
Decentralized Object Location and Routing: A New Networking
Paradigm

by

Yanbin Zhao

B.S. (Yale University) 1997
M.S. (University of California at Berkeley) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor John D. Kubiatowicz, Co-Chair
Professor Anthony D. Joseph, Co-Chair

Professor Ion Stoica
Professor John Chuang

Fall 2004

The dissertation of Yanbin Zhao is approved:

Co-Chair Date

Co-Chair Date

Date

Date

University of California, Berkeley

Fall 2004

Decentralized Object Location and Routing: A New Networking

Paradigm

Copyright 2004

by

Yanbin Zhao

1

Abstract

Decentralized Object Location and Routing: A New Networking Paradigm

by

Yanbin Zhao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John D. Kubiatowicz, Co-Chair

Professor Anthony D. Joseph, Co-Chair

The growth of the Internet has led to technological innovations in a variety of fields. Today, the

Internet provides a wide variety of valuable services to end host clients via well-known DNS hosts.

These hosts serve up content ranging from maps and directions to online shopping to database and

application servers. Along with the growth of the Internet, network applications are also growing

in client population and network coverage. This is exemplified by new applications that support

requests from hundreds of thousands of users and scale across the entire Internet.

Our work seeks to facilitate the design, implementation and deployment of these applica-

tions, by building a communication and data management infrastructure for global-scale applica-

tions. The applications we target share several defining characteristics. First, they support large

user populations of potentially millions. Second, their components span across large portions of the

global Internet. Finally, they expect to support requests from users with wide-ranging resources

from wireless devices to well-connected servers.

We identify the key application requirement as scalable location-independent routing. For

2

any large-scale network application, both communication and data management distill down to

the problem of communicating with a desired endpoint via a location independent name. For

communication with a node, the endpoint is its location-independent name. To locate a data object,

the endpoint is the name of the node with a current and closeby replica of the object. Additionally,

nodes can use the latter scenario as a way to announce its membership of a group, and allowing

others to rendezvous with it using the group name.

The key goals for our infrastructure include the following:

• Scalable location-independent routing: Nodes should be able to route messages to other nodes or

to nodes assuming temporary name mappings for the purposes of data location or rendezvous.

This should scale to networks of millions of nodes and billions of location-independent names.

• Efficiency: Routing to nodes or endpoints should be efficient, such that the end-to-end routing

latency remains within a small constant factor of ideal.

• Resiliency: Routing should be resilient against failures in the infrastructure as well as failures

in the underlying IP network layer.

Our approach is to build this scalable, efficient, reliable communication and data location

infrastructure in the form of a structured peer-to-peer overlay network called Tapestry. Tapestry

is one of the original structured peer-to-peer overlay systems. In its design and implementation,

we provided one of the first application platforms for large-scale Internet applications, removing

the existing scale limitations of unstructured networks. In the process, we also gained a better

understanding of the interfaces these overlays provide to the applications, and the implications

these interfaces had on application performance. Finally, we developed a number of techniques to

enhance the efficiency and resiliency of Tapestry on top of the dynamic and failure-prone wide-area

Internet.

In this thesis, we present details on the motivation, mechanisms, architecture and evaluation

of Tapestry. We highlight the key differences between Tapestry and its contemporary counterparts

3

in interface design, efficiency and resiliency mechanisms. We evaluate Tapestry using a variety of

platforms, including simulations, microbenchmarks, cluster emulation, and wide-area deployment,

and find that Tapestry provides a flexible, efficient and resilient infrastructure for building wide-area

network applications.

Professor John D. Kubiatowicz
Dissertation Committee Co-Chair

Professor Anthony D. Joseph
Dissertation Committee Co-Chair

i

To my father, Xiaolin Zhao,

who taught me the meaning of sacrifice,

and my mother, Wenyu Cui,

who taught me the meaning of perseverence.

ii

Contents

List of Figures v

List of Tables xi

1 Introduction 1
1.1 The Power of Decentralization . 3
1.2 Application Requirements . 5

1.2.1 OceanStore: A Global-scale Storage Layer for Long-term Durability 5
1.2.2 Large-scale Application-level Multicast . 6
1.2.3 Wide-area Resource Discovery . 7

1.3 An Overlay Routing Infrastructure . 8
1.3.1 Scalable Location-independent Routing . 8
1.3.2 Application Interface . 11
1.3.3 An Infrastructure Approach . 12

1.4 Contributions and Thesis Organization . 17
1.4.1 Contributions . 18
1.4.2 Organization . 20

2 Related Work 21
2.1 Unstructured Peer-to-Peer Systems . 22

2.1.1 P2P File-Sharing Applications . 22
2.1.2 Research Applications and Internet Protocols 25

2.2 Structured Peer-to-Peer Protocols . 26
2.2.1 Pastry . 26
2.2.2 Chord . 26
2.2.3 CAN . 27
2.2.4 New protocols . 28

2.3 Applications and other work . 29
2.3.1 Applications . 29
2.3.2 Internet Indirection Infrastructure . 29
2.3.3 Other Related Work . 30

3 Decentralized Object Location and Routing (DOLR) 32
3.1 Components of the DOLR Abstraction . 33
3.2 Implementing The DOLR abstraction . 36

3.2.1 Structured Overlays and Key-Based Routing 36
3.2.2 Distributed Hash Tables . 39
3.2.3 Proximity routing . 40

iii

3.2.4 Decentralized directory service interface . 41
3.3 Tapestry, a DOLR Prototype . 43

3.3.1 The API . 43
3.3.2 Routing and Object Location . 45
3.3.3 Dynamic Node Algorithms . 49

4 Efficient Routing and Location on Real Networks 52
4.1 Challenges . 54

4.1.1 Efficient Routing . 54
4.1.2 Efficient Object Location . 55

4.2 Nearest Neighbor Routing Tables . 57
4.2.1 Some Preliminaries . 58
4.2.2 Building Neighbor Tables . 61

4.3 Brocade . 65
4.3.1 Brocade Base Architecture . 66
4.3.2 Evaluation of Base Design . 70
4.3.3 Brocade Status . 74

4.4 Proximity Indirection Distribution . 74
4.4.1 Simple Hierarchical Apporach . 76
4.4.2 A Distributed Hash Table Approach . 76
4.4.3 Network Indirection . 77
4.4.4 Proximity Indirection Distribution . 78

4.5 Local-area Optimizations for Object Location . 80
4.5.1 Optimizations . 81
4.5.2 Results . 84

5 Resilient Routing and Location on Faulty Networks 89
5.1 Challenges and Fault Model . 91

5.1.1 Challenges . 91
5.1.2 Fault Model and Assumptions . 92

5.2 Maintaining Routing Connectivity . 93
5.2.1 Fault Tolerant Overlay Routing . 93
5.2.2 A Fault-resilient Traffic-tunneling Service . 101

5.3 Maintaining Highly Available Object Location Services 107
5.3.1 Pointer management during self-healing . 107
5.3.2 Name level redundancy . 109

5.4 Discussion . 110

6 Implementation and Evaluation 111
6.1 Tapestry Node Architecture and Implementation . 112

6.1.1 Component Architecture . 113
6.1.2 Tapestry Upcall Interface . 115
6.1.3 Implementation . 116
6.1.4 Toward a Higher-Performance Implementation 119

6.2 Quantifying Design Decisions . 120
6.2.1 Proximity Routing . 121
6.2.2 Decentralized Directory Interface . 122

6.3 Evaluation of a Deployed Prototype . 123
6.3.1 Evaluation Methodology . 124
6.3.2 Performance in a Stable Network . 125
6.3.3 Convergence Under Network Dynamics . 130

6.4 Resiliency under Failure . 134

iv

6.4.1 Analysis and Simulation . 135
6.4.2 Microbenchmarks of a Deployed System . 137
6.4.3 The Importance of Self-Repair . 140
6.4.4 Putting It All Together . 142

6.5 Implementation Discussion . 142

7 Tapestry as an Application Framework 144
7.1 Warp: Adaptive and Efficient Mobility Infrastructure 145

7.1.1 Motivation . 146
7.1.2 Mobility Support . 147
7.1.3 Supporting Rapid Mobility . 151
7.1.4 Measurements and Evaluation . 153

7.2 Bayeux: Application-level Multicast . 156
7.2.1 Bayeux Base Architecture . 157
7.2.2 Evaluation of Base Design . 158
7.2.3 Scalability Enhancements . 161
7.2.4 Fault-resilient Packet Delivery . 164

7.3 Approximate Location and Spam Filtering . 171
7.3.1 Approximate DOLR . 171
7.3.2 Approximate Text Addressing . 178
7.3.3 Decentralized Spam Filtering . 180
7.3.4 Evaluation . 182

7.4 Other Applications . 188

8 Lessons and Future Work 190
8.1 Lessons Learned . 191

8.1.1 Namespace Continuity . 191
8.1.2 Algorithmic Complexity . 192
8.1.3 Event Handling . 193
8.1.4 Recursive versus Iterative Routing . 194
8.1.5 Wide-area State Management . 195

8.2 Limitations and Future Work . 196
8.2.1 Security . 196
8.2.2 Flexible Deployment . 197
8.2.3 Other Topics . 200

8.3 Conclusions . 200

Bibliography 202

v

List of Figures

1.1 Key distinctions in resource allocation between a traditional client-server application
model, a distributed application model using directories, and a peer-based decentral-
ized application model. 3

1.2 Wide-area Internet Routing. A simple diagram representing local and wide-area In-
ternet routing. Local routing protocols such as IS-IS and OSPF work to connect
nodes within an autonomous system (AS), while BGP maintains connectivity across
different ASes in the wide-area network. 9

1.3 An infrastructure approach. Instead of building monolithic solutions, developers can
quickly deploy application logic on top of an existing application infrastructure that
solves the difficult common challenges. 13

1.4 A new layer in the OSI stack. Our infrastructure approach can be seen as inserting
an additional layer (the name-based routing layer) into the OSI network stack. . . . 14

1.5 Routing example in Tapestry. Routing path taken by a message from node 5230
towards node 8954 in Tapestry using hexadecimal digits of length four. As with other
key-based routing overlays, each hop gets the message closer to the destination key
in name. 16

2.1 Example of unstructured file sharing applications Napster and Gnutella. Napster uses
a set of directory servers to store indexes of files available on the client nodes. These
servers respond to client queries with the locations of their desired files. Clients in
Gnutella use a scoped flooding approach to forward queries to a set of clients. 24

2.2 Example of the KaZaa file sharing application. Client nodes connect to one of a set
of supernodes, and each supernode stores file indexes for the clients that connect to
it. Client queries are forwarded to the supernode, where they are then flooded to a
scoped set of supernodes for evaluation. 25

3.1 Allowing an application to place data replicas nearby to where clients are located in
the network, and using a DHT to make locations of replicas available. The DOLR
directs client requests quickly to the actual replica, resulting in quick access to data. 33

3.2 A simple example of Key-based Routing. Nodes in the overlay are each responsible for
a region in the namespace. Routing to a key or identifier means routing incrementally
towards it in the namespace, and finally delivering the message to the root node
responsible for the region that the key lies in. 37

3.3 Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables
(DHT), decentralized object location and routing (DOLR), and group anycast and
multicast (CAST). 38

vi

3.4 Using a DHT to distribute replicas of data. The resulting placement is completely
random, and independent of where clients are, resulting in potentially extremely long
access latencies. 40

3.5 A 3-way tradeoff involved in the design of a storage and replication layer. 42
3.6 Tapestry routing mesh from the perspective of a single node. Outgoing neighbor links

point to nodes with a common matching prefix. Higher-level entries match more
digits. Together, these links form the local routing table. 44

3.7 Path of a message. The path taken by a message originating from node 5230 destined
for node 42AD in a Tapestry mesh. 44

3.8 Pseudocode for nextHop(). This function locates the next hop towards the root given the

previous hop number, n, and the destination GUID, G. Returns next hop or self if local

node is the root. 45
3.9 Tapestry object publish example. Two copies of an object (4378) are published to their

root node at 4377. Publish messages route to root, depositing a location pointer for
the object at each hop encountered along the way. 46

3.10 Tapestry route to object example. Several nodes send messages to object 4378 from
different points in the network. The messages route towards the root node of 4378.
When they intersect the publish path, they follow the location pointer to the nearest
copy of the object. 46

4.1 Tapestry Routing Mesh. Each node is linked to other nodes via neighbor links, shown
as solid arrows with labels. Labels denote which digit is resolved during link traversal.
Here, node 4227 has an L1 link to 27AB, resolving the first digit, an L2 link to 44AF,
resolving the second digit, etc. Using the notation of Section 4.2.1, 42A2 is a (42, A)
neighbor of 4227. 59

4.2 Building a Neighbor Table. A few words on notation: function [on destination]
represents a call to run function on destination, variables in italics are single-valued,
and variables in bold are vectors. The AcknowledgedMulticast function is described
in Figure 4.3. 61

4.3 Acknowledged Multicast. It runs function on all nodes with prefix α. 63
4.4 Example of Brocade Supernode Organization . 68
4.5 Hop-based Routing RDP in Brocade. Header snooping is shown as IP snooping. . . 71
4.6 Weighted latency RDP in Brocade, ratio 3:1. Header snooping is shown as IP snooping. 72
4.7 Aggregate bandwidth used per message in Brocade. Header snooping is shown as IP

snooping. 73
4.8 Single hierarchical approach. The path traversed by query traffic from the client node

C to server node S using a single hierarchical directory. The hierarchy organization
reflects the physical network topology. 75

4.9 DHT-based directory approach. The path traversed by query traffic using a DHT-
based directory approach. The root node R is determined by the name of the object. 75

4.10 Proximity indirection distribution approach. Path traversed by query traffic in a
DOLR system using a proximity indirection distribution approach. For each object,
query traffic searches up a virtual hierarchy rooted at a different node with good
randomized locality properties. 78

4.11 Publication in Tapestry. To publish object 4378, server 39AA sends publication request
towards root, leaving a pointer at each hop. Server 4228 publishes its replica similarly.
Since no 4378 node exists, object 4378 is rooted at node 4377. 79

4.12 Routing in Tapestry: Three different location requests. For instance, to locate GUID
4378, query source 197E routes towards the root, checking for a pointer at each step.
At node 4361, it encounters a pointer to server 39AA. 79

vii

4.13 Route to object example, with local areas shown. A possible grouping of nodes from
Figure 3.10 into local areas. 83

4.14 The effect of publishing to backups on median RLDP. Shows the median RLDP for
object location using b backups and h hops with analytical cost (additional pointers
per object) shown in brackets. 85

4.15 The effect of publishing to nearest neighbors on median RLDP. Shows the median
RLDP for object location using n neighbors and h hops with analytical cost (additional
pointers per object) shown in brackets. 86

4.16 The effect of publishing to the local surrogate on median RLDP. Shows the median
RLDP for object location using threshold t. Note the scale of this graph differs to
show greater detail. 86

4.17 The effect of publishing to backups on 90th percentile RLDP. 87
4.18 The effect of publishing to nearest neighbors on 90th percentile RLDP. 87
4.19 The effect of publishing to the local surrogate on 90th percentile RLDP. 87
4.20 The effect of publishing to backups and nearest neighbors on median RLDP. 88
4.21 The effect of publishing to backups and nearest neighbors on 90th percentile RLDP. . 88

5.1 Routing example in Tapestry. Routing path taken by a message from node 5230
towards node 8954 in Tapestry using hexadecimal digits of length four. As with other
key-based routing (KBR) overlays, each hop resolves one digit. 94

5.2 Fault-detection Bandwidth. Unstructured overlay networks consume far more main-
tenance bandwidth than structured P2P networks. Bandwidth here is measured in
beacons per node per beacon period. 96

5.3 First Reachable Link. Using simple route selection (First Reachable Link or FRLS)
to circumvent single and multiple failed links on an overlay path from 5230 to 8954. 97

5.4 Constrained Multicast. Two examples of constrained multicast showing the multicast
occurring at different positions on the overlay path. 97

5.5 Path convergence with prefix routing. Routing path from 5230 to 8954 in prefix-based
protocol. Note that with each additional hop, the expected number of nearby next
hop routers decreases, causing paths to rapidly converge. 99

5.6 Tunneling traffic through a wide-area overlay. Legacy application nodes tunnel wide-
area traffic through the overlay. 102

5.7 Proxy architecture. Architectural components involved in routing messages from
source A to destination B. Destination B stores its proxy ID with a hash of its
IP address as an object in the overlay. The source proxy retrieves B’s proxy ID from
the overlay and routes A’s traffic to it. 102

5.8 Registering with proxy nodes. Legacy application nodes register with nearby proxies
and are allocated proxy IDs which are close to the name of the proxy node. Legacy
nodes can address each other with these new proxy names, routing through the overlay
to reach one another. 104

5.9 Interdomain overlay peering. ISPs can set up local overlays which communicate via a
higher level peering network. Cross-domain traffic results in routing through a higher
level object location layer into the destination network. 106

5.10 Partial republish after failure. An example of a node failure triggering a partial
republish of the object location pointers. When node 2274 becomes partitioned from
the network, the last hop 2051 on the publish path notices and starts a local partial
republish to an alternate path at 2286. 107

6.1 Tapestry component architecture. Messages pass up from physical network layers and down

from application layers. The Router is a central conduit for communication. 112

viii

6.2 Message processing. Object location requests enter from neighbor link layer at the left. Some

messages are forwarded to an extensibility layer; for others, the router first looks for object

pointers, then forwards the message to the next hop. 114
6.3 Tapestry Implementation. Tapestry is implemented in Java as a series of independently-

scheduled stages (shown here as bubbles) that interact by passing events to one another.117
6.4 Enhanced Pointer Lookup. We quickly check for object pointers using a Bloom filter to

eliminate definite non-matches, then use an in-memory cache to check for recently used

pointers. Only when both of these fail do we (asynchronously) fall back to a slower repository.119
6.5 Comparing performance impact of using proximity routing. 121
6.6 Comparing performance of DOLR against basic DHT replication schemes. 122
6.7 PlanetLab ping distribution. A histogram representation of pair-wise ping measure-

ments on the PlanetLab global testbed. 124
6.8 Message Processing Latency. Processing latency (full turnaround time) per message

at a single Tapestry overlay hop, as a function of the message payload size. 125
6.9 Max Routing Throughput. Maximum sustainable message traffic throughput as a

function of message size. 125
6.10 RDP of Routing to Nodes. The ratio of Tapestry routing to a node versus the shortest

roundtrip IP distance between the sender and receiver. 126
6.11 RDP of Routing to Objects. The ratio of Tapestry routing to an object versus the

shortest one-way IP distance between the client and the object’s location. 126
6.12 90th percentile RDP of Routing to Objects with Optimization. Each line represents a

set of optimization parameters (k backups, l nearest neighbors, m hops), with cost
(additional pointers per object) in brackets. 127

6.13 Node Insertion Latency. Time for single node insertion, from the initial request mes-
sage to network stabilization. 128

6.14 Node Insertion Bandwidth. Total control traffic bandwidth for single node insertion. 128
6.15 Parallel Insertion Convergence. Time for the network to stabilize after nodes are

inserted in parallel, as a function of the ratio of nodes in the parallel insertion to size
of the stable network. 129

6.16 Route to Node under failure and joins. The performance of Tapestry route to node
with two massive network membership change events. Starting with 830 nodes, 20%
of nodes (166) fail, followed 16 minutes later by a massive join of 50% (333 nodes). . 130

6.17 Route to Object under failure and joins. The performance of Tapestry route to objects
with two massive network membership change events. Starting with 830 nodes, 20%
of nodes (166) fail, followed 16 minutes later by a massive join of 50% (333 nodes). . 130

6.18 Route to Node under churn. Routing to nodes under two churn periods, starting
with 830 nodes. Churn 1 uses a Poisson process with average inter-arrival time of 20
seconds and randomly kills nodes such that the average lifetime is 4 minutes. Churn
2 uses 10 seconds and 2 minutes. 132

6.19 Route to Object under churn. The performance of Tapestry route to objects under
two periods of churn, starting from 830 nodes. Churn 1 uses random parameters of
one node every 20 seconds and average lifetime of 4 minutes. Churn 2 uses 10 seconds
and 2 minutes. 132

6.20 Failure, join and churn on PlanetLab. Impact of network dynamics on the success
rate of route to node requests. 133

6.21 Maintenance Advantage of Proximity (Simulation). Proximity reduces relative band-
width consumption (TBC) of beacons over randomized, prefix-based routing schemes. 134

6.22 Latency Cost of Backup Paths (Simulation). Here we show the end-to-end propor-
tional increase in routing latency when Tapestry routes around a single failure. . . . 135

6.23 Convergence Rate (Simulation). The number of overlay hops taken for duplicated
messages in constrained multicast to converge, as a function of path length. 135

ix

6.24 Bandwidth Overhead of Constrained Multicast (Simulation). The proportional in-
crease in bandwidth consumed by using a single constrained multicast. 135

6.25 Routing Around Failures with FRLS. Simulation of the routing behavior of a Tapestry
overlay (2 backup routes) and normal IP on a transit stub network (4096 overlay nodes
on 5000 nodes) against randomly placed link failures. 135

6.26 Hysteresis Tradeoff. A simulation of the adaptivity of a function to incorporate hys-
teresis in fault estimation using periodic beacons. Curves show response time after
both a link failure and a loss event causing 50% loss. 137

6.27 Route Switch Time vs. Probing Frequency. Measured time between failure and re-
covery is plotted against the probing frequency. For this experiment, the hysteresis
factors α = 0.2 and α = 0.4 are shown. 137

6.28 Overhead of Fault-Tolerant Routing. The increase in latency incurred when a packet
takes a backup path. Data separated by which overlay hop encounter the detour.
Pairwise overlay paths are taken from PlanetLab nodes, and have a maximum hop
count of six. 139

6.29 Overhead of Constrained Multicast. The total bandwidth penalty for sending a du-
plicate message when loss is detected at the next hop, plotted as a fractional increase
over normal routing. Data separated by which overlay hop encounters the split. . . . 139

6.30 Cost of Monitoring. Here we show bandwidth used for fault-detection as a function
of overlay network size. Individual curves represent different monitoring periods, and
bandwidth is measured in kilobytes per second per node. 139

6.31 Pair-wise Routing without Repair. Success rate of Tapestry routing between random
pairs of nodes with self-repair mechanisms disabled during massive failure, massive
join, and constant churn conditions. 141

6.32 Pair-wise Routing with Self-Repair. Success rate of Tapestry routing between ran-
dom pairs of nodes with self-repair enabled during massive failure, massive join, and
constant churn conditions. 141

7.1 Communicating with a mobile host. Mobile node mn registers with proxy P, and correspondent

host CH sends a message to mn. 148
7.2 Updating a location binding via ProxyHandoverMsg . Correspondent host CH sends a message

to mobile node mn after mn moves from proxy P to Q. 149
7.3 Node aliasing with 2 IDs. This shows CH communicating to a mobile host (MH) using

node aliasing. MH registers with two independent pseudorandom IDs mnG1 and mnG2.
CH measures the end to end latency to MH using both and caches the shorter route for
future communication. 150

7.4 Tunneling legacy application traffic through client-end daemons and overlay proxies.. A

legacy node A communicates with mobile node B. 151
7.5 Mobile crowds. Five members (m1..5) of a crowd connected to a mobile trunk (mt). A

message routes to m1 as the crowd moves from proxy P to Q. 152
7.6 A figure summarizing levels of type indirection. The arrows on right illustrate relative rela-

tionships between types. 152
7.7 Routing stretch. Routing latency via Warp (with and without node aliasing) and Mobile IP

measured as a ratio of shortest path IP latency. 154
7.8 Handoff latency as a function of density of adjacent proxies or base stations. For Mobile IP,

we measure both when the MN is close and far from home. Warp converge is the time to full

routing state convergence. 155
7.9 Handoff load. Reducing handoff messages of mobile crowds in Warp as a function of popu-

lation size. Crowd sizes follow uniform, exponential, and binomial distributions. 155
7.10 Tree maintenance . 158
7.11 Cumulative distribution of RDP . 160

x

7.12 Comparing number of stressed links between naive unicast and Bayeux using Log
scale on both axis. 160

7.13 Receivers self-configuring into Tree Partitions . 161
7.14 Membership Message Load Balancing by Roots . 163
7.15 Receiver ID Clustering according to network distance 163
7.16 Worst case physical link stress vs. fraction of domains that use receiver ID clustering

for the transit-stub model . 163
7.17 Maximum Reachability via Multiple Paths vs. Fraction of Failed Links in Physical

Network . 165
7.18 Average Hops Before Convergence vs. Position of Branch Point 166
7.19 Fault-resilient Packet Delivery using First Reachable Link Selection 169
7.20 Bandwidth Delay Due to Member State Exchange in FRLS 170
7.21 Location of an approximate object. Client node wants to send a message to all objects

with at least 2 feature in {fv1, fv2, fv3}. It first sends lookup message to feature
fv1, fv2 and fv3. fv2 does not exists. A Location Failure message is sent back.
fv1 is managed by object node X. It sends back a list of IDs of all objects having
feature fv1, which is {guid1}. Similar operation is done for feature fv3, whose IDs
list {guid1, guid4}. Client node counts the occurrence of all IDs in all lists and
finds out guid1 to be the ID it is looking for. It then sends the payload message to
object guid1 using Tapestry location message. 171

7.22 Optimized ADOLR location. Client node wants to route a message to a feature vector
{fv1, fv2, fv3, fv4}. It sends message to each identifier fv1, fv2, fv3, fv4. fv2
doesn’t exist, so no object node receives this message. When object node X receives
the messages to fv1, fv3 and fv4, it scans its local storage for all IDs matching fv1,
fv3 and fv4, which is guid1. Then, object node X sends msg to guid1. 175

7.23 Fingerprint Vector. A fingerprint vector is generated from the set of checksums of all
substrings of length L, post-processed with sort, selection and reverse operations. . . 179

7.24 Robustness Test (Experimental and Analytical). The probability of correctly recog-
nizing a document after modification, as a function of threshold. |FV | = 10. 183

7.25 False Positives. The probability of two random text files matching i (i = 1, 2) out of
10 fingerprint vectors, as a function of file size. 185

7.26 Spam Mail Sizes. Size distribution of the 29996 spam email messages used in our
experiments, using both histogram and CDF representations. 185

7.27 Finding an Ideal TTL. A graph that shows, for a “marked” document, the correlation
between TTL values on queries, probability of a successful search, and percentage of
nodes in the network who “marked” it. 187

xi

List of Tables

1.1 A sample of cooperative applications and the common resources they share. 4

3.1 Tier 1 Interfaces . 39

4.1 Cost of combined optimizations. 88

7.1 Robustness Test on Real Spam Emails. Tested on 3440 modified copies of 39 emails,
5629 copies each. |FV | = 10. 186

7.2 False Positive Test on Real Spam Emails. Tested on 9589(normal) × 14925(spam)
pairs. |FV | = 10. 186

xii

Acknowledgments

Many people have played instrumental roles in helping me arrive at this stage in my career. Through

the last seven years, I’ve grown so much personally and in my research. A lot of what I’ve been able

to accomplish was due to a few good pieces of luck, but most of it were the direct result of the great

people I was fortunate enough to learn from and work with. So much of this dissertation resulted

from collaborative work, and I want to acknowledge them here.

