
Exploiting Routing Redundancy Using a Wide-area Overlay

Ben Y. Zhao, Ling Huang,
Anthony D. Joseph, and John D. Kubiatowicz
Computer Science Division, U. C. Berkeley

�ravenben, hling, adj, kubitron�@cs.berkeley.edu

Report No. UCB/CSD-02-1215

November 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Exploiting Routing Redundancy Using a Wide-area Overlay

Ben Y. Zhao, Ling Huang,
Anthony D. Joseph, and John D. Kubiatowicz
Computer Science Division, U. C. Berkeley

�ravenben, hling, adj, kubitron�@cs.berkeley.edu

November 2002

Abstract

As new and interesting peer-to-peer applications combine with advancements in networking tech-
nology, they are reaching millions of users across the globe. Numerous studies have shown, however,
that loss of connectivity is common on the wide-area network, due to hardware and software failures,
and network misconfigurations. Despite the natural redundancy present in underlying network links, the
current IP layer fails to recognize and recover from these frequent failures in a timely fashion. This
paper presents fault-tolerant routing on the Tapestry overlay network, which exploits existing network
redundancy by dynamically switching traffic onto precomputed alternate routes. Furthermore, messages
in our system can be duplicated and multicast “around” network congestion and failure hotspots with
rapid reconvergence to drop duplicates. Our simulations show fault-tolerant Tapestry to be highly effec-
tive at circumventing link and node failures, with reasonable cost in terms of additional routing latency
and bandwidth cost.

1 Introduction

The Internet continues to grow at an impressive rate. With each passing day, users deploy new and more
interesting wide-area applications, such as peer-to-peer (P2P) file sharing, instant messaging, real-time in-
formation collection and distillation, and multimedia applications. The communication patterns of these
new applications vary from simple, point-to-point messaging to complex, multi-party, multicast content
distribution. These newer applications tend to place heavy demands on the Internet infrastructure – requir-
ing fault tolerance and quick adaptation while simultaneously demanding low latency and high bandwidth.
Given that these are base requirements for new applications, we believe that both high performance and fault
tolerance should be available to all users.

Unfortunately, it is becoming increasingly difficult to meet these criteria. The sheer size and complexity
of the network leads to frequent periods of wide-area disconnection or poor performance. Misconfigu-
rations and hardware faults contribute to these problems. Individual routers vary widely in performance
and connectivity, leading to a difficult optimization problem under ideal circumstances. Worse, the net-
work spans many independent administrative boundaries, making the goal of coordinated problem detection
and correction an elusive goal at best. While recent network service provider consolidations are reduc-
ing ownership/management-related problems, the reliability benefit may be becoming outweighed by the
corresponding reduction in path diversity1.

1Consider, for example the chaos caused by the Baltimore tunnel fire in July of 2001.

1

Further, the probability of flash crowds, such as those that result from sudden popularity of a web site or
service, increases with the scale of the network. Flash crowds result in localized congestive flows at senders
or receivers and cause periods of high delay or loss. Most automated solutions to flash crowds are expensive
and available to large enterprises rather than individuals. Automated approaches to handling network hot
spots are either based on CDN approaches (useful for one-way data distribution), proprietary networks (e.g.,
Metricom [3]), single-user solutions (e.g., RON [1]), or are mostly ad hoc and similarly limited in reaction
time (e.g., BGP-based solutions [15]).

We expect that as the network grows in scale and scope, wide-area disconnections and poor performance will
become more common. Today, many faults and performance problems are dealt with manually, a solution
that imposes a significant time delay, does not scale well with the size of the Internet, and is not available
to individual users. Even traditional automated approaches to detecting and routing around faults (e.g., the
Border Gateway Protocol [15]) may take up to 30 minutes to react to and isolate a fault.

Previous work in [2] demonstrated the need for high availability for network services, and outlines their
belief in the generalized approaches of dynamic service replication and migration, and dynamic routing
around network hot spots and faults. One of the most significant delays in BGP adaptation results from the
time that it takes to recalculate routes and pair-wise disseminate this information. Precomputing alternate
pathways is an obvious solution – one that was taken by RON [1] – but must be done in a scalable fashion,
maintaining as much communication locality as possible.

In this paper, we seek to provide fault tolerance and high performance through a two-pronged approach: (1)
continuous precomputation of alternative pathways and (2) dynamic selection among alternates. We start
with a routing scheme that is amenable to alternate path computation and selection: the Tapestry Distributed
Object Location and Routing (DOLR) service [5, 24]. This overlay framework incorporates multiple si-
multaneous paths between any two nodes in the network (i.e., Tapestry selects from several optimal or near
optimal paths at each routing hop). As a result, we can decouple the discovery of backup paths (“pre-
computation”) from rapid adaptation in response to failure or congestion. Tapestry continuously monitors
the connections and performance between routing peers using a soft-state, heartbeat-based approach and
dynamically pre-computes alternate routes. When a fault is detected, the network either switches to an
alternate route or multicasts traffic across two or more routes.

The design of the Tapestry routing algorithm ensures that “mis-routed” traffic rapidly converges back onto
the optimal path to the destination with minimal excess traffic, even when traffic is multicast across multiple
links. We show via simulation that a simple protocol can be used to achieve near-optimal fault-resilience, a
significant improvement over IP routing. Furthermore, routing around failures incurs low overhead in terms
of latency and bandwidth relative to the original path. We also show that “mis-routed” traffic converges
quickly, implying that multicasting traffic across multiple routes is feasible and provides increased reliability
at a relatively low bandwidth cost.

In the rest of the paper, we examine related work in availability, fault-resilient network routing, and P2P
distributed location and routing services in Section 2. Then we present the basic Tapestry routing algorithm
with its redundancy primitives in Section 3, followed by in-depth details of the proposed fault-resilient
routing mechanisms in Section 4. Finally, we show simulation results in Section 5, discuss additional issues
in Section 6, and conclude in Section 7.

2 Related Work

The work presented in this paper is related to several projects in wide-area application availability, wide-
area routing failures, fault-tolerant route-around overlays, and decentralized object location systems. In

2

this section, we describe the key related projects (to the best of our knowledge) and provide points of
differentiation for fault-tolerant Tapestry.

Bharat et. al. performed quantitative analysis of service availability across a wide-area network [2] and
developed a failure model that was parameterized by failure location and failure duration. Using trace-based
simulation, they proposed and examined several techniques for improving end-to-end service availability by
masking network failures, including data caching, prefetching, and using alternate network paths to route
around failures. They conclude that only by combining several techniques together will some systems be
able to effectively improve availability.

In order to scale to millions networks, routing in the current Internet is organized in a two-level hierarchy:
intra-domain routing and inter-domain routing. Inter-domain routing mainly relies on BGP to exchange
reachability information and maintain routing tables [15], however for policy reasons, information shared
through BGP between different ISPs is heavily filtered and summarized. As a result, many topological
details, especially those for redundant links are hidden. Also, because BGP uses route flap damping and
an incremental dissemination mechanism, it may take BGP fault recovery several minutes (3 to 30 minutes)
before routes converge to a consistent form. Unfortunately, these delays are on a time-scale that clearly
exposes applications to router and link faults, and forces the applications to deal with the faults, often using
ad hoc and non-scalable mechanisms.

