960s developed nu-
merous innovations in addressing the problem of getting data to processors
on time. Methods included memory interleaving to increase memory-to-
processor bandwidth, overlap of computation with memory accesses (called
prefetching), and out-of-order execution to improve reuse and tolerate mem-
ory delays such as with the Tomasulo algorithm developed for the IBM
360/91 [140]. Recent counterparts of the Tomasulo algorithm and CDC
6000/7000 series scoreboard [83] appear in the out-of-order instruction exe-
cution for the Intel Xeon and P4 processor lines [85]. With the benefits of
these earlier developments, contemporary microprocessors execute multiple
instructions simultaneously using pipelined functional units (Section 3.4).

It is natural that early vector processing methods have come full circle
into today’s modern commodity pipelined and multi-threaded processors.
After all, computer performance depends fundamentally on having data
available to the CPU with minimum delay. The methods of data reuse and
tolerating memory access times appear in various guises in both architec-
ture and software design. We will see that in order to get good performance
on even a single processor of this type, it is necessary to understand basic
parallel computing.

In Section 3.1.2, the notion of a memory cache will be discussed. As
will be seen in Figure 3.6, this involves a type of parallel processing in the
memory system. Moreover, one of the key issues in parallel computing is the
communication that must be done between different processes. With current
workstations, there are already several levels of cache, and the movement of
data among them is a prime consideration in achieving good performance.
Thus the issues we are studying with regard to parallelism in the large have

10The Univac 1, the Universal Automatic Computer, was the first commercial computer and
successor to the ENIAC, the Electronic Numerical Integrator and Computer, a 30-ton computer
developed at the University of Pennsylvania during World War II. Delivered to the Census Bureau
in 1951, the Univac 1 weighed approximately 8 tons and could perform about 1,000 calculations per
second. The first commercial sale by the Eckert-Mauchly Computer Corporation of Philadelphia
was followed shortly by Remington-Rand’s purchase of Eckert-Mauchly. A statistical model run
on the Univac 1 and informed by early election returns predicted correctly Dwight Eisenhower’s
victory in the 1952 presidential election.

INTRODUCTION 33

an important correspondence with different types of parallelism in single
processors, in terms of both instruction parallelism and data movement to
and from cache.

For a more detailed history of parallelism, we refer to [80] and [81].
For an intriguing look at an early proposal, see [113].

1.8 EXERCISES

Exercise 1.1. Beyond “mega” (106) and “giga” (109) are “tera” (1012),
“peta” (1015) and “exa” (1018). Determine the correct time unit (millisec-
ond, microsecond, nanosecond, picosecond, femtosecond, . . .) that it takes a
single computer to do a floating point operation if it is does (1) one megaflop
per second, (2) one gigaflop per second, (3) one teraflop per second, and (4)
one petaflop per second.

Exercise 1.2. What is the maximum number of floating point opera-
tions possible in Example 1.3.6 for a 99% cache-hit rate and for a 1% hit
rate? Assume that ρWM = 2.

Exercise 1.3. What is the ratio ρWM of the number of floating point
operations to the number of data values that have to be obtained from
memory, or written to memory, in the computation of the product of two
square matrices A = (aij) and B which is defined by

(AB)ij :=
n∑

k=1

aikbkj for i, j = 1, . . . , n (1.8.1)

as a function of n? (Assume that both A and B must be obtained from
memory and the product is written back to memory. However, the denom-
inator should just be the volume of the data, not the number of memory
references that might occur in particular algorithm. For example, the term
b11 occurs n times in (1.8.1) but should be counted only once.)

Exercise 1.4. What is the ratio of the number of floating point oper-
ations per processor to the number of data values that have to be obtained
by the individual processors from other processors in the parallelization of
(1.6.21) using P processors?

Exercise 1.5. Write a program to compute a summation as in (1.3.2).
Test the program by computing π by the summation (1.3.1), i.e., with ai =
(−1)i+1/(2i − 1). Determine the performance on a single processor as a
function of N . A model for expected time performance tN for computing
the summation is tN = a + bN . Use your timing data to estimate the
parameters a and b. What are the critical values of t and N below which
the timing is uncertain (see page 6) for each part? Report what computer

34 CHAPTER 1

and what timer you are using, and what its time resolution is purported
to be. (Hint: plotting the observed time TN as a function of N should, if
TN ≈ tN , give points lying nearly on a line with slope b; the asymptote of
this line to N = 0 gives an estimate of a. Then plotting (TN − a)/N as a
function of N should be nearly constant. Often when nearing the resolution
of the timer, the data will become erratic, giving a measure of where the
limit is.)