First off, I have to thank my two mentors, Anthony Joseph and John Kubiatowicz (Kubi).

I cannot imagine choosing a more perfect combination of co-advisors. Anthony has helped me and

guided me from my first days as a wide-eyed graduate student, supporting me and teaching me

what research was. His mastery of the research world has saved me from the fire on more than

one occasion. Kubi, on the other hand, has been instrumental on guiding my progress through

Tapestry. We’ve enjoyed many a vehement discussion about everything from research designs to

life in academia. Their combination has given me incredible perspective on numerous topics and on

many occasions, from the lodges in Tahoe to dessert wines in Rio. For that and more, I am and will

always be grateful.

A number of other faculty members have had a hand in guiding me through the maze that

is graduate school. I’ve often sought and received insightful advice from Randy Katz, Ion Stoica,

Satish Rao, John Chuang, Steve Gribble, Armando Fox, Eric Brewer, Amin Vahdat, Matt Welsh,

Stefan Savage and Kevin Almeroth. Satish is personally responsible for pointing Kubi and I to the

original PRR work that led to Tapestry, and Steve has been there several times, offering the most

insightful advice and perspective.

To my colleagues in the OceanStore, Sahara and Ninja projects, I offer my heartfelt

thanks. Everyone in these projects have taught me something unique and meaningful. The original

OceanStore group, Sean Rhea, Dennis Geels, Patrick Eaton, Hakim Weatherspoon, Steve Czerwinski

have all made significant contributions to Tapestry. Without their great code and help, Tapestry

simply would not exist today. In addition, several of my published results were made possible by

xiii

great simulation and measurement platforms built by Sean and Dennis. In addition, Jeremy Strib-

ling was instrumental in thoroughly testing and debugging Tapestry, and Kris Hildrum was key in

helping to design, understand and prove the soundness and properties of the robust dynamic inser-

tion algorithms. Finally, Ling Huang deserves many thanks for patiently monitoring and performing

many of the large scale deployed experiments.

Tapestry has been one giant collaborative effort from the very beginning. It has benefited

from many late night discussions at conferences, research retreats and long plane rides. Thank you

to Peter Druschel, Ant Rowstron, Mothy, Steve Hand and the Cambridge crew for guiding me into

research. Thanks also to Chen-nee Chuah, Todd Hodes, Helen Wang, Sharah Agrawal and Mike

Chen. Thanks to the great collaborators I’ve had on Tapestry projects: Shelley Zhuang, Feng Zhou,

Li Zhuang, Tom Duan, Yan Chen, David Liu and Xiaofeng Ren. I’m also thankful for the great set

of undergraduates I’ve had a chance to work with: Ben Poon, Calvin Hubble, Brian Chan, Anwis

Das and Scott Honey.

Finally, my deepest heartfelt thanks to my family and close friends, who have helped me

get through some tidalwaves in the last few years. There were times when I was at the edge of

physical and emotional exhaustion, and they pulled me up and gave me courage to continue. I

thank my best friends Mike and Dena Konrad, Andrea Dickson, my sis Annie, Annette Quinn and

Quyen Ta. I thank Heather Zheng, who made this stressful process bearable and worthwhile. And

to my parents, without whose sacrifices none of this would be possible, thank you.

1

Chapter 1

Introduction

2

The growth of the Internet has led to technological innovations in a variety of fields. Today,

the Internet provides a wide variety of valuable services to end host clients via well-known DNS hosts.

These hosts serve up content ranging from maps and directions to online shopping to database and

application servers. Along with the growth of the Internet, network applications are also growing

in client population and network coverage. This is exemplified by new applications that support

requests from hundreds of thousands of users and scale across the entire Internet.

The applications we target share several defining characteristics. First, they support large

user populations of potentially millions. Second, their components span across large portions of the

global Internet. Finally, they expect to support requests from users with wide-ranging resources

from wireless devices to well-connected servers.

These characteristics of wide-area applications translate into a set of stringent demands

on the communication and data management components of these applications. Application nodes

need to route messages to each other given their node names or names of data residing on them,

regardless of the scale of these applications. Additionally, this communication needs to be efficient

(close to ideal) and resilient despite failures in other application nodes and in the underlying network.

Finally, the underlying communication layer needs to be robust across membership changes and

simplify network management for the application.

Traditionally, Internet services have been offered via a client-server model [34]. In the client-

server model, a client issues requests by sending a message to the server. The provider of the service

allocates physical resources such as storage, memory and CPU in order to satisfy incoming queries.

While this model has worked well in the past, a key limitation is the monetary and management

costs involved in augmenting resources in order to scale up with increasing requests. This makes

deploying global-scale applications using a client-server model extremely costly.

To help servers scale to a larger set of users and resources, some services use a distributed

model. Application resources are distributed, and clients ask a centralized directory service to de-

termine which resource it should contact. Clients then contact the resource independently, therefore

3

server

directory

Directory−based Distributed ModelClient−Server Application Model Peer−based Decentralized Model

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

Figure 1.1: Key distinctions in resource allocation between a traditional client-server application
model, a distributed application model using directories, and a peer-based decentralized application
model.

load-balancing client traffic across resources. This allows an application to scale to more resources

without a centralized resource broker, which can often be a processing bottleneck. For example,

distributed resources do not share a common bandwidth bottleneck compared to the simple client-

server model. The disadvantage is that while the directory service can handle a large number of

location requests, it is still a central point of failure in the system. Furthermore, by requiring that

all clients contact the same directory service regardless of their network location, all clients incur a

significant latency cost from performing the resource lookup.

1.1 The Power of Decentralization

The development of new file-sharing applications such as Napster [37], Gnutella [5], and

KaZaa [66] have demonstrated the viability of another alternative application model. Instead of

depending on a single entity to provide the necessary resources, these applications operate on a

“cooperative” model, where users leverage each other’s available resources for mutual benefit. Clients

use a distributed directory scheme to determine where their desired resources are. By allowing each

user to contribute additional localized resources to the overall system, an application lowers the total

cost of resources, allowing it to potentially scale to very large user groups and number of requests.

Figure 1.1 illustrates the difference in resource management between these application models.

Applying this cooperative model to different types of resources such as CPU, storage, and

4

Shared Resource CPU Storage Bandwidth
Application Distributed Computing File Sharing Multicast / Streaming

Examples SETI @ Home KaZaa Overcast

Table 1.1: A sample of cooperative applications and the common resources they share.

bandwidth results in different types of applications. For example, distributed computation applica-

tions ask participants to share CPU processing power, and distributed file systems ask participants

to share storage space. Table 1.1 contains a short list of cooperative applications and the resources

they share.

While their cooperative nature removes the limitation of resources, these applications still

face several significant challenges in gaining deployment and acceptable performance in the wide-

area Internet. First, as they scale in users and distribution across the network, management of data

becomes increasingly difficult. More users result in more data. While much of it is spread across the

wide-area, all of it needs to be located predictably and efficiently by application components. Second,

because of their scale and number of individual components, we expect pieces of the application to

fail as the hardware resources supporting them fail, only to be replaced by new hardware. In

addition, users in a cooperative application participate voluntarily, and may choose to join or leave

the system at any given time. These two factors mean that in order to maintain stability across

time, cooperative applications must adapt quickly to membership changes in its user group. Finally,

cooperative applications still have to address the challenge of providing robust service despite failures

in the underlying network.

Significant challenges such as these can be addressed in a number of ways. First, each ap-

plications programmer could seek to supplement his or her own code in an application-specific way.

Unfortunately, this can result in significant duplicated effort and may involve a level of expertise not

possessed by applications writers. Second, programmers could utilize common libraries that provide

scalable, robust services. While this second option is more economical of programmer resources and

expertise than the first, it retains an unfortunate property of current peer-to-peer systems: each

5

application instantiates its own private peer-to-peer network. Consequently, independent applica-

tions cannot benefit from common routing resource, adaptation strategies, link characterizations,

and congestion measurements. Finally, a third option would be for application writers to turn to a

common, cross-application communication service – much in the same spirit as the IP routing layer

of the current Internet. It is this third option that is pursued in this thesis.”

In particular, the hypothesis of our work is that most Internet-scale applications share a

small set of these common requirements, and that these requirements can be met by a single net-

work infrastructure, thereby significantly reducing the complexity involved in developing global-scale

network applications. In the remainder of this chapter, we continue our motivation by discussing

three Internet-scale network applications in detail and highlighting their common infrastructure re-

quirements. We then outline our approach towards a a global-scale application infrastructure, and

summarize the structure of this thesis.

1.2 Application Requirements

To better understand the needs of large-scale cooperative applications, we discuss three

specific applications in more detail. The examples are a global-scale, highly durable storage service,

large-scale application-level multicast, and wide-area resource discovery.

1.2.1 OceanStore: A Global-scale Storage Layer for Long-term Durability

As the number and type of network-enabled devices continue to grow, application data is

increasingly distributed across multiple computing devices. Such devices vary from relatively reliable

computing servers to relatively fragile battery powered devices such as personal digital assistants

(PDAs). Not only do we need to access common data across these devices, but we need that data

to be stored reliably and durably across device and network failures.

The OceanStore [71, 105, 102] global-scale storage utility addresses these needs in a scal-

6

able and secure fashion. To increase durability, OceanStore encodes files or objects using erasure

coding [2], and randomly distributes the resulting fragments across the wide-area network. To re-

duce access latency, participants or Nodes in OceanStore disseminate active data replicas towards

network locations with highest concentrations of requests.

As an application, OceanStore has several requirements for its communication and net-

working layer:

• Location-independent Routing. Nodes need to route messages to any node or endpoint given
its unique identifier. This communication should be efficient, and scale up to millions of nodes.
Our metric for routing efficiency is routing stretch, also referred to as relative delay penalty
(see Chapter 4). The latency in routing messages to nodes or data should be within a small
linear factor of the optimal routing latency incurred when routing between the endpoints using
the shortest possible path. The result should be that communication to a close-by endpoint
incurs lower routing latency than a far-away endpoint. If there are multiple replicas, nodes
should locate the closest copy in network latency.

• Flexible Data Location. OceanStore nodes may observe a file’s access pattern and migrate file
replicas to optimize future read performance. No matter where a file’s replicas reside, any
OceanStore node should be able to locate and retrieve a file replica if such a replica resides
in the network. This functionality should scale to millions of machines storing billions of files
without centralized performance bottlenecks.

• Robust to Membership Changes. Over time, we expect storage resources that contain file
fragments to gradually succumb to failures. When such a failure occurs, the hardware and
the data it stores are all lost. Similar loss occurs when members of the network voluntarily
exit the system. We also expect these losses to be countered by the addition of new storage
resources, either through the replacement of faulty hardware or by new nodes joining the
OceanStore network. Throughout these changes, the communication and data management
components need to propagate control state and data to new resources in order to maintain
routing connectivity and data availability.

1.2.2 Large-scale Application-level Multicast

Another compelling wide-area application is scalable application-level multicast. The abil-

ity to efficiently disseminate large quantities of data can be used in a variety of end-user applications,

including movies on demand, software dissemination, and real-time multi-party video conferencing.

In all of these multicast applications, a set of overlay nodes self-organize into a multicast

group, and build a spanning tree that efficiently disseminates data to its members while placing

minimal stress on the underlying IP links. The general goals are to minimize stress on the IP links,

7

to minimize the latency to disseminate data to all group members, and to minimize data loss in the

multicast tree.

To simplify the construction of a large scale application level multicast system, we leverage

several properties of the underlying network infrastructure, including self-organization around named

endpoints and resilient and efficient routing.

• Self-organization via Named Endpoints. For multicast listeners to self-organize into groups,
they need a way to locate each other. This can be done if nodes can announce themselves
as named endpoints sharing the multicast session name. Group communication among all
participants can be done by routing a message to all endpoints sharing the name.

• Resilient Routing. Communication between nodes, while remaining best effort, should try to
recover from link and node failures in the underlying network while minimizing the end to end
impact (packet loss or jitter) seen by the application.

• Efficient Routing. Since the construction of the spanning tree relies on the underlying routing
infrastructure, minimizing the latency of these routes results in faster dissemination of data to
the multicast group members.

1.2.3 Wide-area Resource Discovery

The problem of discovering desired resources or services on the wide-area network is a com-

mon one, and applicable to a number of contexts. For example, computing resources participating

in a distributed computing framework might advertise their remaining computing cycles and avail-

able memory and disk storage. Additionally, nodes participating in a distributed web cache might

advertise their network location as well as their available bandwidth and storage resources. Finally,

a wide-area service composition framework might locate a number of transformational operators in

the network based on input and output types, and organize them into a path to transform a data

stream.

Previous approaches have used hierarchies to aggregate data and respond to queries, but

were largely limited by scale in number of resources advertised or client queries [53, 128, 78]. In

a simplified approach to service discovery, applications can agree upon a set of search fields and

a predefined set of discrete values per field. To advertise a resource or service, the server would

generate a unique name by hashing the concatenation of the search field and the search value.

8

Clients seeking that property would generate the same name, and route messages to its location.

The key properties required are listed below:

• Flexible Routing to Named Endpoints. For clients to locate the services they seek, they must
be able to route to the names that services advertise. Clients should be able to route to names
that currently exist in the network, as services can change their properties and update their
advertised names.

• Load-balancing Queries and Advertisements. Advertisements and queries should be distributed
across members of the network to avoid creating performance bottlenecks and centralized points
of failure.

• Resilient Routing. Like most other network applications, communication between applica-
tion nodes need reliable delivery despite changes in the application nodes and failures in the
underlying network.

The requirements for communication and data management in these applications are com-

mon to many large-scale network applications. For example, a large-scale web cache also requires

efficient and resilient delivery of requests and efficient location of individual cached files. Other

example applications might include decentralized spam filtering [143] and wide-area mobility sup-

port [136, 144].

1.3 An Overlay Routing Infrastructure

As we more closely examine the requirements outlined above in our application examples,

we identify the key application requirement as scalable location-independent routing. We discuss this

central concept, and present our approach to addressing this requirement.

1.3.1 Scalable Location-independent Routing

For any large-scale network application, both communication and data management distill

down to the problem of communicating with a desired endpoint via a location independent name.

For communication with a node, the endpoint is its location-independent name. To locate a data

object, the endpoint is the name of the node with a current and closeby replica of the object.

9

OSPF

IS−IS

OSPF

Wide−Area Internet

Figure 1.2: Wide-area Internet Routing. A simple diagram representing local and wide-area In-
ternet routing. Local routing protocols such as IS-IS and OSPF work to connect nodes within an
autonomous system (AS), while BGP maintains connectivity across different ASes in the wide-area
network.

Additionally, nodes can use the latter scenario as a way to announce its membership of a group, and

allowing others to rendezvous with it using the group name.

The location independence property is a key component of these requirements, since appli-

cation nodes cannot themselves maintain identifier to location mappings of various endpoints. Any

system or application that requires each node to maintain the locations of endpoints, whether those

locations are physical network routes to nodes or locations of objects, will be limited in scaling up

in number of nodes and data objects. We define location independent routing [70] as routing with

the following properties:

• The name and its network location are completely unrelated.

• Routing efficiency is the same regardless of the structure of the name. Consequently, names
could be randomly generated or modified without affecting the efficiency of routing to it.

• Names can be moved arbitrarily without affecting its effectiveness and reachability.

We can examine the evolution of Internet infrastructure services from this perspective.

First, let’s examine basic IP level routing. Figure 1.2 is a simple representation of the hierarchical

routing scheme used in the wide-area Internet. The Internet is divided into a large number of

10

local area networks or autonomous systems (AS). Within each AS, all nodes maintain pair-wise

connectivity by using local routing protocols such as IS-IS [12] or OSPF. Each node listens to periodic

broadcasts of connectivity information, and uses it to maintain routing tables for all other nodes

inside the local AS. Connectivity across the wide-area network is maintained by Border Gateway

Protocol [101]. To route to a destination outside of the AS, nodes forward packets to BGP gateways

near the edge of the AS. These gateways consider a number of factors in choosing a forwarding path,

including connectivity, congestion, and economic factors.

If machines in the network can assume any IP address, routing on large networks would

be a challenge. In fact, the use of aggregate IP address assignment using CIDR [100] is an attempt

to increase the correlation between IP addresses and network location as a way to simplify wide-

area routing. CIDR allows aggregation of IP addresses colocated to a particular network location.

Instead, Internet hosts can communicate via location independent names by using the Domain Name

System (DNS) [84] to translate location-independent hostnames to location-specific IP addresses.

Note that while DNS satisifes the first property, its static nature prevents it from fully satisfying

properties two and three. For example, changing a DNS mapping requires cache invalidation and

involves a window of inconsistency when reachability is compromised.

The history of the DNS system demonstrates the challenges of providing large-scale loca-

tion independent routing. While DNS initially performed quite well, it has become an increasingly

significant component of application latency seen by end users [55]. Studies have shown that DNS

has been able to scale largely because of how DNS-caches leverage the static nature of DNS map-

pings [59]. As such, the current DNS system is unlikely to scale as Internet hosts increase in number.

Additionally, DNS’ reliance on root servers and authoritative servers contribute to long DNS reso-

lution latency times. Finally, the centralized nature of DNS root servers offer tempting targets for

attack, as recent events have demonstrated [38].

Other proposed systems also try to address the data location problem, and are generally

limited in scalability or support for dynamic data. Systems such as LDAP [78] and SLP [90] are for

11

small scale systems, while the wide-area SDS [53] system uses a hierarchical architecture with lossy

aggregation to reduce load at top level servers.

In summary, for network applications to successfully function on the wide-area Internet,

their communication and data management component must address the following requirements:

• Scalable location-independent routing: Nodes should be able to route messages to other nodes or
to nodes assuming temporary name mappings for the purposes of data location or rendezvous.
This should scale to networks of millions of nodes and billions of location-independent names.

• Efficiency: Routing to nodes or endpoints should be efficient, such that the end-to-end routing
latency remains within a small constant factor of ideal.

• Resiliency: Routing reachability should be maintained across failures in the infrastructure
as well as failures in the underlying IP network layer. In addition, recovery time should be
minimized to reduce the negative impact on application traffic.

• Self-management: The network infrastructure should be robust against changes in member-
ship. Nodes must detect and adapt to such changes in order to minimize the management
overhead observed by the application.

Finally, we note that these challenges are specific to wide-area network applications. On a

single machine or on a cluster, inter-component communication is reliable and fast, neither of which

holds for the wide-area network. Similarly, locating data on the scale of a single node or cluster

can be done by centralized or replicated directories, strategies which do not scale to large wide-area

areas or extremely large client populations and data sets.

1.3.2 Application Interface

We define a programming interface to satisfy the application requirements specified in

Section 1.2. Because the key functionality is that of routing to location-independent names, our

interface, decentralized object location and routing (DOLR), is similar to that of a decentralized

directory service.

For definition purposes, we assign nodeIDs to nodes participating in the network. To

protect the application from malicious nodes, these nodeIDs are assigned by a centralized certificate

authority, and are chosen uniformly at random from a large identifier space. We refer to additional

12

names for application-specific endpoints as Globally Unique IDentifiers (GUIDs), selected from the

same identifier space. With these definitions, our application interface is as follows:

1. PublishObject(OG, Aid): Publish, or make available, a named endpoint O on the local node.
This can be used to advertise the availability of an object or to make the local node reachable
using the new named endpoint. This call is best effort, and receives no confirmation.

2. UnpublishObject(OG, Aid): Best-effort attempt to remove the named endpoint O. This can
indicate change in availability of a local object or the removal of a named endpoint by the
local node.

3. RouteToObject(OG, Aid): Routes message to location of a named endpoint GUID OG.

4. RouteToNode(N, Aid, Exact): Route message to application Aid on node N. “Exact” specifies
whether destination ID needs to be matched exactly to deliver payload. If set to false, the
payload is delivered to the root node responsible for Aid.

In the next section, we discuss how we implement this interface while achieving the desirable

goals of scalability, efficiency and resiliency.

1.3.3 An Infrastructure Approach

As we have previously discussed, wide-area network applications share a common set of

challenges in their communication and data management components. We also showed the scalable

location independent routing is a challenging problem by using the DNS system as an example.

We point out that efficient and resilient routing adds additional complexity to the challenge

of location-independent routing. Messages need to resolve the endpoint name to node name map-

ping in a way that is not only scalable, but incurs minimal network latency overhead. Traditional

directory-based approaches require a roundtrip overhead between the client and the server for the

name resolution. In fact, any approach that stores the name mapping at a single static location

will incur this roundtrip latency and add significant cost to message routing. We note that while

caching can reduce the access latency, reducing latency for all clients requires a large number of

caches, making the problem of consistency more difficult. In this thesis, we assert that such direc-

tory information should be deterministically distributed across the infrastructure and maintained

by the infrastructure for maximum availability and efficiency.

13

Routing to Named Data

Efficient and Scalable Routing

Resilient Routing

Routing to Named Data

Efficient and Scalable Routing

Resilient Routing

Routing to Named Data

Efficient and Scalable Routing

Resilient Routing

Wide−area Service Discovery
Wide−area

Service
Discovery

Global−scale
File

System Multicast
Level

Application−

Routing to Named Data

Efficient and Scalable Routing

Resilient Routing

Application−level Multicast

Global−scale File System

Figure 1.3: An infrastructure approach. Instead of building monolithic solutions, developers can
quickly deploy application logic on top of an existing application infrastructure that solves the
difficult common challenges.

Providing resilient routing in the face of underlying network failures is also difficult. Current

IP-level protocols such as IS-IS [12] and BGP [101] recover from network level failures, but generally

take too long to adapt and reroute traffic around such failures. In particular, BGP takes on average

3 minutes to recover from wide-area failures affecting reachability. Observed failures can take up

to 15 minutes before BGP adapts and reroutes traffic [73, 74]. While much of this latency can be

contributed to the complexity of dealing with arbitrary routing policies between ISPs, the resulting

interruptions in packet delivery can still significantly disrupt application level service. Therefore,

not only do applications need to maintain reachability, but recovery time should be minimal in order

to minimize the data loss seen by the application.

It is clear that these are difficult challenges for any network application to address. To

reduce the deployment effort, many network applications ignore or use naive straw-man solutions to

address these problems. Instead of leaving each application to develop its own monolithic solution,

we advocate addressing these challenges once in an application infrastructure, so that applications

can leverage this work to simplify development and reduce deployment costs. Figure 1.3 illustrates

how monolithic applications can be written instead as application logic components residing on top

of a single application infrastructure.

14

Presentation Layer
Session LayerRouting Layer

Application Layer

Transport Layer
Network Layer

Link Layer
Physical Layer

Key−Based

Figure 1.4: A new layer in the OSI stack. Our infrastructure approach can be seen as inserting an
additional layer (the name-based routing layer) into the OSI network stack.

Abstraction Layer

In order to quickly deploy this flexible networking infrastructure, we take an overlay net-

working approach. Traditional networking protocols are standardized and implemented in routers

across the Internet. Modifying existing infrastructure at the network layer requires standardization,

and waiting for changes to be deployed in newly-deployed network hardware.

In an overlay network, software components running at the application layer manage con-

nectivity and forward messages among a group of overlay nodes, where across each overlay hop,

endpoints use traditional IP connectivity for routing. Because overlay networks run at the applica-

tion layer, they can be incrementally and quickly deployed across a variety of hosts and platforms.

Additional logic can be embedded in the forwarding logic of overlay nodes to provide more complex

functionality and richer set of APIs. In fact, one way to view this is as a new layer in the OSI

network stack, as illustrated in Figure 1.4.

We note that while we choose to implement our system at the overlay level for faster

deployment, many of our technical contributions can, implemented with the proper modifications,

significantly improve routing behavior at the network layer. The application of our work for network

level routing is the subject of ongoing research.

Method of Deployment

A related issue is how applications should make use of this network infrastructure. Two

choices are clear. On one hand, we can deploy a single network infrastructure, and let multiple

15

applications share its functionality. While this requires only one single infrastructure, it has a

weaker security model, since any corrupted application can adversely affect the operation of other

applications sharing the infrastructure. Additionally, applications need to distinguish its nodes from

those of other applications, and direct its traffic to them.

Alternatively, an application can embed its own instance of this overlay where only its nodes

participate. This approach is simple, and removes security concerns present in the shared model

by isolating applications in their own instance of the overlay. The disadvantages is that overlays

inside multiple applications will each incur their own maintenance overhead, potentially leading to

interference and scheduling issues between them.

While researchers explore the tradeoffs between these approaches, others are working to

address missing functionality. Specifically, the OpenHash [64] and DiminishedChord [63] projects

are working to provide scoped routing, where applications can direct its traffic to only its own nodes.

Structured Peer-to-Peer Overlays

On large networks on the scale of the Internet, a routing protocol where each node maintains

a route to every other node in the network will have difficulty scaling. As an alternative, a routing

protocol can use a notion of routing progress towards the destination to maintain connectivity and

avoid routing loops. If nodes no longer maintain explicit paths to each destination, the routing

protocol need an alternate metric to denote routing progress. A natural substitute is progress

measured by proximity in the address namespace. But in order to leverage that however, names

need to be distributed in a relatively even fashion. This leads us to the design of structured peer-

to-peer overlays.

Structured overlays use proximity in the node address namespace to measure routing

progress, and allow nodes to route using rules based on node addresses or IDs. The resulting

network conforms to a specific graph structure that allows them to locate objects by exchanging

O(log N) messages in an overlay of N nodes.

16

L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

L1

5230

8F4B

8909 8BB2

8957

AC78 8112

8954

89E3

8900
8951

895D

Figure 1.5: Routing example in Tapestry. Routing path taken by a message from node 5230 towards
node 8954 in Tapestry using hexadecimal digits of length four. As with other key-based routing
overlays, each hop gets the message closer to the destination key in name.

We start with basic definitions. A node represents an instance of a participant in the overlay

(one or more nodes may be hosted by a single physical IP host). Participating nodes are assigned

nodeIDs uniformly at random from a large identifier space. This is typically done by applying a secure

one-way hash function (such as SHA-1 [108]) 1 to a relatively unique and verifiable characteristic of

the node such as a public key or its IP address. In addition, application-specific objects are assigned

unique identifiers called keys, selected from the same identifier space. For example, Pastry [111],

Tapestry [50, 139], Chord [122], Kademlia [83] and Skipnet [48] use an identifier space of n-bit

integers modulo 2n (n = 160 for Chord, Kademlia, Skipnet and Tapestry, n = 128 for Pastry).

To deliver messages efficiently, each node maintains a routing table consisting of the nodeIDs

and IP addresses of the nodes to which the local node maintains overlay links. The routing table

is only a small selection of nodes in the overlay, and are chosen according to well-defined names-

pace proximity metrics. Messages are forwarded across overlay links to nodes whose nodeIDs are

progressively closer to the key in the identifier space, such as in Figure 1.5.

For resilient location and routing, nodes need to maintain of both the availability of links

in the routing mesh and availability of location metadata in the decentralized directory. For the

routing mesh, this means maintaining routing consistency across all nodes under failure conditions.