Paxson studied the large-scale behavior of routing in the Internet [10, 11] and found several routing patholo-
gies, including routing loops and instances of infrastructure failures. He found numerous outages of dura-
tions of 30 seconds or greater, and that 3.3 percent of all routes had serious problems during 1995. More
importantly, he found that the trend was towards worse wide-area behavior.

Labovitz et. al. examined the latencies in Internet path failure, fail-over, and repair resulting from the con-
vergence properties of inter-domain Border Gateway Protocol routing algorithms [7, 8]. They conducted
a two-year study, injecting 250,000 routing faults at major Internet exchange points and collecting a large
amount of routing update information. Their study showed that the Internet inter-domain routing conver-
gence delay is an order of magnitude slower than was previously thought to be the case. Two important
observations were: 40 percent of outages took more 30 minutes to repair; and inter-domain routers take
tens of minutes to reach a consistent view of the network topology after a fault. During the convergence
procedure, Internet applications will loss network connectivity and/or encounter high packet loss and la-
tency. Most significantly, these results show that the Internet does not support effective timely inter-domain
fail-over.

There are several related research projects that are exploring mechanisms for fast failure detection, failure
route-around, and efficient failure recover, including the Detour and Resilient Overlay Networks projects.
The Detour Project at the University of Washington developed the “sting” tool, which uses TCP to determine
forward and reverse path packet loss rates [20]. Using this tool, the researchers developed an architecture in
which intelligent routers located at key access and interchange points “tunnel” traffic through the Internet.
They have shown that the use of these intelligent tunnels can improve performance and availability by
aggregating traffic information, shaping bursty traffic flows, and using more efficient routes.

The Resilient Overlay Networks (RON) project has developed an architecture that enables distributed In-
ternet applications to detect and recover from path outages within several seconds [1]. Its key design goal
is to allow end-hosts and applications to work cooperatively to gain improved reliability and performance
from the Internet. In the RON architecture, a set of application-layer overlay nodes are deployed in different
Autonomous System domains (e.g., Sprintlink, AT&T, and Worldcom). The RON nodes monitor the reach-
ability and quality of the Internet paths between themselves, and use this information to decide whether to
route packets directly over the Internet or indirectly through other RON nodes, based upon optimization of

3

various application-specific routing metrics. The researchers observed that RON’s routing mechanism was
able discover alternate paths in the Internet, and to detect, recover, and route around failures in less than
twenty seconds on average. These improvements demonstrate the benefits of moving some of the control
over routing into the hands of end-systems.

Beside Tapestry, there are several projects working on different approaches to Decentralized Object Location
and Routing (DOLR) algorithms, including Kademlia [9], CAN [13], Pastry [17], Chord [21]. All of these
architectures use name-based routing to route requests for objects or files to a nearby replica. They all share
similarities with Tapestry in providing scalable location services, including the use of soft-state beacons
for fault-detection. The focus of these projects, however, is on object location, and not point to point
communication. However, as we discuss in Section 6, our fault-resilience mechanisms are general enough
to apply to these systems as well.

3 Tapestry Routing Primitives

In this section, we provide a general review of the Tapestry network layer [5, 24], and some of its basic
fault-handling mechanisms. Tapestry is one of several recent projects exploring the value of wide-area
Decentralized Object Location and Routing (DOLR) services [13, 17, 21]. It enables messages to locate
objects and route to them across an arbitrarily-sized network, while using a routing map with size logarithmic
to the network namespace at each hop.

As a location service, Tapestry provides network applications with efficient routing of messages to locations
of named objects. Such functionality in Tapestry and related projects has given rise to a new class of wide-
area applications [4, 6, 18, 19, 25].

The key distinction between Tapestry and other DOLR infrastructures, however, is its support for point-to-
point routing between named nodes. Tapestry uses similar mechanisms to the hashed-suffix mesh intro-
duced by Plaxton, Rajaraman and Richa in [12]. Tapestry routes messages between named nodes across
an arbitrarily-sized network using a routing map with size logarithmic to the network size. In practice,
Tapestry provides a delivery time within a small factor of the optimal delivery time [24]. Previous work has
leverage Tapestry routing for application-level multicast [25] and suggested performance enhancements for
wide-area operation [23].

Each Tapestry node or machine can take on the roles of server (where objects are stored), router (which
forward messages), and client (origins of requests). We assume that Tapestry nodes, especially routers and
servers, are well-connected over high bandwidth links. Nodes in Tapestry have names, Globally Unique
IDentifiers (GUIDs), independent of their location and semantic properties, in the form of random fixed-
length bit-sequences represented by a common base (e.g., 40 Hex digits representing 160 bits). The system
assumes entries are roughly evenly distributed in the node ID namespace, which can be achieved by using
the output of secure one-way hashing algorithms, such as SHA-1 [16].

3.1 Prefix-based Routing

Tapestry uses local routing maps at each node, called neighbor maps, to incrementally route overlay mes-
sages to the destination ID digit by digit (e.g., 8*** �� 89** �� 895* �� 8954 where *’s represent
wildcards). This approach is similar to longest prefix routing in the CIDR IP address allocation architec-
ture [14]. A node � has a neighbor map with multiple levels, where each level represents a matching prefix
up to a digit position in the ID. A given level of the neighbor map contains a number of entries equal to the
base of the ID, where the ��� entry in the ��� level is the ID and location of the closest node which begins
with prefix(� , � � �)+“�”. For example, the 9th entry of the 4th level for node 325AE is the node closest to
325AE in network distance that begins with3259.

4

L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

L1

8954

89008909

8957

AC78

8F4B

5230

8BB2

8112

89E3

8951

895D

Figure 1: Tapestry routing example. Here we see the path taken by a message originating from node 5230
destined for node 8954 in a Tapestry network using 4 hexadecimal digit names (65536 nodes in namespace).

When routing, the ��� hop shares a prefix of at least length �with the destination ID. To find the next router,
we look at its (������ level map, and look up the entry matching the value of the next digit in the destination
ID. Assuming consistent neighbor maps, this routing method guarantees that any existing unique node in
the system will be found within at most ����� logical hops, in a system with � nodes using IDs of base �.
Because every single neighbor map at a node assumes that the preceding digits all match the current node’s
prefix, it only needs to keep a small constant size, �, entries at each route level, yielding a neighbor map of
fixed constant size � � ����� .

A way to visualize this routing mechanism is that every destination node is the root node of its own tree,
which is a unique spanning tree across all nodes. Any leaf can traverse a number of intermediate nodes
en route to the root node. In short, the hashed-suffix mesh of neighbor maps is a large set of embedded
trees in the network, one rooted at every node. Figure 1 shows an example of hashed-suffix routing. This
hierarchical view of Tapestry routing is key to making our fault-tolerant mechanisms efficient, and will be
discussed in more detail in Section 4.