Exercise 1.6. Write a program to compute a summation as in (1.3.2).
Test the program by computing π by the summation (1.3.1), i.e., with
ai = (−1)i+1/(2i − 1). Determine the performance on a single processor
as a function of N for both the computation of the ai’s and the sum (i.e.,
give separate performance estimates for the two parts of the computation).
Determine the relationship (if any) between these times for different values
of N and explain why you think this is reasonable. Report what computer
and what timer you are using, and what its time resolution is purported to
be.

Exercise 1.7. Write a program to compute a summation as in (1.3.2).
Test the program by computing π by the summation (1.3.1). Determine the
performance on a single processor as a function of N and compare this with
the diagram in Figure 1.2. To do so, you need to compute ai = (−1)i+1/(2i−
1) separately and store it in an array. Just time the computation of the sum,
not the computation of ai. It may be necessary to repeat this k times to
get an accurate timing, in such a way that k · N remains roughly constant
as N increases. Be sure to divide by k to get the time for one sum. Try to
find a virtual memory (e.g. Unix) machine with a small amount of memory
so that you can do a computation involving paging to disk. Plot the results
of your timings as in Figure 1.2 by plotting N/TN as a function of N .
(Explain why this gives a measure of performance for this calculation, and
explain what the units are.) Choose values of N on a logarithmic scale, e.g.,
n = 2i for i = 1, 2, . . . , I for a suitable value of I. Make sure that your
code is compiled with an optimization level to give maximum performance.
Explain what computer and what timer you are using, and what its time
resolution is purported to be.

Exercise 1.8. In the prime number sieve, determine the number, P , of
parallel tasks that can be done for a given k when parallelizing by subdivid-
ing the n loop. Describe a way to achieve a load balanced algorithm for P
processors (with P fixed and k sufficiently large). How much communication
will be involved in your approach?

Exercise 1.9. Modify the loop on n in the prime number sieve to
eliminate considering n divisible by 2, 3, and 5. How would you do this for
more small primes?

INTRODUCTION 35

Exercise 1.10. Consider the Jacobi iteration depicted in Figure 1.14.
Describe a strategy for load balancing this parallel algorithm.

Exercise 1.11. Other decompositions of a loop can be made besides
the ones shown in Figures 1.8, 1.10, and 1.11. The cyclic decomposition
or modulo decomposition refers to distributing the n-th loop index to
processor number n (mod P). Note that this assumes that the processors
are numbered from 0 to P − 1 as is done in many systems, since this is the
range of values in “modulo” arithmetic. Make a copy of the iteration space
in Figure 1.8 and indicate the processor allocation for a cyclic decomposition
of the n loop using P = 3 processors (numbered 0, 1, 2).

Exercise 1.12. Make a copy of the iteration space in Figure 1.9 and in-
dicate the processor allocation for a cyclic decomposition (see Exercise 1.11)
of the n loop using P = 3 processors (numbered 0, 1, 2).

Exercise 1.13. The block decomposition is a generalization of the
strip decomposition shown in Figures 1.10 and 1.11. It corresponds to di-
viding the iteration space into blocks, in this case distributing both the n-th
loop index and the π-loop index. Make a copy of the iteration space in
Figure 1.9 and indicate the processor allocation for a block decomposition
using P = 4 processors, where both the n-th loop and the π-loop are divided
equally.

Exercise 1.14. Complete the definition of the matrix in (1.6.13) by
making the indicated substitutions for u0 and uN+1. Show that matrix is
symmetric.

Exercise 1.15. Complete the definition of the matrix (cf. (1.6.17)) in
(1.6.14) by making the indicated substitutions for u0 and uN+1. Show that
matrix is symmetric.

Exercise 1.16. Prove that the modified trapezoidal rule (1.6.9) is sta-
ble [27].

Exercise 1.17. Prove that the modified trapezoidal rule (1.6.9) satisfies
(1.6.10). (Hint: use Exercise 1.16.)

Exercise 1.18. Show that matrix (1.6.17) has no negative eigenvalues.
(Hint: use Gerschgorin’s theorem [139].)

Exercise 1.19. Show that (1.6.21) converges. (Hint: use Gerschgorin’s
Theorem [139].)