This means messages destined for the same key or address arrive at the same node regardless of the
1Secure one way hashes are required in order to prevent nodes from generating the inverse of the hash and

manipulating its name to generate a target ID in the namespace

17

message source. Furthermore, the natural flexible routing in structured overlays allows messages to

take any number of paths to reach its destination. As such, nodes can maintain backup paths for

entries in its routing table, and quickly switch to those paths as failures are detected in the primary

path. We discuss these mechanisms in detail in Chapter 5.

It is worth noting that under conditions of high churn, where nodes are entering and leaving

the network at high rates, we need to consider the efficiency and overhead of these availability

mechanisms. For high churn environments, reducing the aggregate overhead of these mechanisms

and ensuring they act fast enough to keep up with network changes are much more critical. We

discuss how different approaches to maintaining routing availability explore the tradeoffs between

efficiency and availability in Chapter 8.

1.4 Contributions and Thesis Organization

As we outlined before, unstructured network routing is generally limited in scale. To

overcome this, wide-area Internet routing uses a hierarchical organization where local routing uses

unstructured routing, and wide-area traffic is aggregated between ASes. Peer-to-peer applications

such as file-sharing also had to take a hierarchical approach in maintaining connectivity. Their

requirements are more flexible, however, since the key functionality is locating the desired data,

and not maintaining full network connectivity. File-sharing applications can therefore simplify the

routing problem by limiting the scope of its searches, and using simple flooding techniques to reach

a subset of the application nodes.

The contributions of our work can be summarized as the following:

• We designed and implemented one of the first structured peer-to-peer routing protocols.

• We developed the decentralized object location and routing (DOLR) interface, and compared
and contrasted it against other approaches.

• We developed techniques for efficient routing and object location across a dynamic wide-area
network.

• We developed techniques to increase routing and object location redundancy, and to provide
fast and adaptive resiliency against network and node failures.

18

• We deployed a real implementation on a variety of simulation, emulation and real-world plat-
forms, and performed measurements to characterize Tapestry’s performance in a variety of
contexts.

• We designed and implemented a number of innovative, wide-area applications on top of
Tapestry that significantly improved upon the scalability, resilience, functionality and effi-
ciency of their existing counterparts.

1.4.1 Contributions

Our work on Tapestry is one of the original structured peer-to-peer overlay systems. In

designing and implementing Tapestry, we provided one of the first application platforms for large-

scale Internet applications, removing the existing scale limitations of unstructured networks. In

the process, we also gained a better understanding of the interfaces these overlays provide to the

applications, and the implications these interfaces had on application performance. Finally, we

developed a number of techniques to enhance the efficiency and resiliency of Tapestry on top of the

dynamic and failure-prone wide-area Internet.

Several other protocols [97, 111, 122] were developed in the same time frame as Tapestry,

and many have been developed since then [6, 41, 48, 60, 63, 64, 72, 80, 82, 83, 103, 131]. Each

protocol is defined by distinctive algorithms for nodes joining and leaving the network, algorithms

for routing messages, and the application level API for data management. In our work, we focus on

making design decisions to optimize performance and resilience for applications.

In order to obtain efficiency, Tapestry makes two distinctive design decisions. First, as a

node joins the Tapestry network, it uses a nearest-neighbor algorithm to choose nodes “close by” in

network proximity for its routing table, where network proximity is defined by round-trip network

latency. This allows nodes to choose greedily the shortest possible overlay hop at each routing step,

and serves to minimize end to end routing latency.

The second distinction that makes Tapestry different from related work is its application

interface. The question is where data objects are placed, and how do we ensure that they are highly

available and accessible by application nodes. Most of Tapestry’s contemporary structured overlays

19

and others developed later share the distributed hash table (DHT) interface. In the DHT approach,

the overlay is responsible for maintaining data availability, and actively maintains a set of object

replicas. Given a copy of the data by the application, the DHT makes a small number of replicas,

and uses the name of the object (usually a hash of its content) to choose a set of servers on which

replicas are stored. Application clients then use the overlay to access these distributed replicas.

In contrast, Tapestry exports the decentralized directory service interface we call Decentral-

ized Object Location and Routing (DOLR). Instead of making replicas and choosing the location of

replica servers, a structured overlay providing the DOLR interface allows its application component

to choose both the number of replicas and where they are stored. DOLR allows replica servers to

“announce” or publish the availability of the replica. Client nodes then use the DOLR to route ap-

plication messages to a nearby replica server. By not placing restrictions on the number of location

of replicas, the DOLR API gives applications the flexibility of managing its replicas according to

application-specific needs. As we show in Section 6.2, applications that leverage this flexibility to

colocate object replicas with their clients can reduce their data access latency by a factor of four to

eight.

The key difference between DHT and DOLR lies in the level of the abstraction. Where a

DHT layer provides a level of replica management opaque to the application, the DOLR operates

at a lower level, exposing the replication factor and replica placement decisions to the application.

We recognize the inherent tradeoff between storage resources consumed and data access latency.

Most applications can use application-specific algorithms to make decisions regarding the degree

of replication and where those replicas are placed. For them, making these decisions will result in

significant improvement in access latency at a lower storage cost when compared to the application-

agnostic approach used in DHTs.

20

1.4.2 Organization

The remainder of the thesis is organized as follows: We begin in Chapter 2 by providing

context and discussing related work in structured and unstructured peer to peer systems. Next, we

define in Chapter 3 the DOLR abstraction and compare and contrast its interface to distributed hash

tables. We then discuss algorithms and mechanisms for efficient operation in Chapter 4, followed

by resiliency algorithms and mechanisms in Chapter 5. In Chapter 6 we give details on the current

Tapestry system architecture and implementation, and present our simulation and measurement

results. We then discuss several Tapestry applications in Chapter 7. Finally, we summarize lessons

learned, outline future work and conclude in Chapter 8.

21

Chapter 2

Related Work

22

In this Chapter, we describe the related work, and outline the key distinctions between

them and the approaches taken in Tapestry. We begin by describing unstructured peer-to-peer

systems, followed by other structured peer-to-peer systems, and conclude with a discussion of other

related networking projects.

2.1 Unstructured Peer-to-Peer Systems

Before the invention of structured peer-to-peer (P2P) protocols, a number of applications

used a cooperative application model to allow participants to leverage each others’ resources for mu-

tual benefit. While this was popularized by file-sharing applications such as Gnutella and KaZaa,

similar models were also proposed by research applications and deployed in existing Internet proto-

cols and applications.

The definition of an Unstructured Peer-to-Peer System is a system or protocol where par-

ticipants or nodes perform actions (such as routing messages) for each other, where no rules exist

to define or constrain connectivity between nodes. In these systems, connectivity between nodes

are generally transient; and while certain topologies may be preferred over others for performance,

messages between endpoints can take arbitrary paths through the system. Because of this lack of

structure, maintaining full connectivity between nodes generally means each node must be aware of

and maintain a route to each and every node (all possible destinations) in the network. The fact

that this routing information scales linearly with the size of the network is clearly a factor in limiting

the scale of these networks.

2.1.1 P2P File-Sharing Applications

Wide-spread use of file sharing applications focused the attention of both researchers and

the public on peer-to-peer systems. To date, these systems have focused on providing user-friendly

and efficient sharing of popular files, often in the form of digital multimedia (audio encodings in

23

MP3 format, digital movies in QuickTime or AVI formats), or software packages.

These applications are best-suited for sharing highly sought after, well-replicated files. If we

make the analogy of needles in the haystack, where hay represents popular files replicated on a large

number of user systems and needles represent infrequently accessed files with a low replication factor,

then these applications help users search for the hay, and not the needle. To scale to a large number

of users and files, these applications rely on probabilistic techniques to query a relatively small

portion of the participants in the application, and do not guarantee success of finding rare objects

even in the absence of faults. Unlike file-sharing, however, most applications require deterministic

and successful location of objects. For example, a user in a distributed file system should successfully

locate a copy of his file regardless of its popularity and replication factor.

These applications are also generally locality agnostic, meaning they generally expend little

effort to optimize performance (measured by either data access latency or bandwidth consumption)

by recognizing the structure of the underlying network. Their priorities generally lie in ease of

use, stability, and success of queries, along with other metrics such as anonymity [22] and censor

resistance [129]. Recent measurement studies [115, 45] have shown that this approach results in high

amounts of traffic across ISP boundaries, costing educational institutions and corporations millions.

These studies also show that most of the cross-domain traffic could be avoided if network topology

was taken into account, and queries searched in the local area networks before moving into the

wide-area.

We now describe some of these applications individually. Napster [37] used a collection of

centralized servers to store the location of files on client nodes. This approach required servers that

are expensive to build and maintain. Eventually, this point of centralization served as a point of

culpability that led to lawsuits and the dissolution of the system. Learning from Napster, Gnutella [5]

was the first file sharing system to take a completely decentralized approach, where clients did not

rely on central servers, and instead broadcast their queries to their neighbors. Gnutella applied

hop-based time-to-live fields to limit the query scope and resulting bandwidth consumption, but the

24

Directory
Server

A Collection of Napster Nodes TTL Scoped Flooding in Gnutella

Figure 2.1: Example of unstructured file sharing applications Napster and Gnutella. Napster uses a
set of directory servers to store indexes of files available on the client nodes. These servers respond
to client queries with the locations of their desired files. Clients in Gnutella use a scoped flooding
approach to forward queries to a set of clients.

result was still limited in scalability [107]. Figure 2.1 illustrates the structure of these applications.

Several systems, including Ross Anderson’s Eternity Service [4], Freenet [22], Publius [129]

and FreeHaven [30] all focus on providing persistent data in the face of censorship or denial of

service attacks. MojoNation [132] pioneered the use of electronic currency as incentive for nodes

to cooperate. BitTorrent [23] uses a modified tit-for-tat incentive model to encourage users who

are simultaneously downloading the same file to cooperate by exchanging file fragments each other

needed.

Two years ago, a Dutch company called FastTrack released its own file sharing network

based on a two-tier hybrid network model. On joining the FastTrack network, client nodes query

a central server for the location of a supernode that it then connects to. Supernodes maintain

directories of files stored on its connected clients, and resolve client requests locally or forward them

to other supernodes. Over time, clients that demonstrate desirable properties such as stability and

high bandwidth are promoted to supernode status. The promotion process is dynamic and adapts

to the number of clients in the system. FastTrack offers its own file sharing client called KaZaa [66],

and licenses its network to Grokster [43]. A simple illustration of the FastTrack network is shown

in Figure 2.2.

25

Figure 2.2: Example of the KaZaa file sharing application. Client nodes connect to one of a set of
supernodes, and each supernode stores file indexes for the clients that connect to it. Client queries
are forwarded to the supernode, where they are then flooded to a scoped set of supernodes for
evaluation.

2.1.2 Research Applications and Internet Protocols

Unstructured routing exists in other contexts as well, including both research applications

and existing Internet protocols. In a Resilient Overlay Network [3], overlay nodes self-organize

in order to provide a resilient routing service by forwarding messages around network congestion

and failures. Existing IP level routing protocols such as IS-IS, OSPF and BGP also operate in an

unstructured fashion. Each member of the network generally maintains knowledge of the next hop

on the path to other members in the network. The need to propagate routing information is clearly

a factor that limits the growth of these networks. For example, nodes in unstructured networks such

as RON often incur O(N2) communication costs.

A number of application multicast protocols propose using members of the multicast listener

set to self-organize into an overlay multicast tree. Examples of such systems include Overcast [57],

End System Multicast [20], RMX [18], ALMI [89] and CoopNet [88].

26

2.2 Structured Peer-to-Peer Protocols

Along with Tapestry, several other structured peer to peer protocol projects (Pastry [111],

Chord [122], and Content-Addressable Networks (CAN) [97]) started in 2001. These overlay pro-

tocols operate on the application level, and allow members of a network to route messages to each

other given a globally-unique location-independent identifier. Messages route towards the desti-

nation by taking multiple overlay hops. With each additional hop, the message proceeds closer

towards the destination identifier in the namespace. In Chapter 3, we present clear abstractions

defining the commonalities between these protocols, and highlight the key abstraction differences

between Tapestry and the other systems. With the exception of Tapestry, other protocols generally

support a distributed hash table (DHT) interface. In the remainder of this section, we briefly discuss

other protocols and how they differ from Tapestry.

2.2.1 Pastry

Pastry [111] is a routing protocol sharing many similarities with Tapestry. It uses prefix

routing to route messages closer to the destination ID, and uses proximity neighbor selection to min-

imize end to end routing latency. Where Pastry uses routing tables of nearby nodes to approximate

that of a new node, Tapestry uses a robust and proven optimal algorithm to generate a routing table

of nearby neighbors [50].

In addition to the routing table, each Pastry node maintains a leafset that contains routes

to a set of neighbors closest to the local node in the namespace. Where Tapestry uses surrogate

routing to route around holes in the namespace, Pastry uses the leafset to reach the destination.

2.2.2 Chord

The Chord [122] project provides a distributed lookup service, and uses a logarithmic-sized

routing table to route object queries. For a namespace defined as a sequence of m bits, a node keeps

27

at most m pointers to nodes which follow it in the namespace by 21, 22, and so on, up to 2m−1,

modulo 2m. The ith entry in node n’s routing table contains the first node that succeeds n by at

least 2i−1 in the namespace. Each key is stored on the first node whose identifier is equal to or

immediately follows it in the namespace.

The main distinction worthy of note is that there is no natural correlation in basic Chord

between overlay namespace distance and network distance in the underlying network, such that

any overlay hop can span the diameter of the network, regardless of the distance traversed in the

namespace. Since a node can keep an arbitrarily number of neighbors for each desired hop, it

can choose to route on the neighbor that minimizes next hop network latency. This technique of

proximity route selection (PRS) has been also been shown to be effective at minimizing end-to-end

latency.

2.2.3 CAN

The “Content Addressable Network” (CAN) [97] work was done at AT&T Center for

Internet Research at ICSI (ACIRI). In a CAN, nodes are mapped onto a d-dimensional Cartesian

coordinate space on top of a d-torus. The space is divided up into d dimensional blocks based on

servers density and load information, where each block keeps routing information on its immediate

neighbors. To store a key-value pair (K, V), the key K is deterministically mapped to a point P

in the coordinate space using a uniform hash function. The value V is stored and retrieved at the

node whose zone covers the point P . Because addresses are points inside the coordinate space,

each node simply routes to the neighbor which makes the most progress towards the destination

coordinate. Caches of highly requested values can be pushed towards nodes in the reverse direction

of the queries.

CAN’s geometry results in a routing path with (O(n1/d) overlay hops, with each node

maintaining routing state for 2d neighbors. In CAN, a node’s neighbors are completely determined by

the coordinate space. Therefore, nodes cannot implement proximity neighbor selection or proximity

28

route selection. CAN minimizes routing latency by creating multiple “realities,” assigning each node

a coordinate point in each reality, and using all realities to find a routing path with the least end to

end latency.

2.2.4 New protocols

A number of protocols have been developed since 2001. Kademlia [83] uses the XOR metric

to define proximity in the namespace. SkipNet [48] and Skip Graphs [6] use multiple layers of skip-

lists to perform routing in O(log(n)) hops with O(log(n)) neighbors per node. Viceroy is a dynamic

network where n nodes are organized into log(n) routing levels, and connections between nodes are

organized to match the geometry of a butterfly network. As a result, Viceroy achieves O(log2(n)

network diameter with constant sized routing state per node. Ulysses [72] achieves similar bounds on

a butterfly geometry, and claims to exhibit lower worst-case congestion than Viceroy. Koorde [60]

and a protocol proposed by Wieder and Naor [131] uses de Brujin graphs to achieve a network

diameter of O(log(n)/loglog(n)) while maintaining O(log(n)) neighbors per node.

Certain protocols focus on providing more specialized functionality. For example, both

OpenHash [64] and Diminished Chord [63] focus on allowing routing of messages towards identifiers

while limiting routing to within chosen subgroups. SkipNet also allows nodes to route messages

within particular network domains by consulting a second orthogonal DNS-based name ring. Bam-

boo [103] handles high membership churn in the overlay by utilizing epidemic and anti-entropy

algorithms on leafsets to maintain membership consistency. Coral [41] uses an epidemic clustering

algorithm to index objects, similar to the use of distributed object pointers in Tapestry. A CDN [40]

is deployed using Coral on the PlanetLab testbed.

29

2.3 Applications and other work

Since the inception of structured peer-to-peer overlays, much work has been done on net-

work applications, incentives, security, and performance optimization techniques. We summarize

some of these projects here.

2.3.1 Applications

Structured peer-to-peer applications cover a wide-range of functionalities. There have been

a number of decentralized file systems, including CFS [26], OceanStore [102], Ivy [85], Mnemosyne [47],

PAST [112], and Pangea [114]. CFS and PAST are read-only file systems based on Chord and Pastry

respectively. OceanStore supports write-sharing, time travel, versions and branches, with focus on

extremely high durability and run time data optimizations for improved read latency. Ivy supports

writes by layering a log file system approach on top of CFS. Pastiche [24] is a large-scale peer-based

backup system based on Pastry, while Samsara [25]) focuses on leveraging incentives to improve

fairness among backup peers.

These routing protocols lend themselves naturally to application level multicast systems,

several of which have been proposed, including Bayeux [145], CAN-MC [98], Scribe [113] and Split-

Stream [16]. Multicast listeners in Bayeux use Tapestry to locate multicast roots, who then build

multicast trees based on name aggregation while leveraging other Tapestry nodes. In Scribe, listener

nodes route towards the multicast root via Pastry, and joins the tree as a child node when it en-

counters a current member of the multicast group. SplitStream promotes fair sharing of bandwidth

in multicast groups by allowing members to be part of multiple interior-disjoint multicast trees.

2.3.2 Internet Indirection Infrastructure

Where Tapestry and the DOLR interface embeds a level of indirection in the infrastructure,

the Internet Indirection Infrastructure (I3) [121] uses the overlay to store traffic indirection point-

30

ers (called triggers), layering an additional indirection layer on top of the Distributed Hash Table

interface. End hosts control the placement and maintenance of these indirection pointers, and use

them to perform a variety of traffic forwarding functions, including routing across arbitrary paths

by chaining together multiple forwarding triggers. This project allows the end host to have total

control over end to end routing, and can be used to implement systems such as the ROAM mobility

infrastructure [144].

The key difference between the I3 project and Tapestry is that where I3 gives control of the

indirection pointers to the user, Tapestry relies on the routing protocol itself to place and maintain

them. The tradeoff is between maximum flexibility with user managed redirection and simplified

and automated management by the protocol. For example, the Warp mobility infrastructure [136]

leverages inherent redirection inside of Tapestry to support natural placement of forwarding pointers,

reducing control traffic and efficiently routing traffic. In contrast, efficient placement of triggers in

ROAM requires end host intervention. The additional latency cost required for the end host to

maintain and optimize trigger locations can disrupt and limit the performance of application traffic.

2.3.3 Other Related Work

Some projects focused on providing useful services using peer-to-peer routing. SOS [68]

used structured P2P routing to protect servers from attacks, while our previous work focused on

providing scalable infrastructures to tunnel application traffic around IP-level failures [138].

Other work focused on improving security on structured peer-to-peer systems. The Sybil

work [33] analyzes the challenge of securely mapping virtual identities in the overlay to real identities

in the network. [14] and [49] propose techniques to limit the impact of malicious nodes on normal

routing between uncompromised nodes. Finally, the SpamWatch project [143] uses approximate

data location via tamper-resistant fingerprints to support a scalable infrastructure for decentralized

collaborative spam filtering.

Mobile IP [58, 86] is a set of standards that support message routing to mobile hosts that

31

maintain a static IP address. At its base, mobile IP uses a single point of traffic redirection that

maintains the IP address to network location mapping. The translation is an additional level of

indirection beyond the one provided by DNS. In contrast, IPv6 [52] allows a communication endhost

to choose its own set of indirection nodes similar to that used in Mobile IP.

32

Chapter 3

Decentralized Object Location and

Routing (DOLR)

33

Original FileFile ReplicasSource of Requests

Figure 3.1: Allowing an application to place data replicas nearby to where clients are located in the
network, and using a DHT to make locations of replicas available. The DOLR directs client requests
quickly to the actual replica, resulting in quick access to data.

In this chapter, we describe our approach towards building a scalable, efficient and resilient

infrastructure for communication and data management. We refer to our approach as decentralized

object location and routing (DOLR). In retrospect, this abstraction should have been called ’decen-

tralized Endpoint Location and Routing (DELR), but the historical association with OceanStore

played an important role here. First, we introduce and explain the components of the DOLR inter-

face. We then discuss the components in the context of structured overlay networks and alternative

interfaces such as Distributed Hash Tables (DHT), and explain the rationale behind our design deci-

sions. Finally, we present the design of Tapestry, our implementation of a DOLR system, and show

in detail how Tapestry addresses our key goal of scalable location-independent routing.

3.1 Components of the DOLR Abstraction

The DOLR abstraction offers large-scale network applications a decentralized directory

interface to distributed data management. Given applications’ need to replicate and manage data

across a wide variety of operating conditions, DOLR is flexible in that it allows the application

to have full control of when, where and how data or objects are replicated for availability and

performance. DOLR acts as a scalable directory that routes messages to data, while applications

34

control the replica management layer, choosing the replication factor, where replicas are placed, and

when replicas are moved, deleted or modified in place. Replicas can be modified in place by the

application with no interaction required from the DOLR layer. To make a new replica available,

the server storing the new replica performs a publish (objectID). Clients can then access a replica

by performing a sendToObj (msg, objectID, [n]), where [n] is an optional parameter specifying how

many closeby replicas does the message want to reach. The default value of n is 1. In practice, the

application can embed its own procedure for choosing replicas to route the message to. The DOLR

interface can be summarized as follows:

1. PublishObject(OG, Aid): Publish, or make available, a named endpoint O on the local node.
This can be used to advertise the availability of an object or to make the local node reachable
using the new named endpoint. This call is best effort, and receives no confirmation.

2. UnpublishObject(OG, Aid): Best-effort attempt to remove the named endpoint O. This can
indicate change in availability of a local object or the removal of a named endpoint by the
local node.

3. RouteToObject(OG, Aid): Routes message to location of a named endpoint GUID OG.

4. RouteToNode(N, Aid, Exact): Route message to application Aid on node N. “Exact” specifies
whether destination ID needs to be matched exactly to deliver payload. If set to false, the
payload is delivered to the root node responsible for Aid.

There are two key components to the DOLR abstraction, proximity routing and a decen-

tralized directory approach to data management. Proximity routing means that at each overlay hop,

the message tries to route to the closest node in the network in terms of IP latency, while satisfying

the routing constraint defined by the overlay protocol. An overlay with proximity routing constructs

a routing mesh that follows the structure of the underlying network.

The other component, a decentralized directory approach to managing data, means that a

DOLR allows applications to choose the optimal location to store any piece of data, potentially using

application level information to drastically reduce data access latency. A DOLR provides this decen-

tralized directory functionality by storing location mappings of the form < objectID, serverAddr >

on select nodes between the server where a replica is stored and the root node of the objectID. Client

messages route towards root node, and redirect to a nearby server when they find a relevant location

mapping. Figures 3.9 and 3.10 illustrate the publish and query process.

35

The storage overhead of embedding location mappings is relatively low compared to data

replication. A minimal location mapping contains only the objectID, server IP address (32 bits) and

port number (16 bits). For a namespace of 160 bits, the mapping requires only 208 bits of storage.

The storage required per mapping can increase if the application adds additional metadata such as

an expiration time for soft-state timeouts. Assuming randomly generated objectIDs and nodeIDs,

in a network of N nodes each storing M objects, each node would expect to store M · logN location

mappings.

The performance of this redirection mechanism relies on proximity routing. More optimal

proximity routing increases the likelihood that the paths taken by messages from two closeby nodes to

a common destination will intersect quickly. When combined, these two components work together

to route messages efficiently to nearby copies of data. We discuss the efficiency aspects of these

components in more detail in Chapter 4.

By embedding lightweight redirection pointers into the network, the DOLR approach de-

couples storage overhead from access latency. If clients are collected around a region of the network,

forming a hotspot, placing a single replica into that region would improve access latency more signif-

icantly than placing several additional replicas randomly into the network. The implicit assumption

here is that an application-level component is aware of where to place replicas in order to minimize

access latency. This is reasonable, since the question of where to place data to reduce access latency

is a topic of ongoing research in areas such as web caching and file systems [19]. If more intelligent

techniques are not available, one might imagine a probabilistic query marking technique, where with

some low probability a node marks a query with its nodeID. By aggregating the queries received for

a given object, a replica server can estimate the size of query traffic from a particular neighbor, and

if necessary push a full data replica to that neighbor.

Figure 3.1 shows an application leveraging the flexibility to choose the number and location

of data replicas. By placing replicas close to clients in the network, applications can drastically reduce

the average data access latency. We quantify the potential difference in data access time between

36

the DHT and DOLR approachs in Section 6.2. We simulate clustered clients making access requests

to data replicas using both approaches with the same number of replicas. Note that while DHTs

can obtain improved performance with additional data replicas via caching [26], a DOLR using the

same number of data replicas would also enjoy improved performance. We find that the difference

in access latency for two approaches using the same storage resource (1 data copy) varies from a

factor of 4 to a factor of 8.

In the remainder of this chapter, we will discuss how to provide an efficient DOLR interface

by presenting an abstract view of the Tapestry interface. In later chapters, we will discuss how to

adapt this to realistic network conditions and how to gracefully handle network failures.

3.2 Implementing The DOLR abstraction

We now discuss our design decisions in the DOLR abstraction in the context of structured

overlay networks and alternative interfaces such as Distributed Hash Tables (DHT).

3.2.1 Structured Overlays and Key-Based Routing

Structured peer-to-peer overlays are especially suitable as the building block for the de-

velopment of large scale network application infrastructures. They offer a simple way to manage

communication between overlay nodes, and algorithmically scale up to millions and billions of nodes.

Unlike unstructured routing protocols currently deployed in the Internet today, these protocols use

general notions of distance in the namespace to determine how messages route through a small set

of outgoing neighbors at each node. In this section, we describe a number of properties common to

structured peer-to-peer overlays, and define the basic Key-Based Routing API.

A node represents an instance of a participant in the overlay (one or more nodes may be

hosted by a single physical IP host). Participating nodes are assigned uniform random nodeIDs

from a large identifier space. Application-specific objects are assigned unique identifiers called keys,

37

0

D

S

Figure 3.2: A simple example of Key-based Routing. Nodes in the overlay are each responsible for
a region in the namespace. Routing to a key or identifier means routing incrementally towards it in
the namespace, and finally delivering the message to the root node responsible for the region that
the key lies in.

selected from the same id space. Tapestry [142, 50], Pastry [111] and Chord [122] use a circular

identifier space of n-bit integers modulo 2n (n = 160 for Chord and Tapestry, n = 128 for Pastry).

CAN [97] uses a d-dimensional cartesian identifier space, with 128-bit nodeIDs that define a point

in the space.

We refer to the core functionality these protocols provide as Key-Based Routing. Each

key is dynamically mapped by the overlay to a unique live node, called the key’s root. To deliver

messages efficiently to the root, each node maintains a routing table consisting of the nodeIDs and

IP addresses of the nodes to which the local node maintains overlay links. Messages are forwarded

across overlay links to nodes whose nodeIDs are progressively closer to the key in the identifier space.