3.2 Node Insertion and Deletion

The basic Tapestry infrastructure includes mechanisms to handle changes in the set of nodes that participate
in the overlay. For instance, when new nodes join the network, they initiate an integration algorithm that
builds neighbor links and informs the rest of the network that they exist. This algorithm is described in
detail elsewhere [5]. Essentially, new nodes start by contacting established nodes, then proceed by using the
routing mechanism to explore the Tapestry routing mesh. It is during the integration process that existing
nodes are given the chance to select the new node as a potential router.

Well behaved nodes have the opportunity to perform a voluntary deletion operation by informing the rest of
the network before exiting. Alternatively, nodes that cease to behave well are simply removed as potential
routes by upstream nodes – using some of the same adaptive mechanisms described in the next section for
faulty links.

5

Node: 0132

0302

0132

0001

0233

0132

0132

0100

0110

0121

0130

0131

01333011

2012

1203

0132

1203

.....

0302

0233

0001

3011

2012

0100

routing level
0th 1st 2nd 3rd

Figure 2: Keep-alive UDP Beacons. A diagram of UDP beacons sent by node 0132 in a Tapestry network
using four digits of base four. Node 0132 sends periodic beacons to the nodes in its routing table, and each
receiver is responsible for sending back periodic aggregate acknowledgments.

3.3 Redundancy Primitives

In addition to providing a scalable routing mechanism, Tapestry also provides a set of fault-tolerance primi-
tives that allow Tapestry routers to quickly detect and adapt to link and node failures.

Fault Detection To adapt to faults in a timely basis, routers monitor links and nodes for failures. Tapestry
provides timely link and and node failure detection by using a soft-state model to maintain valid pointers
that make up the routing mesh. Routers implement soft-state using periodic broadcasts of information with
limited lifetimes of validity. More specifically, Tapestry uses UDP-based beacon messages sent at regular
intervals to probe the condition of overlay network links (i.e., reachability, delay, and loss) and return an
estimate of current condition of each hop link.

Figure 2 shows the soft-state beaconing mesh. A node 	 sends periodic UDP probe/beacon messages every

����� seconds to each node � in its routing table, and each node � sends back an acknowledgment packet
reporting the number of probes received and lost in the previous measurement window. When a new node �
inserts itself into the Tapestry, it incrementally builds up a routing table, notifying each entry as it constructs
the table. The existing nodes use this notification message to optimize their own routing tables, and add �
to their “backpointer” lists.

Each node � that receives UDP beacon packets from node 	 uses sequence numbers in the beacons to
detect dropped beacons. It keeps a small bitmap representation of a FIFO queue marking the last � packets
received (e.g., 16 bits for the last 16 beacons) and the timestamp contained in the last beacon that was
received. At regular intervals that are an integer multiple of the probe period, node � sends the bitmap and
timestamp back to probing node 	 . Node 	 then uses the bitmap and the timestamp to generate an estimate
of current link reachability and quality. Note that the mechanism would be more efficient and responsive if
node � sent UDP probe packets to node 	 . However, because of the asymmetry of network routing, UDP
probe packets must be sent in the same direction as normal unidirectional Tapestry links and messages.

The beaconing and acknowledgment periods are parameters of each particular network, and they are dy-
namically and introspectively adjusted to minimize bandwidth utilization, while providing reasonably rapid
fault detection. For example, in a global Tapestry network using node IDs of 160 bits or 40 hexadecimal
digits, we would expect a maximum of ��	 nodes before name collision becomes an issue, according to the
birthday paradox. With a random distribution of node IDs in this namespace, each node would have roughly

6

20 levels in their routing table each filled with a maximum of 15 unique entries. If each node sends 100-byte
beacon packets every 6 seconds to each its neighbors, the total traffic generated by each node is:

�
�� � �� ��	��
 � �� �������	�� � �� �
����� � ��� ���
��
� � ��� �������� � �� ����

For a network with with ��	 node (far larger than any realizable network), this is a minor amount of added
network traffic for detecting faults. Furthermore, while this amount of added traffic is significant for a client
connected via a low-bandwidth uplink (e.g., an Asymmetric Digital Subscriber Link), the traffic is a minor
addition for routers and servers, which we expect will be very well connected.

An important factor to examine is the fault detection time, which is a function of the beacon period, the ac-
knowledgment period, and the Round Trip Time,
�, between the beacon sender and receiver. Ordinarily,
a fault will not be detected until � beacons have been received. Since beacons are sent every
����� seconds,
the maximum time to detect a fault will be the sum of entire acknowledgment period, one-half of the round
trip time for the first beacon to arrive (or not to arrive), and an additional one-half of the round trip time for
the acknowledgment packet to be sent back to the sender. Thus, the maximum fault detection time will be:

������ � � �
����� �
�

The fault detection time can be reduced by reducing either � or
�����. Reducing � will result in fewer
beacons being received per acknowledgment packet sent, and thus will result in more frequent acknowledg-
ment packets being sent. Likewise, reducing
����� will result in more frequent beacon packets being sent.
Introspection could be used to set either � and
�����. During periods of “long” fault-free conditions, the
values could be increased, reducing measurement accuracy. Similarly, during “bursts” of packet losses, the
values could be decreased to provide more accurate measurement of network conditions.

Redundant Routes While Tapestry uses periodic beacons to provide an estimate of the current link con-
ditions, it also uses explicit redundant routes to exploit the natural redundancy in the underlying network.
Tapestry does this by maintaining a small constant number of backup routes for each entry in a routing table.
When a router finds that the default route for an outgoing message is unacceptably lossy, the router switches
the message to one of the backup routes. These backup routes are filled in using the same insertion process
as the default routes during the node insertion process. The backup routes are the next nearest nodes in terms
of network latency that satisfy the prefix-routing constraint.

When the primary link becomes available and reliable, the node switches back to the primary link. Note
that to reduce the likelihood of routing flaps, the switching mechanism includes some random hysteresis
in switching back to the primary link. The hysteresis is provided by having the node wait for a random
number (in the range of 2 to 4) of above-threshold acknowledgments to be received before declaring a link
to be reliable and available for routing. By including a random delay, Tapestry reduces the likelihood of a
“thundering herd” effect of several nodes switching to a link and rendering a link unusable.

Note, however, that the use of backup routes is not without a cost. Each additional backup route adds
to the storage required for the routing table, and it also requires additional bandwidth for beacon probe
packets. Therefore, we should balance the number of backup routes per routing entry necessary to maximize
reachability against the storage and bandwidth overhead. In previous work [25], we found that maintaining
two backup routes per routing entry provides near perfect reachability under link failures.

Thus, assuming each node keeps two backup routes per entry, the bandwidth utilized for UDP beacon probes
on our global network would be:

��
�� � �
�� � � �
������ � � � ��� �������� � ���� �������� � ��� ����

7

This estimate of probe bandwidth is high enough to become prohibitive for nodes with less available band-
width. We propose two simple optimizations: message piggybacking and reduced probing on backup links.
The first optimization is to piggyback beacons onto normal Tapestry messages. For outgoing routes that are
sufficiently frequently used by normal message traffic, no additional UDP probes are necessary. Therefore,
only less frequently used routes, such as backup routes, require regular probes. Furthermore, for backup
links, we can dynamically reduce the the probe rate, trading reduced monitoring accuracy for reduced band-
width. If beacon loss occurs, the monitoring rate can be increased to the full rate for increased accuracy.

It is also again important to note that this scenario assumes a deployed network of ��	 nodes. We expect
real deployments of Tapestry to produce significantly less probe traffic. For a network of ��� or roughly
two billion nodes (to avoid name collision), the added traffic rate per node is only 26.4 Kbit/s. This rate is
sufficiently low for all but the slowest links.

4 Fault-tolerant Routing Mechanisms

In this section, we provide a detailed description of the network structure and algorithms that provide fault-
resilient packet delivery in a Tapestry network. There are two key mechanisms: dynamic route selection
using precomputed backups, and constrained (“short-distance”) multicast and convergence. We describe
different types of network failure scenarios, followed by a discussion of each of the fault-tolerant mecha-
nisms and how each one increases the likelihood of successful packet delivery. Finally, we discuss a third
application-level mechanism, node-based GUID aliasing, that provides redundancy using an higher-level,
orthogonal approach that is independent of the network and the routing namespace.

As outlined previously, we consider two main types of failures that result in loss of availability. First, we
consider the scenario where a single network link has failed between directly connected nodes � and �.
The impact of this type of failure is limited to flows that cross that single link. In the large majority of
these cases, packets can be successfully delivered via a secondary route to �. A second instance is when
a network router fails to deliver packets to the next hop on the packet’s route, either due to a hardware
failure or software misconfiguration. Router failures impact all incoming flows to a node. Successful packet
delivery may require routing further away from the failure, with later convergence back to the original route
past the failed router and affected nodes.

4.1 Destination-rooted Hierarchies and Convergence

Before we delve into the details of fault-tolerant Tapestry routing, it helps to understand the intuition behind
Tapestry routing. Tapestry routing is inspired by previous work on object location [12] and is similar to a
modified form of hypercube routing. An alternative way to view Tapestry routing is from the perspective of
the destination node, by viewing the routing mesh as a union of destination-rooted hierarchies.

As described in Section 3, the basic routing mesh constructed as part of a Tapestry network of � nodes can
be seen as a union of � routing trees. From the perspective of a single node 	 , node 	 is the root of a
spanning tree connecting all nodes in the network. Thus, every traversal from some node � up the tree to
the root is the path taken by � to 	 .

Figure 3 shows an example of a sparsely populated network as seen from the perspective of the destination
node 0213. The interesting implication here is that when using node IDs of base �, traffic to and from a
single node is constrained to go through a finite set � of nodes, where ��� � ��.

The intuition here is as follows: since the set size at a given level is a function of the distance in hops, �,
from the node, the number of possible nodes for its next hop decreases by a factor of �, as a message routes
towards its destination. This reduction is due to the requirement that the next hop node must match an

8

0210 0211 0212

0200 0222 0223 0202 0203 0231

0213

............0211

0102 0012 0302 01103200

0333

1300

Figure 3: Example of a destination rooted spanning tree. An example of a sparsely populated network using
node IDs of 4 digits of base 4. Each node points to the closest node (in network latency) that shares an
additional digit of a common prefix with the destination node 0213.

additional prefix digit of the destination node. As the distance to the destination decreases, there is a smaller
number of nodes providing the next hop; and thus, messages from nearby nodes are likely to converge to or
intersect with the same next hop router.

While Figure 3 shows one perspective of the basic Tapestry routing mesh, a interesting result becomes
apparent when we examine the impact of convergence on backup routes. By definition, backup routes must
point to the next closest (latency-wise) nodes whose node IDs match one more digit to the destination node in
its prefix. Thus, it follows that routers pointed to by backup routes will be reasonably close (again, latency-
wise) to routers pointed to by primary routes. This observation combined with the convergent property of the
Tapestry mesh that we discussed in the previous paragraph, leads us to expect that traffic which is diverted
to a backup node will rapidly converge with the original traffic path (most likely on the next overlay hop).

Figure 4 demonstrates this property geometrically. Nodes are laid out in figure to correlate geometric dis-
tance between nodes with network latency. As a message travels “up the tree” towards the destination,
there are fewer routers satisfying the routing constraint. Simultaneously, Tapestry’s locality-based routing
property means that the inter-node latency between routers higher in the tree will dramatically increase. In
combination, the reduction in satisfying routers and locality-based routing leads to the convergent property
shown in the figure. The figure also shows nodes maintaining the primary route and two backup routes,
sorted in order of network latency. The routing path from node 1111 to 2222 is highlighted for clarity.

4.2 Route Selection

In Section 3.3, we described how Tapestry detects faults with UDP probes and precomputes backup routes
for each entry in the routing table. We now examine the issue of combining link fault-detection with redun-
dant routes to provide a high probability of successful message delivery with minimum added communica-
tion overhead. Ideally, routing should use default routes (i.e., those with lowest next-hop latency) whenever
possible, since backup routes could possibly lead to longer end to end latencies2.

While we could design an arbitrarily complex protocol for routing messages under lossy conditions, we start
instead with a simple simple protocol, that we call First Reachable Link Selection (FRLS), that uses a rough
granularity to categorize failures. FRLS defines a global threshold constant value and links with UDP probe
results that show a delivery rate lower than this threshold value are marked as DOWN, while all other links
are marked UP. Note that hysteresis is applied in the form of a random interval of valid values that must

2In some situations, using a backup route near the source yields an end to end latency that is less than the primary route.

9

3rd Hop

2nd Hop

1st Hop

1111

2274

2221

Tertiary Route

Secondary Route

Primary Route

2299 2286

25302046

2225

2222

2220

2281

Figure 4: Routing Hierarchies in Tapestry. A partial snapshot of a routing mesh from node 1111 to 2222
with backup routes included. Routes are marked with respect to the originating node. Note that with each
hop, the expected number of available routers decreases and they are more sparsely distributed.

be seen in order for a DOWN link to be marked UP again. When a message is ready to be routed, the router
examines the default and then backup paths in order of smallest latency first, and forwards the message out
on the first UP route.

In Figure 5, we see the results of running FRLS when one or two routes at a single route are marked DOWN.
The figure shows how the resulting path quickly converges with the original routing path after circumventing
the failed links. Any additional failures are handled in a similar fashion. An important evaluation metric
for a fault-tolerance mechanism is how quickly the new path converges with the original path. For FRLS,
the convergence distance is a function of the number of link failures. We examine the convergence behavior
using FRLS via simulation in Section 5.