The mapping of namespace regions to live nodes is one-to-one. In other words, in the absence of

failures, every possible key in the namespace is mapped to one and only one root node in the network.

The mapping is also consistent from all viewpoints in the network, so that messages addressed to the

same key will converge at the same root node regardless of their source. An example of Key-Based

Routing is shown Figure 3.2, where a node s routes a message towards the address k, whose root

node is d. The message routes incrementally closer to the destination in the namespace, zeroing in

on the root node with each hop.

38

 CAST

Tier 0

DHT

OceanStoreCFS PAST I3 Scribe SplitStream Bayeux

Tier 1

Tier 2

DOLR

Key−based Routing Layer (KBR)

Figure 3.3: Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables (DHT),
decentralized object location and routing (DOLR), and group anycast and multicast (CAST).

Each system defines its own function to map keys to nodes. The mapping function provides

a consistent hash [61] of the namespace into the set of live nodes in the network. In Chord, keys

are mapped to the live node with the closest nodeID clockwise from the key. In Pastry, keys are

mapped to the live node with the closest nodeID. Tapestry maps a key to the live node whose nodeID

has the longest prefix match, where the node with the next higher nodeID value is chosen for each

digit that cannot be matched exactly. In CAN, neighboring nodes in the identifier space agree on

a partitioning of the space surrounding their nodeIDs; keys are mapped to the node responsible for

the space that contains the key.

To better understand the distinction between the functionality provided by different pro-

tocols, we partition the abstractions into multiple tiers of functionality 1. We have already isolated

and defined the basic Key-Based Routing property that is shared by all structured peer-to-peer pro-

tocols. At Tier 1, we define a small set of application interfaces that current protocols implement.

Finally, applications sit at Tier 2 and leverage the interfaces at Tier 0 and Tier 1. Figure 3.3 shows

one tiered view of abstractions on these protocols. In the next section, we will give more details of

these Tier 1 abstractions, and compare and contrast differences between Distributed Hash Tables

(DHT) and Decentralized Object Location and Routing (DOLR).

While the Key-Based Routing interface is fundamental to all structured peer-to-peer pro-

tocols, protocols can export very different higher level abstractions to the application. Table 3.1
1This work was done as part of a collaborative effort. More details can be found in [28].

39

DHT DOLR CAST
put (key, data) publish (objectID) join(groupId)
remove (key) unpublish (objectID) leave(groupId)

value = get (key) sendToObj (msg, objectId, [n]) multicast(msg, groupId)
anycast(msg, groupId)

Table 3.1: Tier 1 Interfaces

summarizes current Tier 1 abstractions and highlights the interface of each abstraction. In the rest

of this section, we discuss how the interface proposed in Tapestry can result in significant application

performance improvements.

3.2.2 Distributed Hash Tables

Before we discuss the DOLR abstraction’s performance characteristics, we describe the

Distributed Hash Table (DHT) [26] interface, which is used by a number of peer-to-peer protocols,

including Chord, Pastry and CAN. While structured peer-to-peer protocols share similarities with a

distributed hash function [61], the DHT abstraction is applied in the context of storing and retrieving

actual data blocks across the network.

In a protocol implementing the DHT abstraction, the DHT layer takes a piece of data,

makes a number of replicas, and distributes them across the network, increasing redundancy and

providing a storage layer with higher availability. One view of this is that nodes in the network

are storage buckets, and using a simple interface, the application allows the DHT to replicate and

distribute the result in to select buckets. Given the natural attrition of nodes due to failures and

unexpected exits from the network, the DHT must monitor and maintain availability of the replicas.

The main DHT interface is listed in Table 3.1. To store a piece of data, the application

performs a put (key, data), where the key is a unique identifier in the peer-to-peer protocol names-

pace, generally generated from a hash of the data content or similarly unique metadata. The DHT

layer makes k replicas of the data (k is commonly set to 5), and stores them on the k live nodes in

the network whose nodeIDs are numerically closest to key. To read data, an application performs a

40

Original FileFile ReplicasSource of Requests

Figure 3.4: Using a DHT to distribute replicas of data. The resulting placement is completely
random, and independent of where clients are, resulting in potentially extremely long access latencies.

get (key), which returns the actual data by routing a data request towards the identifier key. Once

the node storing the replica receives the request, it sends a copy of the replica back to the requestor

for reading. Figure 3.4 illustrates the operation of a DHT across the wide-area.

The DHT is an attractive interface because of its simplicity. An application can use a simple

interface to store and read its data, and rely on the underlying DHT layer to monitor and maintain

availability of data blocks via replication. nodeIDs are chosen pseudorandomly (generally using

a secure one-way hash of some non-forgeable information), choosing servers closeby in namespace

would likely result in servers geographically spread out across the network. While this reduces

the probability of correlated failures among replicas, the tradeoff is a significant increase in access

latency. Network distance estimation techniques have shown to be useful in selecting and reading

data from a closeby server [99, 27].

3.2.3 Proximity routing

A key component of the DOLR abstraction is proximity routing. Proximity routing is the

general technique of choosing to route along links that minimize overall end to end latency. There

are two general techniques. First, a node can use network distance measurements to optimize its

choice of neighbors during insertion. Recent literature has termed this approach proximity neighbor

41

selection (PNS) [44]. Tapestry and Pastry use different algorithms to generate approximations

of locally optimal routing tables. In the alternative technique, termed proximity route selection

(PRS) [44], a node maintains a small set of possible neighbors for each entry in the routing table,

and always forwards traffic to the node closest in network distance. In a stable system, PNS will

produce more optimal neighbors, since the selection is done over all nodes in the entire network;

whereas the selection in PRS is limited to a small set of nodes randomly selected for a routing table

entry.

Intuition tells us that without considering network latency in choosing overlay nodes in the

route, we can expect each overlay hop to average half the diameter of the network. Take for example,

two endpoints A and B spread across the wide-area (distance between A and B ≈ 1
2D), where D is

the network diameter. Randomized routing might result in a routing stretch of H · 1
2D/ 1

2D = H ,

where H is the number of overlay hops taken. The situation is much worse, however, if A and B

are closeby in network distance. With a small shortest path latency and the same expected overlay

latency H · 1
2D, our routing stretch will be extremely high.

We quantify the impact our design decision has on routing performance in Section 6.2.

Using simulation on a number of transit-stub topologies, we found that the difference in performance

(as quantified by how close overlay latency comes to ideal shortest path latency) can vary from

a factor of 2-3 for long wide-area paths to almost two orders of magnitude difference for nodes

communicating inside a single autonomous network (AS) or stub network.

3.2.4 Decentralized directory service interface

The second and key component of the DOLR abstraction is the decentralized directory

service interface. For most developers, management of application data is a critical tool. The ability

to move data, control its access, manage its replication, are all useful tools developers use to tune

system performance tradeoffs to match the needs of an application. In fact, different instances of

the same application may desire different points in the performance, resiliency and storage overhead

42

Storage Overhead

A
cc

es
s

L
at

en
cy

Availa
bilit

y under F
ailu

res

Figure 3.5: A 3-way tradeoff involved in the design of a storage and replication layer.

tradeoff. For example, a web server reporting dynamic data such as current weather conditions or

online stock quotes does not place much value on long term durability of its contents, whereas a web

server responsible for archiving academic publications will opt for much higher long term availability

over read latency.

To better understand storage needs of different applications, we note that there is an

inherent 3-way tradeoff between availability, access latency, and storage overhead (see Figure 3.5.

Availability is the expected data availability across network partitions and resource failures; access

latency is the average latency required to route to a nearby replica; and storage overhead is the

amount of disk or memory required to provide data access to clients. The DHT abstraction includes

an explicit assumption that data location is done by routing towards data replicas by a common

name. To improve latency, an application simply increases the replication factor. This model defines

both a direct correlation between storage overhead and availability, and another between storage and

access latency, leaving storage overhead as the only degree of freedom to parameterize on. Finally,

with randomized replica placement, the correlation between storage overhead and access latency is

suboptimal. In a simple 2-dimensional coordinate space model of the Internet, we would expect a

small number of replicas to reduce the access latency to the closest replica to a very small number.

But in the real Internet, the hierarchical nature of the network results in wide-area latencies orders

43

of magnitude greater than local area latencies. The result is that routing across the wide-area to

the closest of several replicas can still incur high latency values.

3.3 Tapestry, a DOLR Prototype

In this section, we present Tapestry [142, 50], an extensible infrastructure that provides

Decentralized Object Location and Routing (DOLR). DOLR virtualizes resources, since endpoints

are named by opaque identifiers encoding nothing about physical location. Properly implemented,

this virtualization enables message delivery to mobile or replicated endpoints in the presence of

instability in the underlying infrastructure.

Tapestry focuses on performance: minimizing message latency and maximizing message

throughput. Thus, for instance, Tapestry exploits locality in routing messages to mobile endpoints

such as object replicas; this behavior is in contrast to other structured peer-to-peer overlay net-

works [97, 111, 122, 83, 80, 48].

Tapestry uses adaptive algorithms with soft-state to maintain fault-tolerance in the face

of changing node membership and network faults. Its architecture is modular, consisting of intro-

spective control components wrapped around a simple, high-performance router. Further details

on Tapestry’s architecture and implementation can be found in Chapter 6, and we present detailed

simulations and measurements in Chapter 6.

This section details Tapestry’s algorithms for routing and object location, and describes

how network integrity is maintained under dynamic network conditions.

3.3.1 The API

Tapestry provides a datagram-like communications interface, with additional mechanisms

for manipulating the locations of objects. Tapestry nodes participate in the overlay and are assigned

nodeIDs uniformly at random from a large identifier space. More than one node may be hosted by

44

L4

42A2

1D76

27AB4228

4227

44AF

6F43

43C9
51E5

L1

L1

L1

L1

L2

L2 L3
L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

5230

L1

AC78

4227

42A2

42AD

4629

400F

42A7

4112

42A9
4211

42E0

Figure 3.6: Tapestry routing mesh from the per-
spective of a single node. Outgoing neighbor
links point to nodes with a common match-
ing prefix. Higher-level entries match more dig-
its. Together, these links form the local routing
table.

Figure 3.7: Path of a message. The path taken
by a message originating from node 5230 des-
tined for node 42AD in a Tapestry mesh.

one physical host. Application-specific endpoints are assigned Globally Unique IDentifiers (GUIDs),

selected from the same identifier space. Tapestry currently uses an identifier space of 160-bit values

with a globally defined radix (e.g., hexadecimal, yielding 40-digit identifiers). Tapestry assumes

nodeIDs and GUIDs are roughly evenly distributed in the namespace, which can be achieved by

using a secure hashing algorithm like SHA-1 [108]. We say that node N has nodeID Nid, and an

object O has GUID OG.

Tapestry supports the sharing of a single Tapestry overlay infrastructure by multiple appli-

cations. To enable this, every message contains an application-specific identifier, Aid, which is used

to select a process, or application for message delivery at the destination (similar to the role of a

port in TCP/IP), or an upcall handler where appropriate.

Given the above definitions, we state the four-part Tapestry API as follows:

1. PublishObject(OG, Aid): Publish, or make available, object O on the local node. This call
is best effort, and receives no confirmation.

2. UnpublishObject(OG, Aid): Best-effort attempt to remove location mappings for O.

3. RouteToObject(OG, Aid): Routes message to location of an object with GUID OG.

4. RouteToNode(N, Aid, Exact): Route message to application Aid on node N. “Exact” specifies
whether destination ID needs to be matched exactly to deliver payload. If set to false, the
payload is delivered to the root node responsible for Aid.

45

nextHop (n,G)
1 if n =maxHop(R) then
2 return self
3 else
4 d ← Gn; e ← Rn,d

5 while e = nil do
6 d ← d + 1 (mod β)
7 e ← Rn,d

8 endwhile
9 if e = self then
10 return nextHop (n + 1, G)
11 else
12 return e
13 endif
14 endif

Figure 3.8: Pseudocode for nextHop(). This function locates the next hop towards the root given the
previous hop number, n, and the destination GUID, G. Returns next hop or self if local node is the root.

3.3.2 Routing and Object Location

Tapestry dynamically maps each identifier G to a unique live node, called the identifier’s

root or GR. If a node N exists with Nid = G, then this node is the root of G. To deliver messages,

each node maintains a routing table consisting of nodeIDs and IP addresses of the nodes with which

it communicates. We refer to these nodes as neighbors of the local node. When routing toward GR,

messages are forwarded across neighbor links to nodes whose nodeIDs are progressively closer (i.e.,

matching larger prefixes) to G in the ID space.

Routing Mesh

Tapestry uses local routing tables at each node, called neighbor maps, to route overlay

messages to the destination ID digit by digit (e.g., 4*** =⇒ 42** =⇒ 42A* =⇒ 42AD, where *’s

represent wildcards). This approach is similar to longest prefix routing used by CIDR IP address

allocation [100]. A node N has a neighbor map with multiple levels, where each level contains links

to nodes matching a prefix up to a digit position in the ID, and contains a number of entries equal to

the ID’s base. The primary ith entry in the jth level is the ID and location of the closest node that

begins with prefix(N , j − 1)+“i” (e.g., the 9th entry of the 4th level for node 325AE is the closest

46

4228

4A6D

4361

43FE Location Mapping

Publish Path

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

4228

4A6D

4361

43FE Location Mapping

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

Query Path

Figure 3.9: Tapestry object publish example.
Two copies of an object (4378) are published
to their root node at 4377. Publish messages
route to root, depositing a location pointer for
the object at each hop encountered along the
way.

Figure 3.10: Tapestry route to object example.
Several nodes send messages to object 4378 from
different points in the network. The messages
route towards the root node of 4378. When they
intersect the publish path, they follow the loca-
tion pointer to the nearest copy of the object.

node with an ID that begins with 3259. It is this prescription of “closest node” that provides the

locality properties of Tapestry. Figure 3.6 shows some of the outgoing links of a node.

Figure 3.7 shows a path that a message might take through the infrastructure. The router

for the nth hop shares a prefix of length ≥n with the destination ID; thus, to route, Tapestry looks

in its (n + 1)th level map for the entry matching the next digit in the destination ID. This method

guarantees that any existing node in the system will be reached in at most logβ N logical hops, in a

system with namespace size N , IDs of base β, and assuming consistent neighbor maps. When a digit

cannot be matched, Tapestry looks for a “close” digit in the routing table; we call this surrogate

routing [50], where each non-existent ID is mapped to some live node with a similar ID. Figure 3.8

details the nextHop function for choosing an outgoing link. It is this dynamic process that maps

every identifier G to a unique root node GR.

The challenge in a dynamic network environment is to continue to route reliably even

when intermediate links are changing or faulty. To help provide resilience, we exploit network path

diversity in the form of redundant routing paths. Primary neighbor links shown in Figure 3.6 are

augmented by backup links, each sharing the same prefix2. At the nth routing level, the c neighbor

links differ only on the nth digit. There are c × β pointers on a level, and the total size of the
2The current implementation keeps two additional backups.

47

neighbor map is c × β × logβ N . Each node also stores reverse references (backpointers) to other

nodes that point at it. The expected total number of such entries is c× β × logβ N . Chapter 5 will

discuss resiliency mechanisms in more detail.

Surrogate Routing

Tapestry determines an ID’s root node by attempting to route a message to it as a NodeID.

If no node matches the ID exactly, the message will encounter empty neighbor entries at various

positions along the way. Then, the goal is to select an existing link which acts as an alternative

to the desired link (i.e. the one associated with the ID’s prefix that no node shares). We do so by

selecting the next highest value in the routing level with a non-null neighbor set. For example, a

message fails to find a next hop node that matches prefix 1234 routes to a node matching prefix

1235 if such a node exists. Routing terminates when the local routing table level contains no entries

other than the local node itself. That node is then designated as the surrogate root for the object.

In summary, Tapestry maps an ID to the live node whose NodeID has the longest prefix match,

where the node with the next higher NodeID value is chosen for each digit that cannot be matched

exactly. This is how Tapestry dynamically calculates MapRoots().

Because a routing entry can only be empty if there are no qualifying nodes in the entire

network, nodes across the network will have the same empty entries in their routing tables. It

follows that our algorithm would arrive at the same unique surrogate node from any location in the

Tapestry network.

We attempt to quantify here the number of expected hops taken after an empty route entry

is found in the course of routing. Calculating the number of additional hops can be reduced to a

version of the coupon collector problem. We know that after n ∗ ln(n) + cn tries for any constant c,

the probability of finding all coupons is 1 − e−c [13]. With a total of b possible entries in the hop’s

neighbor map, and c = b− ln(b), b2 random entries will fill every entry in the map with probability

P >= 1− b/eb. Therefore, when an empty entry appears in a routing level, the probability of there

48

being more than b2 unique nodes left with the current suffix is less than b/eb, or 1.8 ∗ 10−6 for a

hexadecimal-based digit representation. Since we expect each hop to reduce the remaining potential

routers by an approximate factor of b, the expected number of hops between the first occurrence of

an empty entry and when only a single node is left, is Logb(b2), or 2.

Object Publication and Location

As shown above, each identifier G has a unique root node GR assigned by the routing

process. Each such root node inherits a unique spanning tree for routing, with messages from leaf

nodes traversing intermediate nodes en route to the root. We utilize this property to locate objects

by distributing soft-state directory information across nodes (including the object’s root).

A server S, storing an object O (with GUID, OG, and root, OR
3), periodically advertises

or publishes this object by routing a publish message toward OR (see Figure 3.9). In general, the

nodeID of OR is different from OG; OR is the unique [50] node reached through surrogate routing by

successive calls to nextHop(*, OG). Each node along the publication path stores a pointer mapping,

<OG, S>, instead of a copy of the object itself. When there are replicas of an object on separate

servers, each server publishes its copy. Tapestry nodes store location mappings for object replicas

in sorted order of network latency from themselves.

A client locates O by routing a message to OR (see Figure 3.10). Each node on the path

checks whether it has a location mapping for O. If so, it redirects the message to S. Otherwise, it

forwards the message onwards to OR (guaranteed to have a location mapping).

Each hop towards the root reduces the number of nodes satisfying the next hop prefix

constraint by a factor of the identifier base. Messages sent to a destination from two nearby nodes

will generally cross paths quickly because: each hop increases the length of the prefix required for

the next hop; the path to the root is a function of the destination ID only, not of the source nodeID

(as in Chord); and neighbor hops are chosen for network locality, which is (usually) transitive. Thus,

3Note that objects can be assigned multiple GUIDs mapped to different root nodes for fault-tolerance.

49

the closer (in network distance) a client is to an object, the sooner its queries will likely cross paths

with the object’s publish path, and the faster they will reach the object. Since nodes sort object

pointers by distance to themselves, queries are routed to nearby object replicas.

3.3.3 Dynamic Node Algorithms

We have described how to provide the object location and routing functionality using the

distributed data structures. For this to be useful on real networks such as the wide-area Internet,

we need to maintain these routing tables and object pointers across changes in the overlay network.

For example, unexpected changes in the network such as link failures and network partitions can

lead to drastic simultaneous changes in the overlay membership. During such changes, the network

nonetheless must satisfy queries and route messages correctly.

Tapestry includes a number of mechanisms to maintain routing table consistency and ensure

object availability. In this section, we briefly explore these mechanisms. See [50] for complete

algorithms and proofs. The majority of control messages described here require acknowledgments,

and are retransmitted where required.

Node Insertion

There are four components to inserting a new node N into a Tapestry network:

a) Need-to-know nodes are notified of N, because N fills a null entry in their routing tables.

b) N might become the new object root for existing objects. References to those objects must be
moved to N to maintain object availability.

c) The algorithms must construct a near optimal routing table for N.

d) Nodes near N are notified and may consider using N in their routing tables as an optimization.

Node insertion begins at N’s surrogate S (the “root” node that Nid maps to in the existing network).

S finds p, the length of the longest prefix its ID shares with Nid. S sends out an Acknowledged

Multicast message that reaches the set of all existing nodes sharing the same prefix by traversing a

tree based on their nodeIDs. As nodes receive the message, they add N to their routing tables and

transfer references of locally rooted pointers as necessary, completing items (a) and (b).

50

Nodes reached by the multicast contact N and become an initial neighbor set used in its

routing table construction. N performs an iterative nearest neighbor search beginning with routing

level p. N uses the neighbor set to fill routing level p, trims the list to the closest k nodes4, and

requests these k nodes send their backpointers (see Section 3.3.2) at that level. The resulting set

contains all nodes that point to any of the k nodes at the previous routing level, and becomes the

next neighbor set. N then decrements p, and repeats the process until all levels are filled. This

completes item (c). Nodes contacted during the iterative algorithm use N to optimize their routing

tables where applicable, completing item (d).

To ensure that nodes inserting into the network in unison do not fail to notify each other

about their existence, every node A in the multicast keeps state on every node B that is still

multicasting down one of its neighbors. This state is used to tell each node C with A in its multicast

tree about B. Additionally, the multicast message includes a list of holes in the new node’s routing

table. Nodes check their tables against the routing table and notify the new node of entries to fill

those holes.

Voluntary Node Deletion

If node N leaves Tapestry voluntarily, it tells the set D of nodes in N’s backpointers of its

intention, along with a replacement node for each routing level from its own routing table. The

notified nodes each send object republish traffic to both N and its replacement. Meanwhile, N routes

references to locally rooted objects to their new roots, and signals nodes in D when finished.

Involuntary Node Deletion

In a dynamic, failure-prone network such as the wide-area Internet, nodes generally exit

the network far less gracefully due to node and link failures or network partitions, and may enter

and leave many times in a short interval. Tapestry improves object availability and routing in such
4k is a knob for tuning the tradeoff between resources used and optimality of the resulting routing table.

51

an environment by building redundancy into routing tables and object location references (e.g., the

c − 1 backup forwarding pointers for each routing table entry).

52

Chapter 4

Efficient Routing and Location on

Real Networks

53

We have shown how namespace proximity can be used to route to location independent

names in a scalable fashion. These protocols guarantee end to end routing within a small number of

overlay hops. The real challenge, however, lies in ensuring that that translate into low end-to-end

routing latency. A deployed network infrastructure must be realized in implementations running over

nodes in a constantly changing Internet, all while maintaining the scalable nature of their original

protocols. This is especially crucial for Decentralized Object Location and Routing systems, since

DOLR systems focus on providing efficient location of closeby objects and endpoints.

To quantify the general notion of efficiency as applied to node-to-node routing, we use the

Relative Delay Penalty (RDP) [20] and Relative Location Delay Penalty (RLDP) metrics. They are

defined as follows:

• RDP measures the ratio of the network latency incurred by a message on an overlay to the same

latency incurred through the IP network. For message routing between nodes, we measure the

IP network latency through the use of ICMP Ping.

• RLDP measures the ratio of the end-to-end latency of routing a message from its source to

the object or endpoint it is trying to reach to the Ping time between the client and the object

server or endpoint.

Our goal for efficiency is to minimize the RDP and RLDP metrics for all paths, despite significant

variances in the IP distance between the message source and the message destination.

We begin this chapter in Section 4.1 by laying out the challenges we face in trying to achieve

efficient routing and location on a large scale overlay. For each challenge, we discuss a number of

mechanisms and algorithms that attempt to address the performance barrier. In Section 4.2, we

discuss the issue of building an efficient routing mesh for efficient node to node communication,

and give a detailed description of the nearest neighbor algorithm implemented in Tapestry. Next,

we examine in Section 4.3 how structured peer-to-peer overlays can become aware of and exploit

heterogeneous network links for improved routing efficiency. Then we move our focus to object

54

location, or the process of routing messages to objects or endpoints. In Section 4.4, we consider

how to layer an efficient decentralized directory service on top of our routing mesh, and discuss the

tradeoffs before presenting our approach, proximity indirection distribution. Finally, we discuss in

Section 4.5 how to further explore the tradeoff between object location state and reduced RLDP.

4.1 Challenges

A number of challenges stand in the way of designing a scalable overlay infrastructure that

provides efficient routing as well as efficient object location. We take a closer look at the challenges

in implementing both sets of functionality, and outline our solutions.

4.1.1 Efficient Routing

Current designs of structured overlay networks focus on supporting extremely large numbers

of nodes and traffic requests. They often use number of overlay hops as the metric of performance for

node to node routing. While it is useful, overlay hop count does not capture a true representation of

delay experienced by the user or application. Actual end-to-end delay of overlay routing is the sum

of latencies taken to traverse all IP hops in the overlay path. Approximating overall path latency

with overlay hop count assumes that each overlay hop is composed of a minimal number of IP hops.

Recent work confirms that this property of Proximity Neighbor Selection (PNS) has a significant

impact on overlay routing performance [44]. A challenge we face is how to construct overlays such

that this property of is maintained across a large node population.

We address this challenge in Section 4.2 with a dynamic algorithm that approximates a

nearest neighbor selection problem across the wide-area. As a node joins the overlay, it participates

in an iterative pruning process. In each step, it take an initial approximation of nodes that satisfy

its routing table at some level, and prunes them to select entries closeby in network latency. It

them uses the neighbor information at those nodes to choose candidates for the next routing level,

55

and repeats until all routing tables are filled with nearby nodes. The pseudocode for this process is

shown in Figure 4.2.

Constructing a routing mesh of nearest neighbors to lower end-to-end routing latency is

only part of the solution to efficient routing. Other factors such as machine processing power

and available bandwidth can also increase end-to-end routing latency. For example, ping results

indicates that the instantaneous network latency to a DSL node is low. Once it is integrated as

a neighbor, however, overlay traffic causes congestion and high packet loss. In another scenario,

a highly loaded node might impose additional delay in the overlay messages its forwards. In the

absence of efficient tools to remotely measure processing power and available bandwidth, we face the

challenge of recognizing heterogeneous resources at nodes and leveraging them to construct better

topologies, where resources include factors such as processing power and bandwidth.

In Section 4.3, we outline and evaluate one possible solution called Brocade. In the Brocade

approach, we address this challenge in the context of wide-area routing, by avoiding unnecessary hops

through autonomous systems (AS’s) outside of those of the source and destination. Our proposal

selects a small number of (or a single) supernode per autonomous system. Local AS traffic routes

normally; wide-area traffic routes first to the supernode, where the supernode belonging to the

destination AS is determined via a secondary overlay, then routes to the destination supernode, and

then to the destination. By eliminating traffic through other AS’s, we reduce the chances of routing

through nodes with low resources, and reduces the overall stress placed on the wide-area network.

4.1.2 Efficient Object Location

Providing efficient and scalable directory services is a well known problem. Numerous

systems try to answer queries for objects or location-based services in a scalable manner [128, 53,

96, 46, 110]. Most systems that tried to scale to large numbers of objects used a hierarchical

approach, where servers higher in the hierarchy routed queries to lower level servers based on local

knowledge of their contents. There seemed to be a clear trade-off between scalability and search

56

accuracy, where accuracy is the ability to return a positive result for an existing object under normal

conditions. Systems that supported large volume of data such as the Service Discovery Service

(SDS) [53] resorted to lossy compression techniques in order to limit data stored at high levels of

the hierarchical directory service. Load-balancing at high levels of the hierarchy was difficult.

The discovery of structured peer-to-peer systems has helped us better understand the prob-

lem of load-balancing directory services. The main challenge in load-balancing traditional directory

services was the tight coupling of multiple fields or search criteria as a single unique identifier. By

reducing the directory service problem to that of locating objects by a single globally unique identi-

fier (GUID), we produce a single criteria to load-balance on. We can store data about an object at a

server chosen based on the object GUID, where the choice is usually determined by the Key-Based

Routing properties of the protocol. Assuming object GUIDs chosen uniformly at random, object

data is then evenly spread across all network nodes.

The previous tradeoff between accuracy and scalability is now a three-way tradeoff between

accuracy, scalability, and multi-field search. Large scale hierarchical directories services provide

scalability and multi-field search at the cost of accuracy; structured peer to peer overlays provide

accuracy and scalability without multi-field search; and local information databases provide accuracy

and multi-field search at the cost of scalability.

An undesirable side-effect of the load-balancing is the loss of a network- or administrative-

based hierarchy. For example, the SDS proposed hierarchies based on network topology or adminis-

trative domains, such that queries were always answered by the lowest level server that knew about

both the query and the object. A query for a departmental printer can always be answered by

the local departmental SDS server. In contrast, the Key-Based Routing layer of structured over-

lays maps an object’s data to some random server in the entire network without regard to network

distance or administrative domains. This means that naively storing and retrieving data about an

object’s location at its root node (as determined by its GUID) costs a roundtrip to a random network

location.

57

Work in structured peer-to-peer overlay applications have shown object location based on

unique IDs is still quite useful. The challenge is to retain the benefits (scalability, load-balancing and

accuracy) while achieving performance similar to that of topology-based hierarchical directory ser-

vices. Ideally, the latency it takes for a message to route from the querying client to the object should

scale linearly with the IP routing latency between them (the RLDP should be a small constant).

In Section 4.4, we discuss and compare several approaches to object location before presenting our

approach, which we call proximity indirection distribution.

Our use of a proportional ratio as our efficiency metric means that the amount of tolerable

routing overhead decreases linearly with the shortest IP path latency. This means even a small

processing or routing overhead will inflate the RDP and RLDP values in scenarios where the message

source and destination are physically close in the network. The result is that a low RLDP is particular

difficult to obtain when searching for nearby objects.

Reducing the RLDP value is especially important for a number of network applications

that place a high value on fast access to nearby data. For example, in the case of distributed file

systems or cooperative web caches, fast access to data is critical, and data is often moved in order

to reduce the network distance between clients and the data they access. For these applications, it

is critical for the object location layer to translate the increased network proximity into faster access

times. To further address the problem of reducing RLDP for closeby objects, we examine how we

can tradeoff additional per-node storage of object pointers for lower RLDP in Section 4.5.

4.2 Nearest Neighbor Routing Tables

We begin our discussion on efficiency by examining some mechanisms and algorithms that

enable efficient node to node routing. Within the constraints of a scalable structured peer-to-peer

system, each node can only keep a small amount of routing state, the size of which generally scales

logarithmically with the size of the overlay. Under these assumptions, there are two orthogonal and

58

complementary approaches to improving end-to-end routing latency. These approaches address the

respective questions of which routes are included in the routing state (proximity neighbor selection),

and which routes are chosen for each outgoing message (proximity route selection) [44].

In our approach, we focus on using distributed algorithms to calculate a routing table from

a near-optimal set of closeby neighbors in the overlay. While we use route selection by sorting

multiple next hop neighbors by their latency to the local node, our focus is on proximity neighbor

selection, which studies have shown to have significantly greater impact on routing performance [44].

Each routing entry is defined by a leading prefix that the next hop node must match. For

each routing entry, we keep a small number 1 of closeby nodes that match the prefix. These nodes

are sorted by order of increasing latency from the current node. Under normal conditions, the router

sends messages to the node in the outgoing route entry with minimal route latency.

In the rest of this section, we discuss in detail a nearest neighbor location algorithm, and

how it’s used in Tapestry’s dynamic node insertion algorithm, providing Tapestry with closeby

neighbors in each routing table entry. This work is done in collaboration with Kris Hildrum, John

Kubiatowicz and Satish Rao, and a more complete version can be found in [51]. We first presented

a simpler approach in [142].

4.2.1 Some Preliminaries

To better define our nearest neighbor algorithm, we first establish some terminology. The

Tapestry routing mesh is an overlay network between participating nodes. Each Tapestry node

contains links to a set of neighbors that share prefixes with its NodeID. Thus, neighbors of NodeID

α are restricted to nodes that share prefixes with α, that is, nodes whose NodeIDs β ◦ δ satisfy

β ◦ δ′ ≡ α for some δ, δ′. Neighbor links are labeled by their level number, which is one greater than

the number of digits in the shared prefix, or (|β| + 1). Figure 4.1 shows a portion of the routing

mesh. For each forward neighbor pointer from a node A to a node B, there will a backward neighbor
1We currently keep up to three next hop routes for each routing entry for resilience purposes. Section 5.2.1 discusses

how routes can be used for route resiliency and why three routes are sufficient.

59

L4

42A2

1D76

27AB4228

4227

44AF

6F43

43C9
51E5

L1

L1

L1

L1

L2

L2 L3

Figure 4.1: Tapestry Routing Mesh. Each node is linked to other nodes via neighbor links, shown
as solid arrows with labels. Labels denote which digit is resolved during link traversal. Here, node
4227 has an L1 link to 27AB, resolving the first digit, an L2 link to 44AF, resolving the second digit,
etc. Using the notation of Section 4.2.1, 42A2 is a (42, A) neighbor of 4227.

pointer (or “backpointer”) from B to A.

Neighbors for node A are grouped into neighbor sets. For each prefix β of A’s ID and each

symbol j ∈ [0, b−1], the neighbor set NA
β,j contains Tapestry nodes whose NodeIDs share the prefix

β ◦ j. We will refer to these as (β, j) neighbors of A or simply (β, j) nodes. For each j and β, the

closest node in NA
β,j is called the primary neighbor, and the other neighbors are called secondary

neighbors. When context is obvious, we will drop the superscript A. Let l = |β| + 1. Then, the

collection of b sets, NA
β,j, form the level-l routing table. There is a routing table at each level, up to

the maximum length of NodeIDs. Membership in neighbor sets is limited by a constant parameter

R ≥ 1: |NA
β,j| ≤ R, and of all the nodes that could be in the neighbor set, we choose the closest.

Further, |NA
β,j| < R implies NA

β,j contains all (β, j) nodes. This gives us the following:

Property 1 (Consistency) If NA
β,j=∅, for any A, then there are no (β, j) nodes in the system.

We refer to this as a “hole” in A’s routing table at level |β| + 1, digit j.

Property 1 implies that the routing mesh is fully connected. Messages can route from any

node to any other node by resolving the destination NodeID one digit at a time. Let the source

node be A0 and destination node be B, with a NodeID equal to β ≡ j1 ◦ j2 . . . jn. If ε is the empty

string, then routing proceeds by choosing a succession of nodes: A1 ∈ NA0
ε,j1

(first hop), A2 ∈ NA1
j1,j2

(second hop), A3 ∈ NA2
j1◦j2,j3

(third hop), etc. This construction gives us locality, as described in

the following property.

60

Property 2 (Locality) In both Tapestry and PRR, each NA
β,j contains the closest (β, j) neighbors

as determined by a given metric space. The closest neighbor with prefix β◦j is the primary neighbor,

while the remaining ones are secondary neighbors.

Property 2 yields the important locality behavior of both the Tapestry and PRR schemes.

Further, it yields a simple solution to the static nearest-neighbor problem: Each node A can find

its nearest neighbor by choosing from the set
⋃

j∈[0,b−1] NA
ε,j, where ε represents the empty string.

Section 4.2.2 will discuss how to maintain Property 2 in a dynamic network.

Mapping IDs to Live Nodes

The lowest level functionality Tapestry provides is the dynamic mapping of an object

identifier or GUID, ψ, to a set of root nodes : Rψ = MapRoots(ψ). We call Rψ the root set for ψ,

and each A ∈ Rψ is a root node for ψ. It is assumed that MapRoots(ψ) can be evaluated anywhere

in the network.

To function properly, MapRoots(ψ) must return nodes that exist. In the simplest ver-

sion of Tapestry, |Rψ| = 1. Note that while this maps to the Key-Based Routing [28] discussed

earlier 3.2.1, the general MapRoots function can return multiple root nodes for two reasons. The

function can return an ordered set of multiple root nodes, where each successive node becomes the

definitive root if the previous node leaves the system. One possibility is to introduce an additional

one to many mapping from the object ID to a set of GUIDs. For example, we can generate such

GUIDs by applying a one way hash to the concatenation of the original object ID to a short sequence

of positive integers (0, 1, 2, ...). The mutually-independent GUIDs provide additional redundancy

for object location.

For routing purposes, we shall see that routing to an ID in Tapestry dynamically evaluates

this function to return a single root node. In this case, we can speak of the root node for a given

node ψ. For this to be sensible, we must have the following property:

61

method AcquireNeighborTable (NewNodeName, NewNodeIP, PSurrogateName, PSurrogateIP)
1 α ← GreatestCommonPrefix(NewNodeName, PSurrogateName)
2 maxLevel ← Length(α)
3 list ← AcknowledgedMulticast [on PSurrogateIP] (α, SendID(NewNodeIP, NewNodeName))
4 BuildTableFromList(list, maxLevel)
5 for i = maxlevel - 1 to 0
6 list ← GetNextList(list, i, NewNodeName, NewNodeIP)
7 BuildTableFromList(list, i)

end AcquireNeighborTable

method GetNextList (neighborlist, level, NewNodeName, NewNodeIP)
1 nextList ← ∅
2 for n ∈ neighborlist
3 temp ← GetForwardAndBackPointers(n, level))
4 AddToTableIfCloser [on n] (NewNodeName, NewNodeIP)
5 nextList ← KeepClosestk(temp ∪ nextList)
6 return nextList

end GetNextList

Figure 4.2: Building a Neighbor Table. A few words on notation: function [on destina-
tion] represents a call to run function on destination, variables in italics are single-valued,
and variables in bold are vectors. The AcknowledgedMulticast function is described in
Figure 4.3.

Property 3 (Unique Root Set) The root set, Rψ, for object ψ must be unique. In particular,

MapRoots(ψ) must generate the same Rψ, regardless of where it is evaluated in the network.

4.2.2 Building Neighbor Tables

The problem we now discuss is how to build neighbor sets, NA
β,j for a new node A, such

that they produce an efficient routing mesh. To do so, they must satisfy Properties 1 and 2. This

can be seen as solving the nearest neighbor problem for many different prefixes. One solution is

to simply use the method of Karger and Ruhl [62] many times, once for each prefix. This would

essentially require each node to participate in O(log n) Karger-Ruhl data structures, one for each

level of the neighbor table. This would require O(log2 n) space.

The method we present below has lower network distance than a straightforward use of

Karger and Ruhl (although the same number of network hops) and incurs no additional space over

the PRR data structures.

As in [95], we adopt the following network constraint. Let BA(r) denote the ball of radius

62

r around A; i.e., all points within distance r of A, and |BA(r)| denote the number of such points.

We assume:

|BA(2r)| ≤ c |BA(r)| , (4.1)

for some constant c. PRR also assume that |BA(2r)| ≥ c′ |BA(r)|, but that assumption is not needed

for our extensions. Notice that our expansion property is almost exactly that used by Karger and

Ruhl [62]. We also assume the triangle inequality in network distance, that is

d(X, Y) ≤ d(X, Z) + d(Z, Y)

for any set of nodes X, Y , and Z. Our bounds in terms of network latency or network hops and

ignore local computation in our calculations. None of the local computation is time-consuming, so

this is a fair measure of complexity.

The Algorithm

Figure 4.2 shows how to build neighbor tables. In words, suppose that the longest common

prefix of the new node and any other node in the network is α. Then we begin with the list of all

nodes with prefix α. We call these nodes the need-to-know nodes , since they are the nodes that need

to know about our new node in order to maintain correctness in the routing mesh. (We explain

how to get this list in the next section.) From this list, we use routing entries and backpointers 2

to obtain nodes matching the next shortest prefix, while pruning the list at each step to only keep

the k nodes closest to our new node. We fill the new node’s routing table with nodes from the list

at each iteration for progressively smaller prefixes, until we have the closest k nodes matching the

empty prefix.

Let a level-i node be a node that shares a length i prefix with α. Then, to go from the

level-(i + 1) list to the level-i list, we ask each node on the level-(i + 1) list to give us all the level-i

nodes they know of (we ask for both forward and backwards pointers). Note that each level-i node
2For every node A that maintains an entry to node B in its routing table, node B keeps a reference to A in its

backpointer list.

63

method AcknowledgedMulticast(α, Function)
1 if NotOnlyNodeWithPrefix(α)
2 for i = 0 to b − 1
3 neighbor ← GetMatchingNeighbor(α ◦ i)
4 if neighbor exists
5 S ← AcknowledgedMulticast [on GetIP(neighbor)] (α ◦ i, Function)
6 else
7 apply Function

8 wait S
9 SendAcknowledgement()

end AcknowledgedMulticast

Figure 4.3: Acknowledged Multicast. It runs function on all nodes with prefix α.

must have at least one level-(i + 1) node in its neighbor table, so following the backpointers of all

level-(i + 1) nodes gives us all level-i nodes. We then contact these nodes, and sort them according

to their distance from the inserting node. Each node contacted this way also checks to see if the

new node should be added to its own table (line 4). We then trim this list, keeping only the closest

k nodes. If b > c2, then [51] says there is some k = O(log n) such that with high probability, the

lists at each level contain exactly the k closest nodes.

We then use these lists to fill in the neighbor table. This happens in line 7 of Ac-

quireNeighborTable. More precisely, recall that level i of the table consists of nodes with the

prefix αi−1 ◦ j, where αi−1 is the first (i − 1) digits of the node’s prefix. To fill in level i of the

neighbor table, we look in the level-(i − 1) list. For j ∈ [0, b − 1], we keep the closest R (αi−1, j)

nodes (R is defined in Section 4.2.1).3

We do not discuss the fine details of the algorithm here. While the general algorithm is

described above, a more robust version of the algorithm is required in order to support parallel inser-

tions where large groups of nodes with significant name similarities join the network simultaneously.

Such an algorithm, along with proofs of correctness are described in detail in citeTapestryTOCS.
3While the algorithm presented here is here is sensitive to failures, a slight modification can make the algorithm

substantially more robust, see [49]

64

Acknowledged Multicast

To obtain the original set of need-to-know nodes, we introduce an algorithm called Ac-

knowledged Multicast , shown in Figure 4.3. This algorithm begins when the new node N contacts

its surrogate in the current network, the node who currently receives messages destined for NodeID

N . The multicast acts as a breadth first search to reach all nodes matching the same prefix as the

surrogate does to N . Upon completion, every node will have received the same multicast message,

and will participate in the operations of the list of need-to-know nodes.

A multicast message consists of a prefix α and a function to apply. To be a valid multicast

message, the prefix α must be a prefix of the receiving node. When a node receives a multicast

message for prefix α, it sends the message to one node with each possible extension of α; that is, for

each j, it sends the message to one (α, j) node if such a node exists. One of these extensions will be

the node itself, so a node may receive multicast messages from itself at potentially many different

levels. We know by Property 1 that if an (α, j) node exists, then every α-node knows at least one

such node. Each of these nodes then continues the multicast. When a node cannot forward the

message further, it applies the function.

Because we need to know when the algorithm is finished, we require each recipient to

send an acknowledgment to its parent after receiving acknowledgments from its children. If a node

has no children, it sends the acknowledgment immediately. When the initiating node gets an ac-

knowledgment from each of its children, we know that all nodes with the given prefix have been

contacted.

These messages form a tree. If you collapse the messages sent by a node to itself, the result

is in fact a spanning tree. This means that if there are k nodes reached in the multicast, there are

k−1 edges in the tree. Alternatively, each node will only receive one multicast message, so there are

no more than O(k) such messages sent. Each of those links could be the diameter of the network,

so the total cost of a multicast to k nodes is O(dk). Note that there is a variant of this algorithm

that does not require maintaining state at all the participating nodes, but this is beyond the scope

65

of this paper.

Running Time

Since each node has an expected constant number of pointers per level, the expected time

of this algorithm is O(k) = O(log n) per level or O(log2 n) overall. (We are concerned with network

traffic and distance and hence ignore the cost of local computation.)

The number of backpointers is less than O(log n) per level per node with high probability,

so we get a total time of O(log3 n) with high probability. This analysis can be further tightened by

using techniques describe in [51] to argue that with high probability, all the visited level-i nodes are

within a ball of radius 4δi+1. Further, again with high probability, there are only O(log n) level-i

nodes within 4δi+1. This means we visit only O(log n) nodes per level, or O(log2 n) nodes overall.

Further, notice that δi ≤ 1
3δi+1. Suppose the number of nodes touched at each level is

bounded by q. We know (by the above) that q = O(log n). The total network latency is bounded

by:
∑

i

δiq = q
∑

i

δi

Since the δi are geometrically decreasing, they sum to O(d), where d is the network diameter, so the

total latency for building neighbor tables is O(qd) = O(d log n).

4.3 Brocade

We have discussed how to calculate near-optimal routing tables for normal routing opera-

tion. These algorithms provide relatively low RDP for normal routing on a homogeneous network.

We now present an approach for improving routing efficiency on heterogeneous networks such as the

Internet.

Basic Tapestry routing, like other structured peer to peer overlays such as Chord and

Pastry, assume overlay nodes possess uniform resources such as network bandwidth and connectivity.

66

In this section, we discuss Brocade, a secondary overlay to be layered on top of these systems that

exploits knowledge of underlying network characteristics. The secondary overlay builds a location

layer between “supernodes,” nodes that are situated near network access points, such as gateways to

administrative domains. By associating local nodes with their nearby “supernode,” messages across

the wide-area can take advantage of the highly connected network infrastructure between these

supernodes to shortcut across distant network domains, greatly improving point-to-point routing

distance and reducing network bandwidth usage. We expore the potential performance benefits by

proposing a name mapping scheme for a Tapestry-Tapestry secondary overlay, and use simulation

results that demonstrate significant routing performance improvement.

4.3.1 Brocade Base Architecture

Here we present the overall design for the brocade overlay proposal, and define the design

space for a single instance of the brocade overlay. We further clarify the design issues by presenting

algorithms for an instance of a Tapestry on Tapestry brocade.

To improve point to point routing performance on an overlay, a brocade system defines a

secondary overlay on top of the existing infrastructure, and provides a shortcut routing algorithm to

quickly route to the local network of the destination node. This is achieved by finding nodes which

have high bandwidth and fast access to the wide-area network, and tunnelling messages through an

overlay composed of these “supernodes.”

In overlay routing structures such as Tapestry [142], Pastry [111], Chord [122] and Content-

Addressable Networks [97], messages are often routed across multiple autonomous systems (AS)

and administrative domains before reaching their destinations. Each overlay hop often incurs long

latencies within and across multiples AS’s, consuming bandwidth along the way. To minimize

both latency and network hops and reduce network traffic for a given message, brocade attempts to

determine the network domain of the destination, and route directly to that domain. A “supernode”

acts as a landmark for each network domain. Messages use them as endpoints of a tunnel through

67

the secondary overlay, where messages would emerge near the local network of the destination node.

Before we examine the performance benefits, we address several issues necessary in con-

structing and utilizing a brocade overlay. We first discuss the construction of a brocade: how are

supernodes chosen and how is the association between a node and its nearby supernode maintained?

We then address issues in brocade routing: when and how messages find supernodes, and how they

are routed on the secondary overlay.

Brocade Construction

The key to brocade routing is the tunnelling of messages through the wide area between

landmark nodes (supernodes). The selection criteria are that supernodes have significant processing

power (in order to route large amounts of overlay traffic), minimal number of IP hops to the wide-

area network, and high bandwidth outgoing links. Given these requirements, gateway routers or

machines close to them are attractive candidates. The final choice of a supernode can be resolved

by an election algorithm between Tapestry nodes with sufficient resources, or as a performance

optimizing choice by the responsible ISP.

Given a selection of supernodes, we face the issue of determining one-way mappings between

supernodes and normal tapestry nodes for which they act as landmarks in Brocade routing. One

possibility is to exploit the natural hierarchical nature of network domains. Each network gateway

in a domain hierarchy can act as a brocade routing landmark for all nodes in its subdomain not

covered by a more local subdomain gateway. We refer to the collection of these overlay nodes as

the supernode’s cover set. An example of this mapping is shown in Figure 4.4. Supernodes keep

up-to-date member lists of their cover sets, which are used in the routing process, as described below.

A secondary overlay can then be constructed on supernodes. Supernodes can have indepen-

dent names in the brocade overlay, with consideration to the overlay design, e.g. Tapestry location

requires names to be evenly distributed in the namespace.

68

Overlay Node

Super Node

Interdomain Route

Intradomain Route

��������

������������������

��
��
��
����
��
��
��

�������� ��
��
��
����
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

���� ���� ����������

�������� ���������� ��������

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

����

����
��
��
��
��

��
��
��
��

Figure 4.4: Example of Brocade Supernode Organization

Brocade Routing

Here we describe mechanisms required for a Tapestry-based brocade, and how they work

together to improve long range routing performance. Given the complexity and latency involved

in routing through an additional overlay, three key issues are: how are messages filtered so that

only long distance messages are directed through the brocade overlay, how messages find a local

supernode as entry to the brocader, and how a message finds the landmark supernode closest to the

message destination in the secondary overlay.

Selective Utilization The use of a secondary overlay incurs a non-negligible amount of latency

overhead in the routing. Once a message reaches a supernode, it must search for the supernode

nearest to the destination node before routing to that domain and resuming Tapestry routing to the

destination. Consequently, only messages that route outside the reach of the local supernode benefit

from brocade routing.

We propose a naive solution by having each supernode maintain a listing of all Tapestry

nodes in its cover set. We expect the node list at supernodes to be small, with a maximum size on

the order of tens of thousands of entries. When a message reaches a supernode, the supernode can

do an efficient lookup (via hashtable) to determine whether the message is destined for a local node,

or whether brocade routing would be useful.

69

Finding Supernodes For a message to take advantage of brocade routing, it must be routed to

a supernode on its way to its destination. How this occurs plays a large part in how efficient the

resulting brocade route is. There are several possible approaches. We discuss three possible options

here, and evaluate their relative performance in Section 4.3.2.

Naive A naive approach is to make brocade tunnelling an optional part of routing, and

consider it only when a message reaches a supernode as part of normal routing. The advantage

is simplicity. Normal nodes need to do nothing to take advantage of brocade overlay nodes. The

disadvantage is that it severely limits the set of supernodes a message can reach. Messages can

traverse several overlay hops before encountering a supernode, reducing the effectiveness of the

brocade overlay.

Header-snooping In an alternate approach, supernodes can “snoop” on IP packets to

determine if they are Tapestry messages. If so, supernodes can parse the message header, and use

the destination ID to determine if brocade routing should be used. The intuition is that because

supernodes are situated near the edge of local networks, any Tapestry message destined for an

external node will likely cross its path. This also has the advantage that the source node sending

the message need not know about the brocade supernodes in the infrastructure. The disadvantage

is difficulty in implementation, and possible limitations imposed on regular traffic routing by header

processing.

Directed The most promising solution is for overlay nodes to find the location of their local

supernode, by using DNS resolution of a well-known name, e.g. supernode.cs.berkeley.edu, or

by an expanding ring search. Once a new node joins a supernode’s cover set, state can be maintained

by periodic beacons. To reduce message traffic at supernodes, nodes keep a local proximity cache

to “remember” local nodes they have communicated with. For each new message, if the destination

is found in the proximity cache, it is routed normally. Otherwise, the node sends it directly to

the supernode for routing. This is a proactive approach that takes advantage of any potential

performance benefit brocade can offer. It does, however, require state maintenance, and the use of

70

explicit fault-tolerant mechanisms should a supernode fail.

Landmark Routing on Brocade Once an inter-domain message arrives at the sender’s supern-

ode, brocade needs to determine the supernode closest to the message destination. This can be

done by organizing the brocade overlay as a Tapestry network. As described in Section 3.3.2 and

[142], Tapestry location allows nodes to efficiently locate objects given their IDs. Recall that each

supernode keeps a list of all nodes inside its cover set. In the brocade overlay, each supernode

advertises the IDs on this list as IDs of objects it “stores.” When a supernode tries to route an

outgoing inter-domain message, it uses Tapestry to search for an object with an ID identical to

the message destination ID. By finding the object on the brocade layer, the source supernode has

found the message destination’s supernode, and forwards the message directly to it. The destination

supernode then resumes normal overlay routing to the destination.

Note these discussions make the implicit assumption that on average, inter-domain routing

incurs much higher latencies compared to intra-domain routing. This, in combination with the

distance constraints in Tapestry, allows us to assert that intra-domain messages will never route

outside the domain. This is because the destination node will almost always offer the closest node

with its own ID. This also means that once a message arrives at the destination’s supernode, it will

quickly route to the destination node.

4.3.2 Evaluation of Base Design

In this section, we present some analysis and initial simulation results showing the perfor-

mance improvement possible with the use of brocade. In particular, we simulate the effect brocade

routing has on point to point routing latency and bandwidth usage. For our experiments, we im-

plemented a two layer brocade system inside a packet-level simulator that used Tapestry as both

the primary and secondary overlay structures. The packet level simulator measured the progres-

sion of single events across a large network without regard to network effects such as congestion or

retransmission.

71

Brocade Hop RDP w/ Overlay Processing

0

1

2

3

4

5

6

2 4 6 8 10 12 14

Physical Hops in Optimal Route

R
el

at
iv

e
D

el
ay

P
en

al
ty

Original Tapestry Naïve Brocade IP Snooping Brocade Directed Brocade

Figure 4.5: Hop-based Routing RDP in Brocade. Header snooping is shown as IP snooping.

Before presenting our simulation results, we first offer some back-of-the-envelope numerical

support for why brocade supernodes should scale with the size of AS’s and the rate of nodes entering

and leaving the Tapestry. Given the size of the current Internet around 204 million nodes4, and

20000 AS’s, we estimate the size of an average AS to be around 10,000 nodes. Also, our current

implementation of Tapestry on a PIII 800Mhz node achieves throughput of 1000 messages/second.

In a highly volatile AS of 10000 nodes, where 10% of nodes enter or leave every minute, roughly

1.7% of the supernode processing power is used for handling the “registration” of new nodes.

We used in our experiments GT-ITM [134] transit stub topologies of 5000 nodes. We

constructed Tapestry networks of size 4096, and marked 16 transit stubs as brocade supernodes. We

then measured the performance of pair-wise communication paths using original Tapestry and all

three brocade algorithms for finding supernodes (Section 4.3.1). We include four total algorithms:

1. original Tapestry, 2. naive brocade, 3. Header-snooping brocade, 4. directed brocade. For

brocade algorithms, we assume the sender knows whether the destination node is local, and only

uses brocade for inter-domain routing.
4Source: http://www.netsizer.com/

72

Brocade Latency RDP 3:1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16 18 20 22 24 26

Interdomain-adjusted Latency on Optimal Route

R
el

at
iv

e
D

el
ay

P
en

al
ty

Original Tapestry Naïve Brocade IP Snooping Brocade Directed Brocade

Figure 4.6: Weighted latency RDP in Brocade, ratio 3:1. Header snooping is shown as IP snooping.