Note that the general problem of route selection is common to all protocols that use routing redundancy to
route around failures, including BGP [15]. In particular, the same fault resilience approach can be applied
to other self-organizing, scalable overlay network [9, 13, 17, 21]. It is also important to observe that while
FRLS and protocols similar to it are useful for routing around congestion [3], the simple UDP measurement
scheme was designed to most effectively deal with link connectivity loss, and not congestion measurement.

FRLS focuses on simplicity and low computational overhead, however, we are evaluating algorithms that
compare link conditions with finer granularity and make decisions using more complex routing policies. We
believe that this clearly is an area in need of further exploration.

4.3 Multicast and Convergence

While FRLS is a more general algorithm for utilizing redundant routing paths, we now discuss a routing
algorithm that exploits Tapestry’s rapid convergence property. Instead of applying a policy that chooses an
alternative route for a message, we propose the notion of constrained multicast, a protocol that, when it
encounters a faulty link, actively duplicates a message, sends the message copies down multiple paths, and

10

Original Route Path

Rerouted Path

Primary Route

Secondary Route

Tertiary Route

2225

2274

2046 2281 2530

22862299

1111

2286

2225

2274

2281 25302046

2299

1111

Figure 5: Routing Around Link Failures with FRLS. An example showing a portion of the route path from
node 1111 to 2222. When link delivery rate falls below the global threshold constant rate, FRLS defaults
to the next available link. A single link “failure” results in a route-around path that converges relatively
quickly to the original path (left); while the use of the tertiary link (��� backup) results in longer time to
convergence with the original path.

then utilizes Tapestry’s rapid path convergence to enable the duplicates to be dropped on the other side of
the fault.

More specifically, when a message arrives at a Tapestry router using constrained multicast, the router exam-
ines the link conditions for its primary route. If the link is marked DOWN, then instead of choosing a single
outgoing route from a backup route that is marked UP, the router duplicates the message � times and sends
the copies across those backup routes that are marked UP, in order of increasing hop latency.

We have already described the intuition behind the convergence property in Tapestry routing. Given this
property, we assert that a message sent out on a backup route will quickly (within 1 to 2 additional hops)
converge back to the original path to the destination (see Section 5 for results that confirm this assertion).

As the duplicate messages converge, they are identified by the unique sequence number of the original
message and any duplicates are dropped. Because of the rapid convergence property, each node only needs
to maintain a small list of expected sequence numbers of Tapestry messages, which the node can then use
to determine whether a newly arrived message is a duplicate of a previously received message. This list can
cover a large time window while minimizing storage overhead by using an efficient index to store sequence
numbers (e.g., a starting sequence number and a bitmap of received messages).

Using constrained multicast, a packet can be actively duplicated before crossing a semi-reliable link which
significantly increases the probability of successful delivery, while also reducing latency and variance in
message inter-arrival time. The price for this benefit is the additional bandwidth is used by duplicate mes-
sages, but, rapid convergence tends to both minimize and localize extra bandwidth usage. Figure 6 shows
two examples of constrained multicast occurring at different points in the routing path.

11

Primary Route

Secondary Route

Multicast / Conv. Path

Tertiary Route

2274

22812046

1111

2299

2225

2286

2530

2225

228622742299

2046 2281 2530

1111

Figure 6: Constrained Multicast and convergence of messages around link failures. On the left, multicast
occurs at node 1111 and two copies of the message are sent to 2046 and 2281. On the right, the branch
position of the multicast occurs at the next hop at 2046. Note that a multicast occurring later on the path is
expected to converge slower and incur a higher penalty in bandwidth and latency.

This fault-resilience mechanism lets routers use more complex routing algorithms. For instance, a message
with a choice between three outgoing lossy routes can use a probabilistic formula to determine which routes
to send a copy through to maintain a constant “Expected Copies to Arrival (ECA)” target value. This
measure could be used as an adjustable knob to provide different levels of reliability for different traffic
types. For example, consider two messages going out on the same route entry. One is a streaming audio
packet, with a target ECA of 1; the other is part of an email message, with a target ECA of 1.5. For each
of the primary and backup routes, let � be fractional link reliability measure from UDP beacons, then the
probability � of sending a message out on a given route is constrained as follows:

� ��� ����� � � ��������� ����������� � � ���������� ������������ � ���

� ��� � ����� � ��������� � ����������� � ���������� � �����������

This type of constraint allows routing policies to further specify the relative preference between primary and
backup routes, and choose between the performance and overhead tradeoffs.

This type of active duplication is specifically designed to deal with links experiencing intermittent packet
drops, such as congestion-related losses; thus, a preliminary objection to the approach should be that this
mechanism could further exacerbate congestion by adding more traffic. However, closer inspection should
convince the reader that the duplicate packets will traverse an alternate route that circumvents and, thus,
should not exacerbate, the current congestion. If the congestion occurs at a physical hop shared by both or
all 3 outgoing routes, the same level of loss will be reported on each route, and the probabilistic constraint
would then limit outgoing duplicates on those links.

12

4.4 Node-based GUID Aliasing

The final fault-resilience approach that we discuss is a redundancy approach that we call, Node-based GUID
Aliasing. This approach is completely orthogonal and independent of the network and the namespace, as it
moves the problem up to the application domain by using redundant naming of nodes.

Tapestry’s core routing mechanisms are designed to route messages to nodes and node GUID aliasing simply
adds an additional layer of indirection. Ordinarily, Tapestry constructs a node’s name or GUID by taking
the node’s IP address or public key and applying a cryptographic hash function (e.g., SHA-1 [16]) to create
the GUID. With node GUID aliasing, we use multiple virtual names to refer to the same physical node by
creating multiple GUIDs for the node. We do this by hashing the initial value (node IP address or public
key) with multiple salt values to create several GUIDs.

The insertion of these alternate GUIDs into Tapestry creates “routing planes” or dissemination trees that
are random and, thus, likely to be independent of each other, except at the source and destination nodes. If
source and destination nodes are each very well connected (e.g., � � network connection) and the network
between the two nodes has a more of a mesh nature than a transit-stub one, then the routing planes will
be more likely to be completely independent. To use this approach, an application sends duplicate copies
of each message to each one of the GUIDs or a subset that it determines by using end to end reliability
measurements.

There are two advantages to this approach: it reduces or eliminates the reaction time delay from UDP bea-
cons and acknowledgments and it provides very reliable delivery (with the above connectivity assumptions).
However, it is important to note that while this approach provides very reliable delivery, it has a bandwidth
cost that is significant — equivalent to the number of duplicate copies.

For networks that are facing congestion instead of reliability losses, this could make the situation worse, not
better. Furthermore, the excess bandwidth consumption is not localized as is the case with Tapestry-level
multicast. Nevertheless, even though it has a significant cost, this approach is interesting because of its
reaction time benefits and because it is easily applicable to other overlay network projects.

5 Measurement and Evaluation

In this section, we present simulation results from measuring the relevant properties of fault-resilient Tapestry
routing. After discussing our simulation methodology, we present results showing the efficiency of FRLS
at routing around link failures, and the cost of routing around failures as measured in proportional increase
in latency. We then examine the overhead or “cost” for taking a backup route (branching). First, we look
at how quickly branched paths converge with the previous route path. We then examine the net cost of
branches, in terms of additional network bandwidth and additional end-to-end routing latency.