We use as our key metric a modified version of Relative Delay Penalty (RDP) [20]. Our

modified RDP attempts to account for the processing of an overlay message up and down the

protocol stack by adding 1 hop unit to each overlay node traversed. Each data point is generated by

averaging the routing performance on 100 randomly chosen paths of a certain distance. In the RDP

measurements, the sender’s knowledge of whether the destination is local explains the low RDP

values for short distances, and the spike in RDP around the average size of transit stub domains.

We measured the hop RDP of the four routing algorithms. For each pair of communication

endpoints A and B, hop RDP is a ratio of # of hops traversed using brocade to the ideal hop

distance between A and B. As seen in Figure 4.5, all brocade algorithms improve upon original

Tapestry point to point routing. As expected, naive brocade offers minimal improvement. Header-

snooping improves the hop RDP substantially, while directed brocade provides the most significant

improvement in routing performance. For paths of moderate to long lengths, directed brocade

reduces the routing overhead by more than 50% to near optimal levels (counting processing time).

The small spike in RDP for header-snooping and directed brocade is due to the Tapestry location

overhead in finding landmarks for destinations in nearby domains.

Figure 4.5 makes a simple assumption that all physical links have the same latency. To

73

Brocade Aggregate Bandwidth Usage Per Message

0

10

20

30

40

50

60

2 4 6 8 10 12 14

Physical Hops in Optimal Route

A
pp

ro
x.

B
W

(s
iz

eo
f(

M
sg

)*
H

op
s)

Original Tapestry Naïve Brocade IP Snooping Brocade Directed Brocade

Figure 4.7: Aggregate bandwidth used per message in Brocade. Header snooping is shown as IP
snooping.

account for the fact that interdomain routes have higher latency, Figure 4.6 shows an RDP where

each interdomain hop counts as 3 hop units of latency. We see that Header-snooping and directed

brocade still show the drastic improvement in RDP found in the simplistic topology results. We note

that the spike in RDP experienced by header-snooping and directed brocade is exacerbated by the

effect of higher routing time in interdomain traffic making Tapestry location more expensive. We

also ran this test on several transit stub topologies with randomized latencies direct from GT-ITM,

with similar results.

Finally, we examine the effect of brocade on reducing overall network traffic, by measuring

the aggregate bandwidth taken per message delivery, using units of (sizeof(Msg) * hops). The

result in Figure 4.7 shows that header-snooping brocade and directed brocade dramatically reduce

bandwidth usage per message delivery. This is expected, since brocade forwards messages directly

to the destination domain, and reduces message forwarding on the wide-area.

While certain decisions in our design are Tapestry specific, we believe similar design deci-

sions can be made for other overlay networks ([97], [111], [122]), and these results should apply to

brocade routing on those networks as well.

74

4.3.3 Brocade Status

More and more peer-to-peer systems are taking into account the heterogeneity of resources

across overlay nodes. The Cooperative File System [26] leverages nodes with more resources by

allowing them to host additional virtual nodes in the system, each representing one quantum of

resource. This quantification is directed mostly at storage requirements, and CFS does not propose

a mechanism for exploiting network topology knowledge. In contrast, our work is also partially

inspired by the work on landmark routing [127], where packets are directed to a node in the landmark

hierarchy closest to the destination before local routing.

More recent work since Brocade has proposed building structured overlays to explicitly

leverage knowledge of network heterogeneity. The most significant of the recent work includes the

LAND [1] project.

While we present an architecture here using Tapestry at the lower level, the brocade overlay

architecture can be used to improve routing performance for any structured peer-to-peer network

infrastructure. More generally, Brocade is one example of how leveraging network knowledge can

significantly improve routing behavior in the overlay. Other examples of network knowledge can

include information such as link failures at the router level, or the membership of overlay nodes in

administrative domains. In ongoing work, we are exploring how to effectively disseminate these types

of information to the application layer and how to leverage them to drastically alter the properties

of overlay routing and object location.

4.4 Proximity Indirection Distribution

In previous sections, we discussed how to efficiently route messages between nodes in the

overlay. We now examine the object location aspect of the DOLR API. The functionality that the

Decentralized Object Location and Routing API provides is that one of a decentralized directory

service that maps the name or Globally Unique IDentifier (GUID) of an object or endpoint to its

75

R

S

C

Figure 4.8: Single hierarchical approach. The
path traversed by query traffic from the client
node C to server node S using a single hierar-
chical directory. The hierarchy organization re-
flects the physical network topology.

S

C

R

Figure 4.9: DHT-based directory approach. The
path traversed by query traffic using a DHT-
based directory approach. The root node R is
determined by the name of the object.

location. This functionality can be implemented in a number of ways. In this section, we discuss

different design choices and explain why the proximity indirection distribution approach in Tapestry

provides the desired combination of efficient and scalable location properties.

Before we discuss the alternative designs, let’s first examine the desired properties of the

DOLR system. We assume that a node with ID Sid wants to make available a local object or

endpoint with the GUID OG, and multiple “client” nodes wish to contact the object by routing

messages through the network infrastructure. Additionally, should multiple objects or endpoints

with the same name be available, a client node would like to contact the closest object or endpoint.

Note that we focus on the initial phase of locating a previously unknown object, and assume that

an application can cache the physical location for future communication.

From the perspective of the client, the overhead of routing a message to the location

independent object GUID, quantified by the RLDP, should be minimized. From the infrastructure

perspective, the storage overhead of providing the directory service needs to scale well to the number

of nodes and the number of objects in the system. The load of handling queries for objects also

needs to be load balanced as evenly across the network as possible. Finally, the directory service

should be implemented such that it can be made highly available in a dynamic network.

76

4.4.1 Simple Hierarchical Apporach

The simplest approach commonly used in directory services is that of a single hierarchy

of servers, where servers at each higher level handle queries for a larger network domain. Higher

level servers handle unsatisfied queries for all of its child servers in the hierarchy by answering

them or forwarding them to the appropriate parent or children server. The root node must be

able to answer or correctly forward all possible queries in the network. Unsatisfied queries filter

up the hierarchy until they are satified. This approach is used to increase scalability for wide-area

directories services [53]. As the network size increases, the root server becomes a bottleneck as it

is overwhelmed by more and more data. Lossy compression techniques such as bloom filters [9]

enhance scalability by a linear factor at the cost of possible false positives.

Figure 4.8 shows a hierarchical directory spread across a transit-stub like network. The

hierarchy is organized to minimize network latency between a server and its children in the hierarchy.

Queries filter up the hierarchy until they can be answered. A client node looks up the object location

before sending a message directly to the object.

Nodes in the wide-area hierarchy can be organized to follow network organization, such

that servers close in the hierarchy are also close in network distance. This allows the hierarchy to

minimize routing latency as a query is routed up the tree. The main disadvantage in this approach

is load balancing, since each higher level server needs to keep enough information to satisfy queries

for all objects from its children servers. In particular, the root node needs to be able to satisfy all

potential queries in the network.

4.4.2 A Distributed Hash Table Approach

The Distributed Hash Table (DHT) API is a simple and well understood application in-

terface. It provides simple put and get commands to store and retrieve data from the network. We

can provide a directory service using the DHT interface by storing the object’s location with the

object’s GUID OG as key.

77

An illustration of the DHT-based approach can be found in Figure 4.9. In our example,

the node with ID Sid would call put (OG, Sid). A client node trying to contact the object would

first call addr = get (OG), retrieving the location from OG’s root node R. It then route its messages

directly to the location.

This approach has the advantage of being simple to implement. Unfortunately, the node

that stores the Sid value is chosen by its name proximity to OG, and can be expected to be half the

network diameter away from the client. Locating an object then incurs a high roundtrip latency,

regardless of where the object is located relative to the client. This can result in very high (¿100)

RLDP values for local objects. Also, all queries for the same OG route to the same node in the

overlay, possibly causing congestion and overloading it. We note that the load can be balanced

across a small number of nodes using DHT replication.

4.4.3 Network Indirection

An alternate approach is one proposed by the Internet Indirection Infrastructure project [121].

The I3 project allows applications to store “triggers” in the overlay. These triggers encapsulate a

GUID to IP address mapping, and redirect incoming traffic addressed for some key to the its asso-

ciated IP address.

I3 supports the use of private triggers, intermediate redirection points which can be placed

at a node chosen by the object server. In our example, the node with ID Sid would store a public

trigger mapping {OG, Sid}. When messages from a client node reach it via the trigger, it returns

Tp}, the private trigger name that maps to a node closeby in the network. The private trigger is

then used as the address for the client to contact the object or endpoint.

While private triggers can be placed at any node in the network to reduce the triangle

routing problem, nodes still need to first contact a public trigger in much the same way as in

the DHT-based solution. The use of public triggers shares the same disadvantage of a likely high

overhead (indicated by a large RLDP value) as the DHT-based solution. Additionally, end hosts

78

S S

C C

R

R

Figure 4.10: Proximity indirection distribution approach. Path traversed by query traffic in a DOLR
system using a proximity indirection distribution approach. For each object, query traffic searches
up a virtual hierarchy rooted at a different node with good randomized locality properties.

have the additional responsibility of performing measurements to choose a nearby trigger server.

4.4.4 Proximity Indirection Distribution

The approach taken in Tapestry to solving the decentralized directory service problem

combines the favorable properties of the static hierarchy and DHT-based approaches. While static

hierarchies solve the locality problem (queries are solved locally whenever possible), the lack of load

balancing is a significant disadvantage. While the DHT-approach provides excellent load-balancing

properties, it lacks the locality benefits.

We call the approach taken in Tapestry proximity indirection distribution. It can be viewed

as creating a static directory hierarchy for each and every object or endpoint, but allowing these

hierarchies to share the same parent-child neighbor links. The node to node routing facilities on

structured P2P overlays form virtual hierarchies rooted at each destination node, where each further

hop towards the destination represents a child to parent link in the virtual hierarchy. If we map each

object name or GUID to some node, the distributed route tables create a “forest” of hierarchies,

one for each object.

We can apply the hierarchical model where each parent node contains a superset of its

child nodes’ data, where the data is the location mapping for the given object. Each node on the

79

197E

4BF4

4361

437A

4664

43FE

4A6D

39AACE75

4377

4228

(4378)

(4378)

Figure 4.11: Publication in Tapestry. To pub-
lish object 4378, server 39AA sends publication
request towards root, leaving a pointer at each
hop. Server 4228 publishes its replica similarly.
Since no 4378 node exists, object 4378 is rooted
at node 4377.

197E

4BF4

4361

4664

43FE

4A6D

39AACE75

4377

4228

437A

(4378)

(4378)

Figure 4.12: Routing in Tapestry: Three differ-
ent location requests. For instance, to locate
GUID 4378, query source 197E routes towards
the root, checking for a pointer at each step.
At node 4361, it encounters a pointer to server
39AA.

routing path from the object’s server to the “root” node that maps to the object’s GUID should

then know about the object’s location. Therefore, a server can “publish” local objects by pushing

location mappings up each object’s own virtual hierarchy, by routing them towards each object’s

root node.

Since node to node routing has at most a logarithmic number of hops, our virtual hierarchies

has a maximum height of LogN . The directory service then requires a maximum number of LogN

location mappings for each object. Furthermore, assuming proximity-enabled routing tables, these

LogN location mappings are sprinkled with decreasing density as one moves further from the object’s

location. This has the additional desired property that queries for local objects are more likely to be

answered locally without venturing further away from the local area. In summary, this logarithmic

distribution of location mappings utilizes a virtual hierarchy rooted at a node whose ID most closely

matches the object’s GUID, providing per-node load balancing. Furthermore, the storage overhead

is low, and placed in the network to favor local queries.

Note that this design maintains the benefits of scalability and load-balancing present in

80

the DHT-based approach, while significantly improving routing stretch from the client to the object.

This benefit comes at the cost of LogN location entries compared to 1 for the DHT-based approach.

Simulation and real measurements both show the performance improvement to be significant. De-

tailed results are shown and discussed in Chapter 6.

Finally, note that we can layer the proximity indirection distribution approach on top of

any proximity-enabled structured peer-to-peer overlay to support an efficient DOLR layer. The

same DOLR properties can be attained on different P2P implementations such as Pastry [111],

Chord [122], Skipnet [48] and Viceroy [80].

4.5 Local-area Optimizations for Object Location

As we previously noted in Section 4.1.2, maintaining a small constant RLDP is even more

difficult for clients searching for nearby objects. Overlays that are locality aware [140] such as

Tapestry [139] and Pastry [111] can attempt to locate copies of objects in the local area quickly if

they exist, before directing the query down more expensive wide area links. However, even if the

object is near the source of a query, it is often the case that one or two hops through the overlay

will be needed before the object is found. Since a node with complete routing knowledge (for

example, [109]) could have reached this data with a simple direct hop through IP, the extra overlay

hops cause a severe relative blowup in the location time of the query, compared to the minimum

possible. The fact that wide-area links often impose orders of magnitudes higher routing latency

than local area links exacerbates this problem.

In this section, we present several optimization algorithms which trade off additional storage

for better performance in object location, and show simulation results demonstrating their impact.

While I assisted through discussions, the large majority of the work was performed by Jeremy

Stribling, and a complete account of these results can be found in [124].

We measure the object location overhead using the Relative Location Delay Penalty (RLDP)

81

of the query. As discussed in the beginning of this chapter, we define RLDP as the ratio of the

distance a query travels through the overlay network to an object and the minimal distance to that

object (i.e. through IP). When the data is located outside the local area of the querying node, the

RLDP for an overlay like Tapestry has been shown experimentally to be small, but when the data is

nearby the RLDP can be significantly larger [139]. For applications that depend on finding nearby

replicas quickly for reasonable performance, such as web caching, this extra latency overhead may

be unacceptable.

While other work explore the importance of locality in overlay performance [106, 140, 15,

48, 1], we focus here on optimizations for object location on locality-aware overlays. Overlays that

can benefit from these optimizations must support the Decentralized Object Location and Routing

(DOLR) interface [28], and must use proximity neighbor selection when constructing their routing

tables. We examine the tradeoff between object pointer state and local area RLDP improvement in

Tapestry, and show that a large reduction in RLDP is possible by adding relatively small additional

storage in the form of object pointers. We outline several optimization strategies in Section 4.5.1

and present a quantitative evaluation of these optimizations in Section 4.5.2.

4.5.1 Optimizations

In this section, we describe in detail three different optimizations that improve local area

object location RLDP: publishing to backups, publishing to nearest neighbors, and publishing to

the local surrogate. In each case, we deposit additional object location pointers in the local area

network, increasing the likelihood a local query can find the location mapping before resorting to

searches in the higher latency wide-area network.

Publishing to Backups

When forming its routing table, a Tapestry node usually has a choice between several nodes

for each entry. [44] explains how Tapestry’s tree-like structure makes it flexible in that respect. It

82

chooses the closest of these nodes to be the primary neighbor, which is the node that will serve as

the next hop for messages heading through that entry of the table. The additional neighbors can

be used for to provide fault resilience in cases of link or node failures. Each entry can keep up to

c neighbors, with c − 1 nodes as backup neighbors. All neighbors are sorted within the entry by

distance from the local node. For entries with a lot of flexibility (those requiring a match on shorter

prefixes for example), it is likely that the backup neighbors can be nearly as close as the primary, if

the overlay is sufficiently dense. These backup neighbors are also likely to be primary neighbors in

the routing tables of other nodes in the local area.

Our first optimization takes advantage of this property during object publication to deposit

more object pointers in the local area around the object server. Each node along the publication path

forwards the publish message to as many as b backup neighbors in addition to the primary neighbor.

Since only a few initial hops are likely to stay within the local area, we limit this optimization to the

first h hops on the publication path. This bounds the state consumed by these additional pointers.

Note that these secondary neighbors do not pass on the publish messages to any one else.

Backup neighbors for the object’s publisher will often serve as the primary neighbors to

nearby nodes trying to locate the object. Query paths from those nearby nodes are then likely to

encounter these additional pointers. Take for example the network illustrated in Figures 3.9 and 3.10,

where we assume that node 4B4F is a backup neighbor for node 4A6D in node AA93’s routing table.

If this optimization is applied during the publication of object 4378, with a value of one for both b

and h, node 4B4F will receive a location pointer. When node 4B4F queries for the object, it will find

its local location mapping and route messages directly to the object, reducing the RLDP to one.

Publishing to Nearest Neighbors

Our second technique is a form of limited pointer flooding. Rather than restricting the

additional pointers to only backup neighbors as above, nodes forward publish messages to all nearby

neighbors at a given level. At each hop along the path, the local node forwards the publication

83

Location Mapping

Tapestry Pointers

4228

437A
43FE

(4378)

Phil’s
Books

4664

Berkeley

4377 MIT

Rice

Query Path

Figure 4.13: Route to object example, with local areas shown. A possible grouping of nodes from
Figure 3.10 into local areas.

message to the closest n nodes at the next level of the routing table. We also limit this to the first

h hops of the path, and these nodes do not further forward the publish message.

Note that with a large n, this technique effectively floods the local area with object pointers.

Almost every node in the area that queries for the object will already have its location pointer. This

obviously reduces the RLDP, but has a high storage cost. We explore this tradeoff in Section 4.5.2.

Publishing to Local Surrogate

Finally, we observe that latency of wide-are hops are generally orders of magnitude larger

than those of local area hops. We leverage this fact by allowing the query to dynamically detect

when it’s leaving a local area network, and to make an attempt to query a local server for the object

first. Figure 4.13 illustrates a scenario where allowing a query to route into the wide-area proves

very costly in RLDP.

Our optimization places an object location pointer at the object’s local surrogate, (the node

that would serve as the object’s root if no wide-area nodes existed) during publication. Queries check

the local surrogate before leaving the local area, and avoiding a trip into the wide-area if the object

is located in the local network. Note that this technique occurs naturally in some systems [41, 1, 48].

Applied to the situation in Figure 4.13, a pointer to object 4378 would be placed on its local surrogate

node 4664, allowing 4664 to find the object without leaving the local area. The storage cost for this

optimization is only one additional object pointer.

84

An obvious question is determining when the next hop will take the query out of the local

area. One simple heuristic is to detect when the next hop latency is more than t times the latency

of the last link traversed (where t is a calibrated parameter). More sophisticated techniques can use

learning strategies to adjust t automatically and dynamically based on the current characteristics of

the network.

4.5.2 Results

We quantify the storage to performance tradeoffs in our optimizations by simulation. We

implemented these optimizations on our Berkeley Java implementation of Tapestry. To perform

large-scale and repeatable experiments, we used the simulator first described in [106]. It provides

an event-driven layer that simulates network delays based on a GT-ITM transit stub model [134].

The transit stub graph we used for these experiments consists of 1092 nodes, with approximately

30 nodes per stub domain. Out of these physical nodes, 1090 participate in the Tapestry network

to demonstrate the effect of the optimizations on dense networks. Tapestry nodes are using 40-digit

IDs of base 4, and the number of nodes per routing table entry, c, is 4. We’ve scaled down linearly

the inflated network latencies from GT-ITM to more accurately reflect network latencies in the real

Internet.

In these experiments, each Tapestry node publishes 25 objects with random IDs. Each node

then queries for 100 objects, chosen randomly from the set of all published objects, and calculates

the RLDP for each query.

Median RLDP Improvements

Figure 4.14 shows how values of b in the publishing to backups optimization (see Sec-

tion 4.5.1) affect median object location RLDP. The graph shows that, as expected, the optimization

is most effective when the query source is relatively close to the object, lowering the median RLDP

by as much as one point in some places. Note that as the objects get farther away, the optimized

85

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

M
ed

ia
n

R
L

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 hop) [+1]

Opt(2 back, 2 hops) [+4]
Opt(3 back, 3 hops) [+9]

RLDP = 1

Figure 4.14: The effect of publishing to backups on median RLDP. Shows the median RLDP for
object location using b backups and h hops with analytical cost (additional pointers per object)
shown in brackets.

lines converge to the unoptimized line. The decrease in RLDP is a function of the number of backups

in each route entry.

Publishing to nearest neighbors (see Section 4.5.1), by contrast, can utilize a number of

nodes equal to the neighbors on each routing table level, and thus can provide a greater improvement.

Figure 4.15 shows that for very nearby objects, the median RLDP can be lowered to one, if we allow

the large per-object storage overhead.

Figure 4.16 illustrates the relationship between the RLDP and object distance when pub-

lishing to the local surrogate (see Section 4.5.1) for various values of t. We see that this optimization

works best for objects inside the same local area (¡60 ms) from the query source, and when the

parameter t is low.

90th percentile RLDP Improvements

Reducing the variance of the RLDP is important to insure predictable performance. We

measure this variance with the 90th percentile of the RLDP; if 90% of queries perform efficiently, we

can be confident that our optimizations are aiding the majority of client/server pairs. Figures 4.17,

4.18 and 4.19 illustrate the improvement in 90th percentile RLDP and shows the effectiveness of our

optimizations at reducing variance.

86

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

M
ed

ia
n

R
L

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 near, 1 hop) [+1]

Opt(1 near, 3 hops) [+3]
Opt(5 near, 2 hops) [+10]
Opt(8 near, 3 hops) [+24]

RLDP = 1

Figure 4.15: The effect of publishing to nearest
neighbors on median RLDP. Shows the median
RLDP for object location using n neighbors and
h hops with analytical cost (additional pointers
per object) shown in brackets.

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140

M
ed

ia
n

R
L

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
threshold = 2
threshold = 5

threshold = 10

Figure 4.16: The effect of publishing to the lo-
cal surrogate on median RLDP. Shows the me-
dian RLDP for object location using threshold
t. Note the scale of this graph differs to show
greater detail.

In particular, note that the local surrogate optimization gives a rather large savings in 90th

percentile RLDP (Figure 4.19) when compared to its median improvement (Figure 4.16). 5 For each

optimization, in fact, we observe a substantial savings in 90th percentile RLDP (almost nineteen

points in Figure 4.18), clearly showing that the optimizations improve nearly all inefficient cases of

local area object location.

Combined Optimizations

In an effort to examine how the optimizations interact with each other, we ran simula-

tions with different parameter combinations for publishing to b backups and n nearest neighbors.

Figures 4.20 and 4.21 show the results for median RLDP and 90th percentile RLDP, respectively.

Both of these optimizations overshadow the subtle effects of the local surrogate optimization when

combined with it, and thus we delay the presentation of these comparisons until we develop more

sophisticated techniques for determining the local surrogate.

Because there is much more freedom during publication in choosing nearest neighbors

than in choosing backups, the nearest neighbors optimization clearly influences the behavior of the
5Note that the scales of these two graphs differ.

87

0

5

10

15

20

0 50 100 150 200 250 300

90
th

 p
er

ce
nt

ile
 R

L
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 hop) [+1]

Opt(2 back, 2 hops) [+4]
Opt(3 back, 3 hops) [+9]

RLDP = 1

Figure 4.17: The effect of publishing to backups
on 90th percentile RLDP.

0

5

10

15

20

0 50 100 150 200 250 300

90
th

 p
er

ce
nt

ile
 R

L
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 near, 1 hop) [+1]

Opt(1 near, 3 hops) [+3]
Opt(5 near, 2 hops) [+10]
Opt(8 near, 3 hops) [+24]

RLDP = 1

Figure 4.18: The effect of publishing to nearest
neighbors on 90th percentile RLDP.

0

5

10

15

20

0 50 100 150 200

90
th

 p
er

ce
nt

ile
 R

L
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
threshold = 2
threshold = 5

threshold = 10
RLDP = 1

Figure 4.19: The effect of publishing to the local surrogate on 90th percentile RLDP.

combined optimizations more greatly. However, the are subtle differences. For example, we include

on the graphs two experiments with analytical cost ten, one placing additional pointers on nearest

neighbors only (b = 0, n = 5, h = 2), and another combining the two optimizations (b = 2, n =

3, h = 2). In the local area these perform similarly, but the combined optimizations outperform

the single nearest neighbor optimization for objects not in the local area (specifically, note the

differences for objects between 50 and 150 ms away). Moreover, Table 4.1 indicates that though

they have the same analytical cost, in practice the case of combined optimizations is actually less

expensive. This demonstrates that the brute force method of local area flooding used in the nearest

neighbor optimization can be combined with the careful but limited placement used in the backups

88

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

M
ed

ia
n

R
L

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 near, 1 hop) [+2]

Opt(2 back, 3 near, 2 hops) [+10]
Opt(0 back, 5 near, 2 hops) [+10]
Opt(3 back, 3 near, 3 hops) [+12]
Opt(3 back, 8 near, 3 hops) [+33]

RLDP = 1

Figure 4.20: The effect of publishing to backups
and nearest neighbors on median RLDP.

0

5

10

15

20

0 50 100 150 200 250 300

90
th

 p
er

ce
nt

ile
 R

L
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 near, 1 hop) [+2]

Opt(2 back, 3 near, 2 hops) [+10]
Opt(0 back, 5 near, 2 hops) [+10]
Opt(3 back, 3 near, 3 hops) [+12]
Opt(3 back, 8 near, 3 hops) [+33]

RLDP = 1

Figure 4.21: The effect of publishing to backups
and nearest neighbors on 90th percentile RLDP.

b n h Analytical cost Observed cost
1 1 1 2 1.77
2 3 2 10 7.37
0 5 2 10 9.12
3 3 3 12 10.61
3 8 4 33 20.00

Table 4.1: Cost of combined optimizations.

optimization in ways that lead to more intelligent and efficient pointer placement.

We have discussed three different optimizations for locality-aware structured peer-to-peer

overlays, and shown their effectiveness at reducing the RLDP of locating nearby objects. We found

that by spending storage to house additional object pointers in the system, local area RLDP can

be greatly improved; furthermore, if the optimization technique is conservative and judicious about

where it places the additional pointers, a very small storage overhead can result in a respectable

savings in RLDP. Although we have focused here on the implementation and effects of these tech-

niques in Tapestry, we believe they can be applied to other DOLRs as well, such as Pastry (with a

pointer indirection layer).

89

Chapter 5

Resilient Routing and Location on

Faulty Networks

90

Now that we have discussed the construction of a scalable location independent routing

infrastructure and presented techniques for efficient routing, we turn our attention to the challenge

of routing resiliency. Much of the challenge of deploying wide-area applications comes from the fickle

and unstable nature of the wide-area Internet. Developers are working towards deploying new and

larger scale network applications, such as file sharing, instant messaging, streaming multimedia and

voice-over-IP (VoIP). These applications are placing increasingly heavy demands on the Internet

infrastructure, requiring highly reliable delivery and quick adaptation in the face of failure.

The inherent scalability properties of structure peer to peer systems make them attractive

as network infrastructure to build these large scale applications upon. To satisfy their requirements,

however, these overlays need to provide their routing and location infrastructure. This means not

only maintaining highly available routing and location services at the overlay layer, but also trans-

parently recovering from routing failures at the IP layer.

To maintain highly available routing and location services at the overlay layer, we use a

combination of periodic soft-state probing, proactive state management, and soft-state consistency

correction. We use periodic liveness probes to detect failures of nodes in each node’s routing table.

Nodes proactively republish object pointers to alternate paths to maintain object location avail-

ability, and periodic gossip messages between neighbors detected and repaired inconsistent routing

state.