5.1 Simulation Methodology

To simulate Tapestry routing on large-scale (5,000 nodes) topologies, we implemented a packet-level
simulator based on the Stanford Graph Base (SGB) package. We chose transit-stub topologies as the most
realistic topology model and, as described below, we used real wide-area measurement data to calibrate the
GT-ITM [22] topology generator. The simulator reads in the resulting topology data in SGB format, and
stores each node as a Vertex object along with its routing table information. It’s important to note that our
simulation uses the same Tapestry algorithms as our prototype implementation.

To perform experiments, we built a Tapestry network of 4,096 nodes on the 5,000 node topology. Tapestry
nodes were placed randomly in the topology set, and named randomly from a namespace of 6 digit, base
4 (hexadecimal) names. This namespace implies that any point to point Tapestry route will take at most 6

13

FRLS Packet Delivery Rate vs. Link Failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fraction of Failed Links

P
ac

ke
t

D
el

iv
er

y
R

at
e E: No route connecting endpoints

D: Route exists, FRLS = no, IP = no

 C: FRLS=yes, IP=no
B: FRLS=no, IP=yes

A: FRLS = yes, IP = yes

Figure 7: Reachability of FRLS and IP vs Link Failures. Simulation results of the probability of successful
packet delivery using FRLS and normal IP as underlying link failures increase. We assume link failures
result in complete loss, and BGP re-route does not converge quickly enough to sustain connection. This
graph shows that FRLS achieves near ideal fault-resilience and a significant improvement over IP.

overlay hops. For each experiment, we generated at least 1,000 values per data point. Finally, we repeated
the experiments with multiple choices of overlay node placement to ensure that overlay construction (and
Tapestry node placement) did not have an effect on our simulation results.

5.2 NLANR Topology Calibration

To generate results that accurately model large-scale Tapestry behavior on a real wide-area topology, we
created a synthetic topology that based upon real measurement results. This was a complex process as,
despite substantial large-scale measurement efforts at CAIDA (including the Skitter3 project), in NLANR’s
AMP and NAI projects4, and in numerous academic research projects, obtaining an accurate representative
topology of the real Internet with complete latency and connectivity information is currently infeasible.

Instead, we used available data from NLANR to design a representative synthetic topology. We started by
extracting topology information from active measurement data from NLANR’s AMP project. Their data
collection includes topology and Round-Trip Time (RTT) data from 130 active measurement sites. The data
consists of 14,269 files, each of which contains a single traceroute-based path measurement. From this
data, we extracted a network topology with 1,780 unique nodes connected by 3,305 edges. Unfortunately,
this dataset was not well suited for running Tapestry experiments, since it effectively provides topology
information consisting of single long routing paths organized in a starfish-like formation, where each long
path originates from an AMP location. Basically, this topology is missing the interconnectivity information
between these long links. This interconnectivity is present in the real Internet (in the form of inter-service

3See http://www.caida.org/tools/measurement/skitter/
4See http://moat.nlanr.net/infrastructure.html

14

Increase in Latency for 1 Misroute (Secondary Route)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4

Position of Branch (Hop)

P
ro

p
o

rt
io

n
al

 In
cr

ea
se

 t
o

 P
at

h
 L

at
en

cy

20 ms 26.66 ms 60 ms 80 ms 93.33 ms

Figure 8: Latency Overhead of Misrouting (Secondary).

provider peering and transit relationships) and is crucial for our experiments, since it provides the core
mesh-like routing redundancy that makes fault-tolerant Tapestry routing possible.

Since resulting topology could not itself be used for our experiments, we chose the next best alternative,
extracting the relevant characteristics from the real measurement data and then using the characteristics
to calibrate an artificial topology generator. Our examination of the NLANR AMP data shows that the
average latency for local area links is 2 milliseconds and it is 30 milliseconds for wide-area links. Using
the AMP data, we also extracted the average latency values for analogous links to a transit-stub topology’s
transit-transit, stub-stub and transit-stub links. We then used the extracted statistics as inputs to the GT-ITM
topology generator to generate a topology of 5,000 nodes for use in our experiments.

5.3 Route Selection

FRLS Delivery Success Rate The first question we explore is: using binary failure mode for all links in
a network, does FRLS deliver packets when there exists a reachable path between the endpoints? A binary
failure mode means that a link is either delivering packets without loss or dropping all packets (note that we
ignore congestion-based losses). For evaluation purposes, we compare basic datagram delivery over IP with
basic datagram delivery over IP enhanced by FRLS redirection over Tapestry.

As shown in previous work [7, 10, 11], BGP fault-recovery mechanisms can take tens of minutes to converge
to a consistent form yielding significant disruptions in end to end connectivity for applications . For our
simulation, we focus on timescales of tens to hundreds of milliseconds and assume that IP cannot re-route
around failures on that time scale. As another simplifying assumption, we simulate IP by traversing the
shortest path between the endpoints. While this may not accurately represent the reality of BGP policies and
hot-potato routing, it results in shorter, and potentially more complete, route paths than real IP, and therefore
presents a more failure resilient protocol for comparison.

Using our NLANR-calibrated transit stub topology, we randomly inject link failures into the network, while
repeatedly traversing all possible pair-wise communication paths with IP and FRLS. We then categorize
the results into one of five categories and plot the portion of all communication paths that falls into each
category as a probability graph. The categories are as follows:

15

Increase in Latency for 1 Misroute (Tertiary Route)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

Misroute Position (Hop)

P
ro

p
o

rt
io

n
al

 In
cr

ea
se

 t
o

 P
at

h
 L

at
en

cy

20 ms 26.66 ms 60 ms 80 ms 93.33 ms

Figure 9: Latency Overhead of Misrouting (Tertiary).

1. A: FRLS=yes, IP=yes. This is the fault-free case, where the injected faults have no impact on the
endpoints chosen. Both IP and FRLS successfully deliver packets.

2. B: FRLS=no, IP=yes. This category includes traversals where IP successfully delivers the packet
while FRLS fails. This occurrence is relatively unlikely, and occurs because Tapestry overlay routing
may travel more hops than IP. If these additional hops include irrecoverable faults (i.e., all exiting
routes have failed), then FRLS would fail while IP succeeds.

3. C: FRLS=yes, IP=no. This category is interesting because it shows conditions where the IP route is
broken due to one or more link failures, and FRLS successfully re-routes around the failure(s).

4. D: Route exists: FRLS=no, IP=no. This is the instance where an existing route between the endpoints
exists, but both IP and FRLS are blocked by link failures.

5. E: No route connecting endpoints. As the fraction of failed links increases in the network, more and
more pairs of endpoints become completely partitioned. This category includes all such partitioned
pairs.