In this chapter, we start by defining our fault model, and outlining the general primitives

we use for fault handling in Section 5.1.2. Next, we present detailed mechanisms and algorithms

for maintaining routing connectivity despite node and link failures in Section 5.2. In Section 5.2.2,

we also describe a general redirection and addressing mechanism that transparently redirects IP

traffic from legacy applications through the overlay to provide a resilient wide-area routing service.

Finally, we discuss our approaches to providing highly available object location services across a

failure-prone network.

91

5.1 Challenges and Fault Model

5.1.1 Challenges

Application infrastructures need to address the need for reliable communication and data

retrieval. As applications moved from single node implementations to cluster-based solutions, the

main focus of resilience was on data storage and retrieval, since TCP generally provided reliable

local network communication. In the context of a large dynamic network such as the Internet,

however, both communication and data location and retrieval become significant challenges to the

infrastructure builder.

To present a resilient routing and data location layer to applications, a network infrastruc-

ture must mask the failures experienced by the physical network. More specifically, for an overlay

application infrastructure, this includes all errors and faults from the session layer and below.

Several significant sources contribute to the network-level errors in the wide-area Internet.

First, at the physical level, the large number of components inside a large scale network reduces the

mean time between component failures. On average, one might expect a system-wide mean-time be-

tween failures (MTBF) of x/n, where x is the MTBF of the average component, and n is the number

of instances of that component in the system. This also applies to accidents such as underground

fibers being cut during construction or routers destroyed by fires or floods. In addition to physical

faults, there are those caused by planned downtimes for equipment upgrades and replacements. As

shown in recent work [56], these downtimes are a significant source of traffic disruptions on the

Internet. Next, we need to consider errors as a result of network misconfigurations. Protocols such

as BGP [101] require human input for many configurable parameters which may adversely affect

overall system performance. Misconfigured routes can cause data loss, congestion, and breaks in

reachability between Internet end-hosts. Work by Mahajan et. al has shown misconfiguration to

be a significant source of Internet traffic disruption [79], while previous work [75, 76] has shown

that other human factors such as implementation bugs also have significant impact. Finally, traffic

92

congestion, both in the course of normal operation and also those caused by distributed denial of

service (DDOS) attacks also cause significant interruptions in Internet connectivity. The problem of

resilience against DDOS attacks is becoming ever more urgent as communications warfare becomes

closer to reality.

All of the factors above contribute to intermittent data loss and disconnectivity on the In-

ternet. Internet protocols designed to try to recover from these errors often take significant amount

of time (∼10 minutes) to react, and often fail outright [73, 74]. Therefore, the wide-area infrastruc-

ture must find ways to circumvent these faults and provide a resilient routing and location layer to

applications. Exacerbating the issue is the fact that overlay nodes themselves are prone to failure

and departure from the infrastructure. The infrastructure must not only mask errors from layers

below, but also detect node failure and exit events and recover without disturbing the application.

5.1.2 Fault Model and Assumptions

Before we describe our resiliency mechanisms and algorithms, we more clearly define the

types of faults we are attempting to address. The wide-area Internet is often unpredictable in its

behavior, and we make two simplifying assumptions to make the resiliency problem more tractable.

First, our work focuses on recovering from fail-stop failures. We assume that when a node

fails, it does not respond to any requests, and acts for all intents and purposes like it has been

removed from the network. More specifically, we assume that when a single component fails, the

entire system fails. This means we do not account for instances when a specific component fails,

such as when a single thread hangs inside the Java Virtual Machine (JVM) while other threads keep

running. Another implication is that we do not account for byzantine failures [77]. While they are

realistic on the wide-area Internet, handling byzantine behavior greatly complicates the resiliency

problem, and is beyond the scope of this work.

Second, we assume that that all links are bi-directional (commutative) on the Internet.

This means that if node A can route a message to node B, then node B can route a message to node

93

A. This is critical to the correctness of the control algorithms. While this seems a trivial assumption,

it does not always hold on the Internet. One simple example is network address translation (NAT)

boxes. Nodes inside a NAT can initiate a connection with someone on the outside, but not vice

versa. A related property is transitivity of Internet routing. We found this to also be false in the

interactions between normal Internet hosts and Internet2. Certain hosts have dual network interfaces

on both networks, allowing them to connect to hosts on both. Nodes on each network, however,

cannot communicate directly if they only have a single interface on their own network. While the

lack of transitivity is rare enough to not pose a problem for wide-area deployment of protocols

like Tapestry, NAT boxes and the resulting lack of routing commutativity is a serious challenge to

deployment. There are tractable solutions, however, generally in the form of a forwarding proxy

outside the NAT box. We discuss this more in detail in Section 8.2.

5.2 Maintaining Routing Connectivity

5.2.1 Fault Tolerant Overlay Routing

In this section, we examine the fault-tolerant routing properties of structured peer-to-peer

overlay networks. First, we give an overview of these overlays and their generalized properties.

Our algorithms require only the basic key-to-node mapping function common to all of these proto-

cols. While we motivate our examples and perform measurements using a locally designed protocol

(Tapestry), our results should extend to others. We then discuss mechanisms for efficient fault de-

tection. Finally, we propose techniques for routing around link failures and loss, and for maintaining

routing redundancy across failures.

Structured Peer-to-Peer Overlays

In structured peer-to-peer (P2P) overlay networks such as [48, 80, 83, 97, 111, 122, 139], a

node represents an instance of a participant in the overlay (one or more nodes may be hosted by a

94

L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

L1

8954

89008909

8957

AC78

8F4B

5230

8BB2

8112

89E3

8951

895D

Figure 5.1: Routing example in Tapestry. Routing path taken by a message from node 5230 towards
node 8954 in Tapestry using hexadecimal digits of length four. As with other key-based routing
(KBR) overlays, each hop resolves one digit.

single physical IP host). Participating nodes are assigned nodeIDs uniformly at random from a large

identifier space. Application-specific objects are assigned unique identifiers called keys, selected from

the same identifier space. For example, Pastry [111], Tapestry [50, 139], Chord [122], Kademlia [83]

and Skipnet [48] use an identifier space of n-bit integers modulo 2n (n = 160 for Chord, Kademlia,

Skipnet and Tapestry, n = 128 for Pastry).

Overlays dynamically map each key to a unique live node, called its root. These overlays

support routing of messages with a given key to its root node, called Key-Based Routing [28]. To

deliver messages efficiently, each node maintains a routing table consisting of the nodeIDs and IP

addresses of the nodes to which the local node maintains overlay links. Messages are forwarded

across overlay links to nodes whose nodeIDs are progressively closer to the key in the identifier

space, such as in Figure 5.1. Each system defines a function that maps keys to nodes. For example,

Tapestry maps a key to the live node whose nodeID has the longest prefix match, where the node

with the next higher nodeID value is chosen for a digit that cannot be matched exactly.

An important benefit of Key-Based Routing (KBR) is that any node satisfying the names-

pace constraints can serve as a next routing hop. For example, in Tapestry or Pastry, the first hop

of a message routing to the key 1111 requires only that the node’s nodeID begins with 1. This

95

property allows each overlay node to proactively maintain a small number of backup routes in its

routing table. Upon detecting a failed outgoing link, a router can rapidly switch to a backup link,

providing fast failover. In the background, the overlay networking algorithms can adapt to failure

by restoring (repairing) the redundancy in backup links. We discuss this further in Section 5.2.1.

Most structured P2P protocols support Key-Based Routing, but differ in the performance

tradeoffs they make. Where appropriate, we will use details of Tapestry to illustrate our points in

later discussions. Tapestry [139] is a structured peer-to-peer overlay that uses prefix matching to

route messages to keys, where each additional hop matches the key by one or more digits. For each

routing entry, Tapestry tries to locate the nearest node with the required prefix in its nodeID using

a nearest neighbor search algorithm [50].

One discerning factor is proximity routing, the latency optimization of routes using knowl-

edge of physical network latencies during overlay construction to improve end-to-end latency. The

overhead of routing on an overlay is generally measured as the Relative Delay Penalty (RDP), the

ratio of overlay routing latency to IP latency. As we will show in Section 6.4, proximity enabled

overlays such as Tapestry provide low overhead over IP. Thus, tunneled IP traffic gains resilience to

faults without unreasonable increases in delay.

Efficient Fault Detection

Over 70% of Internet failures have durations less than two minutes [39], making fast re-

sponse time the key objective for any fault-resilient routing mechanism. Traditionally, response time

(Tr) is the sum of fault detection time (Tf) and path discovery time (Tp): Tr = Tf +Tp. Proactively

maintaining backup paths allows us to immediately redirect traffic after failure detection, eliminating

path discovery time (Tr ≈ Tf). We now focus on minimizing Tf .

Application-level protocols generally depend on soft-state beacons (or heartbeat messages)

to detect link and node failures. Bandwidth (B) is often the limiting factor, and is proportional

to the product of the number of entries in each routing table (E) and the heartbeat frequency

96

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

B
ea

co
ns

 p
er

 p
er

io
d

pe
r

no
de

of Nodes in Overlay

Unstructured Overlay (N^{/*0.75 2})
Tapestry/Pastry b=4

Basic Chord

Figure 5.2: Fault-detection Bandwidth. Unstructured overlay networks consume far more mainte-
nance bandwidth than structured P2P networks. Bandwidth here is measured in beacons per node
per beacon period.

(F): B ∝ E · F . Nodes in structured peer-to-peer overlays maintain routing state (E) that grows

logarithmically to the network size (N): E ∝ log(N). Compared to unstructured protocols [3]

with linear growth routing state (E ∝ N), these overlays can send beacons at significantly higher

frequencies while consuming identical bandwidth. Figure 5.2 shows the number of heartbeats sent

per period for both unstructured overlays such as RON and structured P2P overlays such as Tapestry

and Chord.

Total Bandwidth Consumption: The number of beacons sent per period is useful, but does not

capture their true impact on the network. Since queuing delay and congestion happen on a per

IP router basis, identical messages traversing different overlay hops can place different stresses on

the network depending on the number of IP hops traversed. A more accurate measure is the Total

Bandwidth Consumption (TBC), measured as a bandwidth distance product:

TBC = (msgs/sec) · (bytes/msg) · IPHops (5.1)

This metric reflects the fact that longer paths have a greater opportunity cost since they consume

more total resources. Crossing fewer IP hops also means routes with low TBC have fewer chances

of encountering failures.

97

2286

2225

2274

253022812046

1111

2299

1111

2046 2281 2530

22742299 2286

2225

Primary Route

Secondary Route

Tertiary Route

Original Route Path

Link Failure

Rerouted Path

Figure 5.3: First Reachable Link. Using simple route selection (First Reachable Link or FRLS) to
circumvent single and multiple failed links on an overlay path from 5230 to 8954.

Primary Route
Secondary Route

2530

22862274

2225

2046 2281

1111

2299 2274

2225

2286

253022812046

1111

2299

Multicast Path

Figure 5.4: Constrained Multicast. Two examples of constrained multicast showing the multicast
occurring at different positions on the overlay path.

Messages routing across latency-optimized overlays cross a smaller number of IP routers

and incur a lower TBC. We further quantify this effect in Figure 6.21 in Section 6.4.1, by comparing

simulated TBC for a single structured P2P protocol (Tapestry), constructed with and without

overlay hop latency information.

Link Quality Estimation: To measure the quality of routing links, nodes send periodic beacons on

outgoing links. At longer periodic intervals, each node replies with an aggregated acknowledgment

message. Each acknowledgement includes sequence numbers for beacons received, allowing the

sender to gauge overall link quality and loss rates. Backup routes need to be probed periodically as

98

well. To conserve bandwidth, we send beacons to primary entries using one beacon rate, and probe

backup entries at half that rate.

We derive an estimated link quality from the current measured loss rate and a history of

past values. To avoid overreacting to intermittent problems (and avoid route flapping), we introduce

damping by estimating loss rate as:

Ln = (1 − α) · Ln−1 + α · Lp (5.2)

where Lp is an instantaneous loss rate from the current period, and α is the hysteresis factor. We

explore the appropriate damping factor in Section 6.4.

Resilient Routing Policies

Having described mechanisms to maintain and monitor backup paths, we need to define

how such paths are used to evade routing failures. We describe here two policies that define how

routes are chosen under failure and lossy conditions. In our discussions, we refer to primary and

backup entries in the routing table, where backups are next hop nodes that satisfy the routing

constraint but are further away in the network.

First Reachable Link Selection: We first define a simple policy called First Reachable Link

Selection (FRLS), to route messages around failures. A node observes link or node failures as near-

total loss of connectivity on an outgoing route. From a set of latency sorted backup paths, FRLS

chooses the first route whose link quality is above a defined threshold Tfrls. See Figure 5.3 for two

examples.

Constrained Multicast: Simple link selection is less effective when multiple links are experiencing

high loss. We propose constrained multicast, where a message entering a lossy region of the network

is duplicated, and the copies are sent on multiple outgoing hops. Constrained multicast is comple-

mentary to FRLS, and is triggered when no next hop path has estimated link quality higher than

Tfrls.

99

1st Hop

2nd Hop

3rd Hop

Secondary Route

Tertiary Route

2222

2221

2046 2281 2530

1111

22742299 2286

2225 2220

Primary Route

Figure 5.5: Path convergence with prefix routing. Routing path from 5230 to 8954 in prefix-based
protocol. Note that with each additional hop, the expected number of nearby next hop routers
decreases, causing paths to rapidly converge.

For example, a node monitors three possible paths to the next hop, (A, B, and C), and

stores and sorts them sorted by latency. A typical Tfrls might be 70%. After a link failure on A,

estimated link qualities might be 5% (A), 95% (B) and 85% (C). FRLS chooses the first link in

order with the minimum link quality (B). In case of high loss, link qualities might be 45%, 40%, and

60%. Since no path satisfies Tfrls, messages are duplicated and sent on some subset of the available

paths.

Figure 5.4 shows two examples of constrained multicast occurring at different points in the

routing path. A discussion of routing policies that provide a controlled tradeoff between bandwidth

and reliability is available in [137].

While naive use of constrained multicast can exacerbate lossy links when loss is due to

congestion, the additional traffic is sent on an alternate (likely independent) path. Additionally, we

now discuss a convergence property that can significantly reduce the bandwidth overhead imposed

by duplicate messages, by allowing us to selectively detect and drop duplicates.

Efficiency via Path Convergence: We observe that the overhead of routing away from the

primary path can be controlled on protocols that demonstrate “path convergence,” where paths to

a common destination intersect at a rate proportional to the distance between the source nodes.

Figure 5.5 shows path convergence in Tapestry.

100

This property is exhibited in protocols that consider network proximity in conjunction

with ID-based constraints on intermediate overlay routers. Pastry and Tapestry are protocols that

implement proximity routing based on a prefix routing scheme. With each additional hop, the

expected number of nodes in a network that qualify as a next hop router decreases linearly. Therefore,

nearby nodes are increasingly likely to choose a common next hop as they zero in on their destination

by name and the number of possible routers decreases. Recent work shows that underlying network

geometries for most protocols demonstrate path convergence properties [44].

With path convergence, a message that takes a backup route is likely to converge back to

the primary path on the next hop. This minimizes the impact of taking a single backup path on end-

to-end latency. For constrained multicast, convergence allows routers to detect and drop duplicate

packets, minimizing the stress put on the network by the duplicate. Routers identify messages by

a flow ID and a monotonically increasing sequence number. Each router can effectively detect and

drop duplicates with efficient use of a finite queue of sequence numbers.

Self-Repair: While much of our discussion has focused on routing on alternate paths when network

links have failed, we note that self-repair algorithms must be present to replenish backup paths after

recovering from a failure. Otherwise, primary and backup paths will all eventually fail, leaving some

paths unreachable. When the overlay detects any path failure, it must act to replace the failed route

and restore the pre-failure level of path redundancy.

Algorithms for self-repair are specific to each overlay protocol. In general, their goal is to

find additional nodes with a specific constraint (matching a certain prefix or having a certain position

in a linear or coordinate namespace), given some nodes with that property. Two general strategies

are possible. A node can query nearby nodes to minimize repair latency, or query other nodes that

already satisfy the constraint. The latter strategy gives a much higher chance of a successful repair,

at the cost of contacting further away nodes. For example, a Tapestry node can query nearby nodes

for nodes that match prefix P , or query nodes in its routing table that already share P for similar

nodes.

101

5.2.2 A Fault-resilient Traffic-tunneling Service

The problem of masking network level routing failures is becoming increasing difficult. The

growing size and complexity of the network lead to frequent periods of wide-area disconnection or

high packet loss. A variety of factors contribute to this, including router reboots, maintenance

schedules, BGP misconfigurations, cut fibers and other hardware faults. The resulting loss and

jitter on application traffic creates significant roadblocks to the widespread deployment of “realtime”

applications such as VoIP.

The magnitude of this loss and jitter is a function of the routing protocol’s response time

to faults, including time to detect a fault, construct a new path, and reroute traffic. Recent work

has analyzed the fault-recovery time of intra-AS protocols such as IS-IS for large IP backbone

networks [56]. It found that while overall recovery is on the order of five or six seconds, the majority

of delay is not due to fault-detection or path recalculation; it arises from timed delay between fault-

detection and update of routing entries in the linecards. The latter is exacerbated by hardware

features of current routers. Without these factors, it is reasonable to expect IS-IS to respond to

route failures in two or three seconds.

Wide-area route convergence on BGP [101] is significantly slower. Recent work has identi-

fied interactions between protocol timers as the fundamental cause of delayed convergence. Because

BGP disseminates reachability updates hop by hop between neighbors, full propagation across a

network can take 30n seconds, where n is the longest alternative path between a source and any

destination AS, and 30 is the length of a typical BGP rate limiting timer [74]. Unfortunately, studies

have shown a significant growth in BGP routing tables fueled by stub ASes [10], meaning the delayed

convergence problem will only grow in severity with time.

One commonality between deployed protocols is that the network is treated as an unstruc-

tured graph with arbitrary connections, implying the potential for any-to-any dependencies between

peers. Local changes must therefore be propagated to all other peers in the network. Attempts

to aggregate such state to reduce bandwidth is a primary motivation for several of the timers that

102

Client−end DaemonTunneling TrafficControl Traffic

P2P Overlay Network

Peer Proxy

Peer Proxy

P2

P1

Legacy
Node A

Legacy
Node B

Register: A=P1’

Register: B=P2’
RouteToID(P2’)

RouteToID(P1’)

��

��

Figure 5.6: Tunneling traffic through a wide-area overlay. Legacy application nodes tunnel wide-area
traffic through the overlay.

Normal Traffic, A−>B Overlay−tunned Traffic, A−>B

P2P Overlay

put(hash(IP_b), P’(B))get(hash(IP_b))

put(hash(IP_a), P’(A))

P
2P

 P
ro

xy

register(B)

P
2P

 P
roxy

register(A)
C. Daemon C. Daemon

Linux Kernel

Legacy Application

Legacy Node B

IP Network

Linux Kernel

Legacy Application

Legacy Node A

Figure 5.7: Proxy architecture. Architectural components involved in routing messages from source
A to destination B. Destination B stores its proxy ID with a hash of its IP address as an object in
the overlay. The source proxy retrieves B’s proxy ID from the overlay and routes A’s traffic to it.

contribute to the route convergence delay. Addressing schemes such as CIDR [100] that introduce

hierarchy and structure into the namespace reduce the amount of routing state, and potentially re-

duce the need for long term timers. The problem remains that inter-AS routing is driven by peering

agreements and policy, making state reduction a difficult problem.

In this section, we describe a general redirection and addressing mechanism that transpar-

ently redirects IP traffic from legacy applications through the overlay—providing stable communi-

cation to legacy applications in the face of a variety of faults. Figure 5.6 illustrates this high level

architecture.

In Section 6.4, we demonstrate the benefits of overlay routing through structured P2P

overlays using a combination of analysis, simulation, and experimental measurements. We deploy

103

a prototype of the Tapestry system which implements these adaptive mechanisms, and show that

Tapestry can recover from network failures in under 700 milliseconds while using less than 7 Kilo-

bytes/second of per-node beaconing traffic—agile enough to support most streaming multimedia

applications. Our design should be scalable and easy for Internet Service Providers (ISPs) to deploy,

providing fault-resilient routing services to legacy applications.

Transparent Tunneling

Figure 5.7 shows an architecture that tunnels application traffic through an overlay via

nearby proxy nodes. Clients contain overlay-aware daemons that make themselves addressable in

the overlay by locating nearby proxies and advertising mappings between their native IP addresses

and overlay proxy addresses. With each new outgoing IP connection, a client daemon determines

whether the destination is reachable through the overlay; if so, the daemon redirects traffic to the

nearby proxy where it enters the overlay, routes to the destination proxy, then exits to the destination

node. We elaborate in the following paragraphs.

Proxy traffic redirection: Traffic redirection involves two steps, registering a routeable ID for

each legacy node in the overlay ID space, and publishing a mapping from the node’s IP address to

that ID. To register an ID, the daemon on the legacy node (A) first chooses a nearby overlay node

as its proxy using an introduction service or out-of-band directory. Recall that in a structured P2P

overlay, IDs in the namespace are mapped to a specific “root” node. The proxy (P) assigns A an ID

in the ID space: (P (A)), such that P (A) is the closest unused id to P inside its range, where range

is defined by the routing protocol. Figure 5.8 illustrates registration and tunneling.

For example, legacy nodes registering with a Chord proxy would receive sequentially de-

creasing identifiers beginning with P −1. This insures that messages addressed to P (A) are delivered

to P despite changes in the overlay membership. Assuming nodeIDs are assigned uniformly at ran-

dom, the probability that a given proxy node with l legacy clients loses one of them to a new overlay

node is l/N where N is the size of the namespace. Given p active proxy nodes, the chance of any

104

0

proxy Id
destination

source
proxy Id

Figure 5.8: Registering with proxy nodes. Legacy application nodes register with nearby proxies and
are allocated proxy IDs which are close to the name of the proxy node. Legacy nodes can address
each other with these new proxy names, routing through the overlay to reach one another.

proxy losing a legacy node is then (l · p)/N . For example, in a 160 bit namespace overlay of 10,000

nodes each averaging 10 legacy clients, the probability of a new node “hijacking” one of them from

its proxy is (10 · 10, 000)/2160, or 2−143.

The next step is to establish a mapping from A’s IP address to its overlay ID. This allows

the overlay to do a “DNS-like” name translation. Since most structured P2P overlays already have

a storage layer such as a Distributed Hash Table (DHT), we opt to utilize that instead. Therefore,

the proxy stores in the overlay a mapping between a hash of the legacy node’s IP and its proxy

identifier (<SHA-1(IPA), P (A) >), either using the put call on a DHT interface, or by storing the

mapping locally and using the publish call on the DOLR interface [28].

Application Interface at Endpoints: The client-side daemon is implemented as a set of packet

forwarding rules and a packet encapsulation process. The daemon can capture packets using general

rules in Linux IP-chains or FreeBSD divert sockets. It processes them, using IP-IP encapsulation to

forward certain packets to the proxy and the remainder unchanged back onto the normal network

interface.

The daemon has two responsibilities: register the local IP address as a routeable destination

in the overlay and divert appropriate outgoing traffic to the overlay. We expect IP registration

to occur when the daemon starts, as described above. Since not all destinations will have made

105

themselves reachable through the overlay, the daemon monitors outgoing traffic and selects flows for

tunneling. This can be done in a local, user-transparent fashion by hijacking all DNS requests and

new connection requests. We query the new IP addresses to determine whether they are reachable via

the overlay, and cache the result. When the application starts a connection to an address routeable

by the overlay, the daemon notifies the proxy, which locates the destination node’s proxy identifier

by performing a get (SHA-1(IPdest)).

Redundant Proxy Management: While the overlay provides a scalable way to route around

failures in the network, a proxy may still fail or become disconnected from the overlay or the

destination nodes it is responsible for. We outline three possible solutions. In each case, a legacy

node L registers with a small number (n) of proxy nodes, sorted in order by a policy-driven metric

such as latency to L, available bandwidth, or proxy load (defined by node registrations or bandwidth

consumption). The overlay maps the destination IP to its set of destination proxy identifiers. The

sender proxy also caches this information during connection setup.

The naive solution assumes that the overlay returns an error for each undeliverable message,

which are resent from the sender-side proxy to the next entry on the destination’s identifier list.

This solution requires buffering at the sender’s proxy, and incurs a roundtrip delay after failure. An

alternate solution embeds the backup proxy identifiers inside each message. As a message encounters

a failed hop, it replaces its destination with the next identifier from the list, and tries to route to

that proxy. The additional routing logic can be implemented on top of the proposed common up-call

interface for structured P2P overlays [28].

An alternate solution is to use RAID-like striping to send the data stream across multiple

proxies. The source proxy can send each of n− 1 sequential packets to proxies on the identifier list,

and a bit-wise XOR parity block to the nth proxy. Any missing packet can be reconstructed from

the remaining packets. This design provides fast and transparent recovery from single proxy failures

at the cost of an additional 1/(n − 1) proportional bandwidth.

106

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
����� ����

����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

����
����
����
����

�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����

����
����
���� ����

����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

����
����
����

����
����
����

���
���
���

���
���
���

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

������
������
������
������

������
������
������
������

����
����
����
����

����
����
����
����

�����������
�����������
�����������
���������������

����
����
����
����
����

����
����
����
����
����
����

��������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

������
������
������
������

������
������
������
������

������
������
������
������

�
�
�
�

�
�
�
�

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������

������
������
������
������

������
������
������
������

���������
���������
���������

���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��
��
��

��
��
��
��
��
��

�������� �������
�������
�������
�������

�������
�������
�������
�������
������
������
������
�������

�
�
�
�
�
�

�
�
�
�
�
�
�

SBC Communications

Sprint

AT&T

Inter−ISP Brocade Layer

Figure 5.9: Interdomain overlay peering. ISPs can set up local overlays which communicate via a
higher level peering network. Cross-domain traffic results in routing through a higher level object
location layer into the destination network.

Challenges to Deployment

Finally, we consider issues that arise when deploying fault-resilient overlays across the

Internet. Since overlay nodes function as application-level traffic routers, they require low-latency,

high-bandwidth connectivity to the network. We expect Internet Service Providers (ISPs) to deploy

these overlays on their internal networks and offer resilient traffic tunneling as a value-added service

to their customers. An ISP chooses the number and location of traffic overlay nodes. Adding overlay

nodes in the interior increases the number of backup paths and overlay resiliency, while placing nodes

closer to customers reduces the likelihood of failures between the client and the overlay.

One issue is that a deployed overlay is limited by the reach of the ISP’s network. Connec-

tions that cross ISP boundaries require a cross-domain solution. One possibility is for smaller ISPs

to “merge” their overlays with those of larger ISPs, allowing them to fully share the namespace and

share routing traffic. A 160-bit namespace ensures that the probability of namespace collisions will

remain statistically insignificant. A second solution is to set up well defined peering points between

each ISP’s overlay by using wide-area routing similar to that proposed by the Brocade interdomain

overlay work [135]. Peering points can form their own overlay and advertise local addresses as

objects on the secondary overlay. The resulting hierarchy has properties similar to BGP. Further

comparisons are beyond the scope of this paper.