Figure 7 shows the simulation results. We have performed the same experiment on a variety of network
topologies, including randomly generated transit-stub graphs, topologies from TIERS, an autonomous sys-
tems connectivity graph, and a graph of MBone nodes, all with similar results. Region � and � represent
the failure cases for IP, where a route exists but IP fails to deliver the packet. Our results show that Region
� dominates Region �, indicating that FRLS successfully routes around most link failures when working
paths exist. This is particularly true when the failure rate is small. Also note that as failures increase, FRLS’
delivery success rate is several times that of IP.

Latency Overhead for Misrouting We now take a look at the latency overhead for misrouting around
failures. Our intuition is that because misrouting effectively “branches” off from the normal routing path,
it would incur a performance penalty in the form of longer end-to-end latency. We would also expect that
misrouting through the tertiary route would incur a relatively higher latency penalty. Recall the example
illustrated in Figure 5.

16

If Tapestry routing was ideal (produced the shortest path with RDP = 1), then any misrouting would defi-
nitely incur a significant latency penalty. Tapestry overlay routing is non-ideal, however. Determining the
next hop is “greedy” in the sense that we choose the closest next hop node with the matching prefix, even
though it might actually be further away to the message destination. Therefore, there are times when mis-
routing actually benefits overall latency, when a locally suboptimal decision leads to a shorter end-to-end
path overall.

In Figures 8 and 9, we take 1.2 million randomly chosen unique paths from the topology, and measure the
proportional increase in latency experienced when a message misroutes. We plot the result against where the
misroute occured (which hop in the overlay route path). Figure 8 shows the results when misrouting via the
secondary route, while Figure 9 shows results when misrouting via the tertiary route. As expected, in each
case, the proportional increase in latency is higher when misrouting takes place later in the overlay route (at
the 3rd or 4th hop). Our results also confirm our intuition that misrouting via the tertiary route generally
incurs a larger latency penalty than misrouting via the secondary route.

We note that the proportional increase in latency is much higher for paths of shorter lengths. This is due to the
fact that Tapestry routes efficiently in the local area network [24]. Because of the relatively significant jump
in latency between LAN links and WAN links, the greedy mesh construction algorithm leads Tapestry nodes
to search for nearby routers before venturing outside the stub network or LAN. This results in efficient routes
to local destinations, often taking less than the expected number of hops. The message often arrives at the
next hop only to find it matches more than the expected number of prefix digits. We refer to these shortcuts
as “virtual hops,” since the messages need not leave the router to gain additional matching prefix digits of
the destination node. In reality, we would never misroute on virtual hops. We do so in this experiment for
consistency, resulting in disproportionally large penalties for extremely short paths.

Overall, our results show that misrouting does not penalize the end-to-end latency heavily, resulting in
less than a 20% penalty for misrouting on the large majority of secondary routes, and less than 50% for
misrouting on tertiary routes.

5.4 Effects of Branching

In this section, we examine the various penalties a message incurs for utilizing backup pointers, in order to
better understand the performance and overhead tradeoffs involved in Tapestry fault-resilient routing.

Hops to Convergence. The first metric we examine is the number of hops to convergence. This metric is
the number of overlay hops that a message travels across after using a backup route and until it arrives on a
router along the original route path. In an ideal Tapestry network on top of a uniform (mesh-style) network
with uniform connectivity and distance between neighboring nodes, the expected hops to convergence value
will be slightly above 1.

Figure 10 shows our simulation results on our synthetic topology as a function of: the distance between
communication endpoints, at which overlay hop on the route the misroute or branch is taken, and which of
the secondary or tertiary backup routes is taken. Each line represents misrouting or branching at a secondary
or tertiary route at a particular branch position. We see that as expected, hops to convergence values fall
between 1 and 2, with tertiary routes taking on average more hops before converging than secondary routes.

Furthermore, misrouting or branching at later hops in the overlay route results in less number of hops before
convergence. This confirms intuition, since the number of possible routers decreases with each additional
overlay hop, with all hops converging on the final node at the destination.

17

Hops to Convergence vs. Branch Position

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9

Distance Between Endpoints (IP hops)

H
o

p
s

to
 C

o
n

ve
rg

en
ce

Secondary, 0 Secondary, 1 Secondary, 3
Tertiary, 0 Tertiary, 1 Tertiary, 3

Figure 10: Hops to Converge vs. Branch Position. Simulation results showing the average number of
overlay hops taken after taking a backup route before converging with the original path. Results are shown
for branch positions of 0, 1, and 3 for a Tapestry with 6 hops between nodes. The 	 axis shows true length
(distance in IP hops) between the endpoints.

Bandwidth Cost for Multicast. Next, we examine the tradeoffs with using Tapestry’s constrained mul-
ticast for greater reliability. In this experiment, we examine 1.2 million randomly selected unique paths in
the NLANR-calibrated transit stub topology. This is approximately 7.5% of all possible pair-wise paths.
For each of these paths, we simulate the bandwidth used by a single additional multicast packet which is
dropped when it converges with the original route path. We repeat this experiment for each hop where we
can multicast. On a Tapestry network with 6 digits, each message travels through 5 routers (including the
source) before reaching its destination. We then calculate the ratio of the bandwidth overhead to the total
bandwidth cost of the original route.

In presenting our results, we categorize all paths according to their actual IP distance in hops. In Figure 11
we see the simulation results for our experiment, where each multicast sent the duplicate packet to the
secondary route. As expected, we see that the later in a route that a multicast occurs, the higher the added
bandwidth cost. This result occurs because each hop in a Tapestry path is likely to cover more and more IP
hops. More importantly, we see that for the most common paths lengths of 8–10 hops, sending a multicast
message incurs additional bandwidth of only around 10% of the bandwidth utilized by the normal route.

Also note how the proportional bandwidth cost decreases as the IP distance of the communication points
increases. When Tapestry routes between two nearby nodes, it usually takes very few hops, incurring a low
RDP. This is the same “virtual hops” phenomenon mentioned in Section 5.3. In reality, a message would
not multicast on these virtual hops, and only multicast when leaving the current physical node. To pro-
vide uniformity in our experiment, however, we force multicasts at these virtual hops, incurring additional
bandwidth that weighs disproportionally large on a short IP path.

18

Bandwidth Cost of Multicast (Secondary Route)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4

Multicast Position (Hop)

R
at

io
 o

f
B

W
 O

ve
rh

ea
d

 t
o

 T
o

ta
l P

at
h

 B
W

4 Hops 6 Hops 8 Hops 10 Hops 12 Hops

Figure 11: Bandwidth Overhead of Branching (Secondary).

6 Discussion

In this paper, we have presented algorithms and simulation results for several techniques that help mitigate
the effects of packet loss and congestion hot spots for applications running in the wide-area on the Tapestry
network. In this section, we discuss several issues: the broader applicability of these techniques to other
DOLR algorithm-based overlay networks; the scalability, stability, and adaptability of our techniques; and
the effect on Service Level Agreements and peering agreements of our techniques.

In Section 4, we discuss three algorithms for fault-tolerant routing (FRLS, constrained multicast, and node-
based GUID aliasing) in the specific context of Tapestry. We believe that each of these approaches can be
applied to varying degrees of success to other DOLR overlay networks, such as Kademlia [9], CAN [13],
Pastry [17] and Chord [21]. For example, in Chord, a router can choose between multiple finger pointers
for each outgoing hop. Likewise, Pastry uses a similar routing technique as Tapestry, thus a modified form
of constrained multicast could be used in a similar fashion. Finally, the use of multiple realities in CAN and
the use of multiple node IDs in Chord are equivalent analogies of node-based GUID aliasing.

Two of the three approaches, constrained multicast and node-based GUID aliasing, have the potential to
negatively impact the scalability and stability of the underlying Tapestry network. However, our simulation
results of constrained multicast show that the scope of its impact on the network is fairly localized — this is
exactly where we expect to find abundant bandwidth. GUID aliasing may impose a significant impact on the
network, thus, we recommend that it only be used in cases where response time and very reliable delivery
are both critical, high bandwidth is available, and a high degree of interconnection is present at the source,
destination, and intervening nodes.

In terms of adaptability and responsiveness, GUID aliasing is the best approach, as it continuously sends
messages along multiple paths. However, it is a coarse-grained approach. Both FRLS and constrained
multicast are limited by the beacon period and the acknowledgment window. Increasing the beaconing
period and reducing the acknowledgment window (or supporting polled acknowledgments from the beacon
sender) will increase responsiveness, at the cost of higher monitoring traffic.

Finally, an important, but often overlooked, consideration in the choice of alternate routes is the various
peering and transit policies of the participating Internet service providers. Overlay networks have tradition-
ally ignored the arrangements, while optimizing the paths that messages take. If overlay networks are to be

19

Bandwidth Cost of Multicast (Tertiary Route)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4

Multicast Position (Hop)

R
at

io
 o

f
B

W
 O

ve
rh

ea
d

 t
o

 T
o

ta
l P

at
h

 B
W

4 Hops 6 Hops 8 Hops 10 Hops 12 Hops

Figure 12: Bandwidth Overhead of Branching (Tertiary).

successfully deployed on a large-scale, the routing algorithms will have to take into account the inter-AS
routing policies. We expect that this will reduce the alternatives for fault-resilience (and potentially overall
connectivity), however, it also presents the opportunity to explore new and interesting short-term peering
relationships and Quality of Service brokering relationships.

7 Conclusion

In this paper, we described a technique to provide fault tolerance and high performance through continuous
precomputation of alternative pathways and dynamic selection among alternates. We utilized the Tapestry
overlay routing network as a framework in which to embody precomputed alternative paths. At each routing
hop, the basic Tapestry routing algorithm chooses between optimal or near optimal paths, while soft-state
beacons continuously probe the network to pre-compute these alternative paths. We showed via simulation
that a simple protocol can be used to achieve near-optimal fault-resilience, while incurring low overhead in
terms of latency and bandwidth relative to a fault-free network.

The techniques presented in this paper provide an alternative to today’s configuration chaos; they provide a
framework whereby extra resources – alternative communication paths and router cycles – can be seamlessly
exploited to provide stable, high-performance communication. They herald a new age in which designers
can capitalize on Moore’s law growth to yield a better overall user experience.

References

[1] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., AND MORRIS, R. Resilient overlay networks.
In Proceedings of SOSP (October 2001).

[2] CHANDRA, B., DAHLIN, M., GAO, L., AND NAYATE, A. End-to-end WAN service availability. In Proceedings
of USITS (March 2001), USENIX.

[3] CHESHIRE, S., AND BAKER, M. A wireless network in mosquitonet. IEEE Micro 16, 1 (February 1996), 44–52.

[4] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. Wide-area cooperative storage
with CFS. In Proceedings of SOSP (October 2001).

[5] HILDRUM, K., KUBIATOWICZ, J. D., RAO, S., AND ZHAO, B. Y. Distributed object location in a dynamic
network. In Proceedings of SPAA (Winnipeg, Canada, August 2002), ACM.

20

[6] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-
SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. OceanStore: An architecture for global-scale persistent
storage. In Proceedings of ACM ASPLOS (November 2000).

[7] LABOVITZ, C., AHUJA, A., ABOSE, A., AND JAHANIAN, F. An experimental study of delayed internet routing
convergence. In Proceedings of SIGCOMM (August 2000).

[8] LABOVITZ, C., MALAN, G. R., AND JAHANIAN, F. Internet routing instability. IEEE/ACM Transactions on
Networking 6, 5 (1998), 515–526.

[9] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-peer information system based on the XOR
metric. In Proceedings of IPTPS (March 2002).

[10] PAXSON, V. End-to-end routing behavior in the internet. In Proceedings of SIGCOMM (Stanford, CA, Aug.
1996), ACM, pp. 25–38.

[11] PAXSON, V. End-to-end internet packet dynamics. In Proceedings of SIGCOMM (Cannes, France, Sept. 1997),
ACM, pp. 139–152.

[12] PLAXTON, C. G., RAJARAMAN, R., AND RICHA, A. W. Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of SPAA (June 1997), ACM.

[13] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. A scalable content-addressable
network. In Proceedings of SIGCOMM (August 2001).

[14] REKHTER, Y., AND LI, T. An architecture for IP address allocation with CIDR. RFC 1518, http://www.
isi.edu/in-notes/rfc1518.txt, 1993.

[15] REKHTER, Y., AND LI, T. A border gateway protocol 4 (BGP-4). IEEE Micro 19, 1 (Jan. 1999), 50–59. Also
Internet Engineering Task Force, RFC 1771.

[16] ROBSHAW, M. J. B. MD2, MD4, MD5, SHA and other hash functions. Tech. Rep. TR-101, RSA Laboratories,
1995. version 4.0.

[17] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of Middleware (November 2001), ACM.

[18] ROWSTRON, A., AND DRUSCHEL, P. Storage management and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of SOSP (October 2001).

[19] ROWSTRON, A., KERMARREC, A.-M., DRUSCHEL, P., AND CASTRO, M. SCRIBE: The design of a large-
scale event notification infrastructure. In Proceedings of NGC (November 2001).

[20] SAVAGE, S., ET AL. Detour, a case for informed internet routing and transport. IEEE Micro 19, 1 (January
1999), 50–59.

[21] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of SIGCOMM (August 2001).

[22] ZEGURA, E. W., CALVERT, K., AND BHATTACHARJEE, S. How to model an internetwork. In Proceedings of
IEEE INFOCOM (1996).

[23] ZHAO, B. Y., DUAN, Y., HUANG, L., JOSEPH, A., AND KUBIATOWICZ, J. Brocade: Landmark routing on
overlay networks. In Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS) (March 2002).

[24] ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Tech. Rep. UCB/CSD-01-1141, University of California at Berkeley, Computer Sci-
ence Division, April 2001.

[25] ZHUANG, S. Q., ZHAO, B. Y., JOSEPH, A. D., KATZ, R. H., AND KUBIATOWICZ, J. D. Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination. In Proceedings of NOSSDAV (June
2001).

21