107

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Publish Path

Republish Path

Link Failure

Object Pointer

2225 2222

2286

2274

2051

1111

Figure 5.10: Partial republish after failure. An example of a node failure triggering a partial republish
of the object location pointers. When node 2274 becomes partitioned from the network, the last
hop 2051 on the publish path notices and starts a local partial republish to an alternate path at
2286.

5.3 Maintaining Highly Available Object Location Services

In this section, we discuss techniques used to increase the availability of object location

services. Tapestry implements the DOLR API, providing a decentralized directory service interface

to nodes wishing to locate objects stored at locations in the overlay network. Our goal is to provide

access to the location of an object across network and node failures. We discuss mechanisms for

maintaining availability of object pointers in the overlay, followed by name level redundancy.

5.3.1 Pointer management during self-healing

Over time, we expect to see a variety of failures impact object location. IP links can

become congested or disconnected after router failures or misconfigurations. Overlay nodes can be

partitioned form the network, fail, or lose its locally stored object location mappings to corruption

or restarts.

There are two different mechanisms that we utilize in order to maintain object location

pointers on intermediate nodes. One is proactive, and is triggered once when a node fails; the other

is periodic, and occurs on a regular basis. The dual approach is consistent with our overall approach

towards wide-area state management, which we discuss further in Section 8.1.

Recall that intermediate pointers are stored at all overlay nodes on the routing path between

108

the server storing the object or endpoint, and the root node responsible for the object’s identifier.

Figures 3.9 how a publish message travels from the server to the root node, storing a location pointer

at each intervening node.

Partial republishing

In the proactive approach, nodes try to quickly recover location pointers after a neigh-

bor node fails. Let us denote the path between the object server to the root node as nodes

N1(server), N2, N3, · · · , Nr(root). When a node Ni fails, periodic probes sent by Patchwork from

Ni−1 would detect the disruption in communication. After some timeout period, Ni−1 asserts that

Ni is no longer available. Ni−1 then tries to repair the sequence of object location pointers by doing

a partial republish of relevant objects up to the root.

Figure 5.10 shows an example of a partial republish. When node 1111 wants to publish its

object, it sends a publish message towards 2222. But when one of the intermediate nodes 2274 fails,

the previous node 2051in the path notices, since every Tapestry node sends periodically keep-alives

to all nodes in its routing table. When 2051 notices 2274’s failure, it examines all of its locally

stored object pointers, determines the subset that would normally publish through 2274, and issues

a partial republish to 2274’s replacement (2286). When the partial republish path converges back

onto the original publish path, node 2225 notices it already has the location mapping, and does not

forward the partial republish on.

We also note that partial republishing is a general mechanism used whenever a node’s

routing table changes. In order for object location to be as efficient as possible, the positioning of

the trail of object pointers must match the current path from the object’s server to its root node.

In addition to when a node detects its disconnection from a neighbor, changes can also be triggered

as part of performance optimization. For example, as a network grows in density, a node may

gradually replace its neighbor for a routing entry with a node closer in the network. This would

trigger a partial republish message sent to the new neighbor.

109

Periodic republishing

In the soft-state approach, servers who where an object is stored periodically reissue normal

publish messages for the object towards its root node. One way to provide long-term robustness

despite a highly dynamic network is to treat all location mappings as soft-state and having an

expiration date. Location mappings in the network are then cached values refreshed on a periodic

basis. Location pointers all have an expiration time.

When a piece of data is removed or moves to another location, existing location mapping

are no longer valid. After the timeout period expires for these location mappings, the can be safely

removed by the Tapestry node to reclaim memory.

An interesting question is how often to republish object pointers. The tradeoff is one

between the accuracy and consistency of the location data and the bandwidth cost of periodic

republishes. Clearly, different levels of network dynamics dictate different choices in this tradeoff.

For stable networks with relatively low failure rates, we can choose a longer period and reduce the

frequency of republishes. For more dynamic networks such as mobile or ad-hoc networks, more

frequent republishes will provide the robustness necessary to compensate for higher failure rates in

the network.

5.3.2 Name level redundancy

Availability of object location information can be increased by giving objects multiple

identities, or aliases. One solution is to take the object’s unique identifier, append each of a small

set of natural numbers (e.g. 1, 2, 3, 4) to it, and hashing the results to generate a small deterministic

set of unrelated IDs.

This technique is similar to the process of “salting” passwords in Unix operating systems.

By generating a small set of n IDs, an object leverages the routing layer to store n independent

publication paths. These paths are unrelated in name, and thus likely to have independent failure

models. A client can use the same technique to generate the same set of IDs for the object, and

110

send a message in parallel to all n aliases. The chance of all these aliases being unavailable is very

low, and results in increased availability for the actual object.

We refer to this technique as object aliasing or GUID aliasing. It can be used to provide

multiple paths to access communication endpoints as well, and can provide performance benefits as

well as increased availability. For example, we utilize this mechanism in our implementation of a

mobility infrastructure. Mobile hosts register with basestation proxies in a way similar to advertising

objects stored on those proxies. Mobile hosts can improve communication latency with other hosts

by generate multiple identities by using GUID aliasing, and allowing the other end host to choose

which alias to route to. We show the performance benefits of using such an approach in Section 7.1.4.

5.4 Discussion

We note that the amount of flexibility that a protocol can maintain is highly correlated to

its minimum threshold of routing consistency. In Tapestry, routing consistency is preserved when

Property 1 is preserved (see Section 4.2.1).

An alternate approach is taken by systems such as Pastry [111] or Bamboo [103]. They

use the leafset, a small set of nodes closeby to the local node in the namespace, to define routing

consistency. By allowing the leafset to handle routing consistency and decoupling that from efficient

routing done via the routing table, these systems lower the minimal threshold for maintaining routing

consistency, and can leverage stability algorithms that require less resources. This underlines the

attractiveness of leafsets, and we discuss it further in Chapter 8.

111

Chapter 6

Implementation and Evaluation

112

Management

Dynamic Node

Object Pointer Database

and

Routing Table

Router

Decentralized
File System Multicast

Application−Level Collaborative
Text Filtering

Application Interface / Upcall API

Neighbor Link Management

Transport Protocols

Single Tapestry Node

Figure 6.1: Tapestry component architecture. Messages pass up from physical network layers and down
from application layers. The Router is a central conduit for communication.

In this chapter, we first discuss in detail the architecture and implementation of the

Tapestry infrastructure, and then evaluate and measure our system from a variety of perspectives.

We show that our design and implementation has resulted in an application infrastructure that

successfully addresses our goals, namely that of efficient, resilient and scalabile routing to location

independent names.

Our evaluation begins by describing the architecture and implementation of the current

Tapestry prototype. Next, we quantify the performance impact of our design decisions in DOLR

via simulations. We then examine detailed performance of our current Tapestry prototype. We

follow with an examination of our mechanisms for routing resiliency. Finally, we briefly discuss our

experiences through the Tapestry implementation.

6.1 Tapestry Node Architecture and Implementation

In this section, we present the architecture of a Tapestry node, an API for Tapestry ex-

tension, details of our current implementation, and an architecture for a higher-performance imple-

mentation suitable for use on network processors.

113

6.1.1 Component Architecture

Figure 6.1 illustrates the functional layering for a Tapestry node. Shown on top are ap-

plications that interface with the rest of the system through the Tapestry API. Below this are the

router and the dynamic node management components. The former processes routing and location

messages, while the latter handles the arrival and departure of nodes in the network. These two

components communicate through the routing table. At the bottom are the transport and neighbor

link layers, which together provide a cross-node messaging layer. We describe several of these layers

in the following:

Transport

The transport layer provides the abstraction of communication channels from one overlay

node to another, and corresponds to layer 4 in the OSI layering. Utilizing native Operating System

(OS) functionality, many channel implementations are possible. We currently support one that uses

TCP/IP and another that uses UDP/IP.

Neighbor Link

Above the transport layer is the neighbor link layer. It provides secure but unreliable data-

gram facilities to layers above, including the fragmentation and reassembly of large messages. The

first time a higher layer wishes to communicate with another node, it must provide the destination’s

physical address (e.g., IP address and port number). If a secure channel is desired, a public key for

the remote node may also be provided. The neighbor link layer uses this information to establish a

connection to the remote node.

Links are opened on demand by higher levels in Tapestry. To avoid overuse of scarce

operating system resources such as file descriptors, the neighbor link layer may periodically close

some connections. Closed connections are reopened on demand.

One important function of this layer is continuous link monitoring and adaptation. It

114

Receive new
location msg Upcall?

Have object
pointers?

Forward to
nextHop (h+1, G)

Forward to
nextHop (0, closest)

no

yes

no

yes

Signal Application

Figure 6.2: Message processing. Object location requests enter from neighbor link layer at the left. Some
messages are forwarded to an extensibility layer; for others, the router first looks for object pointers, then
forwards the message to the next hop.

provides fault-detection through soft-state keep-alive messages, plus latency and loss rate estimation.

The neighbor link layer notifies higher layers whenever link properties change.

This layer also optimizes message processing by parsing the message headers and only de-

serializing the message contents when required. This avoids byte-copying of user data across the

operating system and Java virtual machine boundary whenever possible. Finally, node authenti-

cation and message authentication codes (MACs) can be integrated into this layer for additional

security.

Router

While the neighbor link layer provides basic networking facilities, the router implements

functionality unique to Tapestry. Included within this layer are the routing table and local object

pointers.

As discussed in Section 3.3.2, the routing mesh is a prefix-sorted list of neighbors stored

in a node’s routing table. The router examines the destination GUID of messages passed to it and

decides their next hop using this table and local object pointers. Mmessages are then passed back

to the neighbor link layer for delivery.

Figure 6.2 shows a flow-chart of the object location process. Messages arrive from the

neighbor link layer at the left. Some messages trigger extension upcalls as discussed in Section 6.1.2

and immediately invoke upcall handlers. Otherwise, local object pointers are checked for a match

against the GUID being located. If a match is found, the message is forwarded to the closest node

115

in the set of matching pointers. Otherwise, the message is forwarded to the next hop toward the

root.

Note that the routing table and object pointer database are continuously modified by the

dynamic node management and neighbor link layers. For instance, in response to changing link

latencies, the neighbor link layer may reorder the preferences assigned to neighbors occupying the

same entry in the routing table. Similarly, the dynamic node management layer may add or remove

object pointers after the arrival or departure of neighbors.

6.1.2 Tapestry Upcall Interface

While the DOLR API (Section 3.2.1) provides a powerful applications interface, other

functionality, such as multicast, requires greater control over the details of routing and object lookup.

To accommodate this, Tapestry supports an extensible upcall mechanism. We expect that as overlay

infrastructures mature, the need for customization will give way to a set of well-tested and commonly

used routing behaviors.

The interaction between Tapestry and application handlers occurs through three primary

calls (G is a generic ID—could be a nodeId, Nid, or GUID, OG):

1. deliver(G, Aid, Msg): Invoked on incoming messages destined for the local node. This is

asynchronous and returns immediately. The application generates further events by invoking

route().

2. forward(G, Aid, Msg): Invoked on incoming upcall-enabled messages. The application must

call route() in order to forward this message on.

3. route(G, Aid, Msg, NextHopNode): Invoked by the application handler to forward a message

on to NextHopNode.

Additional interfaces provide access to the routing table and object pointer database. When an

upcall-enabled message arrives, Tapestry sends the message to the application via Forward(). The

116

handler is responsible for calling Route() with the final destination. Finally, Tapestry invokes

Deliver() on messages destined for the local node to complete routing.

This upcall interface provides sufficient functionality to implement (for instance) the Bayeux [145]

multicast system. Messages are marked to trigger upcalls at every hop, so that Tapestry invokes

the forward() call for each message. The Bayeux handler then examines a membership list, sorts

it into groups, and forwards a copy of the message to each outgoing entry.

6.1.3 Implementation

We follow our discussion of the Tapestry component architecture with a detailed look at

the current implementation, choices made, and the rationale behind them. Tapestry is currently

implemented in Java, and consists of roughly 57,000 lines of code in 255 source files.

Implementation of a Tapestry Node

Tapestry is implemented as an event-driven system for high throughput and scalability.

This paradigm requires an asynchronous I/O layer as well as an efficient model for internal com-

munication and control between components. We currently leverage the event-driven SEDA [130]

application framework for these requirements. In SEDA, internal components communicate via

events and a subscription model. As shown in Figure 6.3, these components are the Core Router,

Node Membership, Mesh Repair, Patchwork, and the Network Stage.

The Network Stage corresponds to a combination of the Neighbor Link layer and portions

of the Transport layer from the general architecture. It implements parts of the neighbor communi-

cation abstraction that are not provided by the operating system. It is also responsible for buffering

and dispatching of messages to higher levels of the system. The Network stage interacts closely with

the Patchwork monitoring facility (discussed later) to measure loss rates and latency information

for established communication channels.

The Core Router utilizes the routing and object reference tables to handle application

117

Applications

Network Stage Patchwork

Application Programming Interface

Core Routernode insert/delete

Enter / Leave
Tapestry

state maintenance

control messages
node insert / delete

Periodic Beacons

Distance Measurements

Java Virtual Machine
SEDA Event−driven Framework and Async. I/O

Node Membership Mesh RepairMaintenance
Routing Table

Link Repair

Contro
l M

essages

UDP Pings

Link Monitoring Requests
Link Quality Changes

A
P

I C
al

ls

U
p−

ca
lls

ro
ut

e
to

no
de

 /
ob

j.

Figure 6.3: Tapestry Implementation. Tapestry is implemented in Java as a series of independently-
scheduled stages (shown here as bubbles) that interact by passing events to one another.

driven messages, including object publish, object location, and routing of messages to destination

nodes. The router also interacts with the application layer via application interface and upcalls. The

Core Router is in the critical path of all messages entering and exiting the system. We will show in

Section 6.3 that our implementation is reasonably efficient. However, the Tapestry algorithms are

amenable to fast-path optimization to further increase throughput and decrease latency; we discuss

this in Section 6.1.4.

Supporting the router are two dynamic components: a deterministic Node Membership

stage and a soft-state Mesh Repair stage. Both manipulate the routing table and the object reference

table. The Node Membership stage is responsible for handling the integration of new nodes into the

Tapestry mesh as well as graceful (or voluntary) exit of nodes. This stage is responsible for starting

each new node with a correct routing table – one reflecting correctness and network locality.

In contrast, the Mesh Repair stage is responsible for adapting the Tapestry mesh as the

network environment changes. This includes responding to alterations in the quality of network

links (including links failures), adapting to catastrophic loss of neighbors, and updating the routing

table to account for slow variations in network latency. The repair process also actively redistributes

object pointers as network conditions change. The repair process can be viewed as an event-triggered

adjustment of state, combined with continuous background restoration of routing and object location

information. This provides quick adaptation to most faults and evolutionary changes, while providing

118

eventual recovery from more enigmatic problems.

Finally, the Patchwork stage uses soft-state beacons to probe outgoing links for reliability

and performance, allowing Tapestry to respond to failures and changes in network topology. It

also supports asynchronous latency measurements to other nodes. It is tightly integrated with the

network, using native transport mechanisms (such as channel acknowledgments) when possible.

We have implemented both TCP- and UDP-based network layers. By itself, TCP supports

both flow and congestion control, behaving fairly in the presence of other flows. Its disadvantages

are long connection setup and tear-down times, sub-optimal usage of available bandwidth, and the

consumption of file descriptors (a limited resource). In contrast, UDP messages can be sent with

low overhead, and may utilize more of the available bandwidth on a network link. UDP alone,

however, does not support flow control or congestion control, and can consume an unfair share of

bandwidth causing wide-spread congestion if used across the wide-area. To correct for this, our

UDP layer includes TCP-like congestion control as well as limited retransmission capabilities. We

are still exploring the advantages and disadvantages of each protocol; however, the fact that our

UDP layer does not consume file descriptors appears to be a significant advantage for deployment

on stock operating systems.

Node Virtualization

To enable a wider variety of experiments, we can place multiple Tapestry node instances

on each physical machine. To minimize memory and computational overhead while maximizing the

number of instances on each physical machine, we run all node instances inside a single Java Virtual

Machine (JVM). This technique enables the execution of many simultaneous instances of Tapestry

on a single node1.

All virtual nodes on the same physical machine share a single JVM execution thread (i.e.,

only one virtual node executes at a time). Virtual instances only share code; each instance maintains

1We have run 20 virtual nodes per machine, but have yet to stress the network virtualization to its limit.

119

Match in
pointer cache? (async)

On disk?

Return nilfor location
Given GUID Match in

Bloom filter?

Return match

yes

no yes

no

no

yes

Figure 6.4: Enhanced Pointer Lookup. We quickly check for object pointers using a Bloom filter to eliminate
definite non-matches, then use an in-memory cache to check for recently used pointers. Only when both of
these fail do we (asynchronously) fall back to a slower repository.

its own exclusive, non-shared data. A side effect of virtualization is the delay introduced by CPU

scheduling between nodes. During periods of high CPU load, scheduling delays can significantly

impact performance results and artificially increase routing and location latency results. This is

exacerbated by unrealistically low network distances between nodes on the same machine. These

node instances can exchange messages in less than 10 microseconds, making any overlay network

processing overhead and scheduling delay much more expensive in comparison. These factors should

be considered while interpreting results, and are discussed further in Section 6.3.

6.1.4 Toward a Higher-Performance Implementation

In Section 6.3 we show that our implementation can handle over 7,000 messages per second.

However, a commercial-quality implementation could do much better. We close this section with

an important observation: despite the advanced functionality provided by the DOLR API, the

critical path of message routing is amenable to very high-performance optimization, such as might

be available with dedicated routing hardware.

The critical-path of routing shown in Figure 6.2 consists of two distinct pieces. The simplest

piece—computation of nextHop as in Figure 3.8—is similar to functionality performed by hardware

routers: fast table lookup. For a million-node network with base-16 (β = 16), the routing table with

a GUID/IP address for each entry would have an expected size < 10 kilobytes—much smaller than

a CPU’s cache. Simple arguments (such as in [142]) show that most network hops involve a single

lookup, whereas the final two hops require at most β/2 = 8 lookups.

120

As a result, it is the second aspect of DOLR routing—fast pointer lookup—that presents

the greatest challenge to high-throughput routing. Each router that a RouteToObject request

passes through must query its table of pointers. If all pointers fit in memory, a simple hash-table

lookup provides O(1) complexity to this lookup. However, the number of pointers could be quite

large in a global-scale deployment, and furthermore, the fast memory resources of a hardware router

are likely to be smaller than state-of-the-art workstations.

To address this issue, we note that most routing hops receive negative lookup results (only

one receives a successful result). We can imagine building a Bloom filter [9] over the set of pointers.

A Bloom filter is a lossy representation of a set that can detect the absence of a member of this set

quite quickly. The size of a Bloom filter must be adjusted to avoid too many false-positives; although

we will not go into the details here, a reasonable size for a Bloom filter over P pointers is about 10P

bits. Assuming that pointers (with all their information) are are 100 bytes, the in-memory footprint

of a Bloom filter can be two orders of magnitude smaller than the total size of the pointers.

Consequently, we propose enhancing the pointer lookup as in Figure 6.4. In addition to a

Bloom filter front-end, this figure includes a cache of active pointers that is as large as will fit in

the memory of the router. The primary point of this figure is to split up the lookup process into

a fast negative check, followed by a fast positive check (for objects which are very active), followed

by something slower. Although we say “disk” here, this fallback repository could be memory on a

companion processor that is consulted by the hardware router when all else fails.

6.2 Quantifying Design Decisions

Before we begin to present measurement and evaluation results on our Tapestry prototype,

we first reexamine quantitative justifications for our decisions in the DOLR design. Specifically, we

examine through simulation the quantitative impact of our design on access latency to data.

121

0

20

40

60

80

100

120

M
ea

n
 R

o
u

ti
n

g
 S

tr
et

ch

Ideal
Proximity
Random

Ideal 1 1 1

Proximity 1.46 1.73 1.79

Random 108.31 15.81 4.46

In-LAN In-WAN Far-WAN

Figure 6.5: Comparing performance impact of using proximity routing.

6.2.1 Proximity Routing

To quantify the expected performance benefits of PNS, we perform a simple simulation on

top of our own event-driven overlay network simulator. Our simulator takes in network topologies in

SGB [69] format, and allows us to perform routing latency measurements while ignoring cross-traffic

and congestive effects in the network. In this experiment, we construct two Tapestry networks on

top of the same 5000-node transit-stub topology with the same randomly assigned nodeIDs. The

only difference between the two networks is whether network proximity is taken into account during

routing table construction. Given the two networks, we select a random set of 200 overlay nodes,

and measure the end-to-end routing stretch between all pairs of nodes from this set.

We plot the results as a clustered bar graph in Figure 6.5. We use the network distance

between the endpoints to partition all routing stretch results into three groups, in-LAN, in-WAN,

and far-WAN. In-LAN means the endpoints lie in the same local stub network; in-WAN means they

are in different stub networks; and far-WAN means they are in stub networks far apart in the wide-

area. For each category, we average the routing stretch values for the two networks, and plots the

122

0

200

400

600

800

1000

1200

1400

256 1024 4096

Overlay Size

A
ve

ra
g

e
R

o
u

ti
n

g
 L

at
en

cy

DHT Min

DHT Avg

DHT Max

Close DOLR

DOLR

Figure 6.6: Comparing performance of DOLR against basic DHT replication schemes.

results against the ideal routing stretch value of one. As expected, PNS has the maximum impact

for closeby communicating endpoints. For in-LAN paths, using proximity reduces routing stretch

by a factor of 74, from 108 to 1.46. The effect decreases as the length of the path increases, but is

still significant when endpoints are far apart in the wide-area. For far-WAN paths, PNS still reduces

routing stretch by more than two-fold over randomized routing. Overall, we see that not only does

PNS make a tremendous difference in routing effiency, but that Tapestry (with PNS) performs very

close (within a factor of 2) of ideal for all routing paths. Other work has also examined the impact

of locality-aware mechanisms such as PNS [15, 140]

6.2.2 Decentralized Directory Interface

To illustrate the performance impact of a DOLR approach, consider the scenario where a

file in a distributed file system is being shared between two geographically distant institutions (U.

C. Berkeley and Microsoft Research UK). Let us compare the expected access latency using either a

DHT approach or a DOLR approach. In the DHT case, we make 5 replicas of the data and distribute

123

them across the network based on random nodeIDs. In the DOLR case, we make 2 replicas of the

data, and place one replica in each of the two institutions.

We simulate this experiment using our event-driven simulator with a 5000 node transit-stub

topology. We choose two random stub networks as the institutions where queries will originate, and

either distribute 5 replicas across the network based on name (the DHT approach) or place a single

replica in each stub network (DOLR). The results are plotted in Figure 6.6. We compare the mean

of the best, average and worst access latencies in the DHT approach with the mean access time in

the DOLR approach, and plot the results against different overlay sizes.

Clearly, the DOLR approach results in access time significantly less than the best possible

time using a DHT. The DHT-min bar represents a lower-bound for optimizations such as coordinate-

based server selection [99]. We plotted two cases for the DOLR results. We plot one result where the

replica is placed randomly inside the hotspot stub network (DOLR). Given that the stub networks

can be quite large, we also plotted a result where we “force” the replica to be close to all the clients

by only performing queries from clients within 100ms of the replica. The difference between the two

demonstrates that access latency will decrease as the replica moves closer to the clients, making a

difference even in a local stub network.

6.3 Evaluation of a Deployed Prototype

We evaluate our implementation of Tapestry using a variety of evaluation platforms and

methodologies. First, we built a event-driven simulator that measures routing and object location

on top of different graph topologies. The simulator is based on the Stanford Graph Base (SGB) [69]

libraries, and does not simulate network congestion or queuing effects. We perform local measure-

ments on a cluster to examine micro-benchmarks for single node performance. We also measure the

large scale performance of a deployed Tapestry on the PlanetLab global testbed [94, 21]. Finally,

we make use of a local network simulation layer (SOSS [106]) to support controlled, repeatable

124

0

100

200

300

400

500

0 50 100 150 200 250 300 350 400 450

C
ou

nt

Internode RTT (ping) (5 ms buckets)

PlanetLab Internode Latency Distribution

Figure 6.7: PlanetLab ping distribution. A histogram representation of pair-wise ping measurements
on the PlanetLab global testbed.

experiments with up to 1,000 Tapestry instances.

In this section, we focus on the basic routing and object location properties of our Tapestry

implementation. We examine properties including message processing latency and throughput, rout-

ing and object location RDP, and latency and bandwidth costs for single node and parallel integra-

tion.

6.3.1 Evaluation Methodology

We begin with a short description of our experimental methodology. All measurements use a

Java Tapestry implementation (see Section 6.1.3) running in IBM’s JDK 1.3 with node virtualization

(see Section 6.3.3). Our micro-benchmarks are run on local cluster machines of dual Pentium III

1GHz servers (1.5 GByte RAM) and Pentium IV 2.4GHz servers (1 GByte RAM).

We run wide-area experiments on PlanetLab, a network testbed consisting of roughly 100

machines at institutions in North America, Europe, Asia, and Australia. Machines include 1.26GHz

Pentium III Xeon servers (1 GByte RAM) and 1.8GHz Pentium IV towers (2 GByte RAM). Roughly

two-thirds of the PlanetLab machines are connected to the high-capacity Internet2 network. The

measured distribution of pair-wise ping distances are plotted in Figure 6.7 as a histogram. PlanetLab

is a real network under constant load, with frequent data loss and node failures. We perform

125

0.01

0.1

1

10

100

0.0625 0.25 1 4 16 64 256 1024

T
ra

ns
m

is
si

on
 T

im
e

(m
s)

Message Size (KB)

Per Msg Processing Latency (Local LAN)

P-III 1Ghz local
P-IV 2.4Ghz local

P-III 2.3 scaleup
0

10

20

30

40

50

60

70

80

90

0.0625 0.25 1 4 16 64 256 1024

B
an

dw
id

th
 (

M
B

/s
)

Message Size (KB)

Maximum Routing Throughput (Local LAN)

100 mb/s

P-IV 2.4Ghz local
P-III 1Ghz local

P-IV 2.4Ghz 100MBE

Figure 6.8: Message Processing Latency. Pro-
cessing latency (full turnaround time) per mes-
sage at a single Tapestry overlay hop, as a func-
tion of the message payload size.

Figure 6.9: Max Routing Throughput. Maxi-
mum sustainable message traffic throughput as
a function of message size.

wide-area experiments on this infrastructure to approximate performance under real deployment

conditions.

Each node in our PlanetLab tests runs a test-member stage that listens to the network for

commands sent by a central test-driver . Note that the results of experiments using node virtualiza-

tion may be skewed by the processing delays associated with sharing CPUs across node instances

on each machine.

Finally, in instances where we need large-scale, repeatable and controlled experiments,

we perform experiments using the Simple OceanStore Simulator (SOSS) [106]. SOSS is an event-

driven network layer that simulates network time with queues driven by a single local clock. It injects

artificial network transmission delays based on an input network topology, and allows a large number

of Tapestry instances to execute on a single machine while minimizing resource consumption.

6.3.2 Performance in a Stable Network

We first examine Tapestry performance under stable or static network conditions.

126

0

5

10

15

20

0 50 100 150 200 250 300

R
D

P
(m

in
, m

ed
ia

n,
 9

0t
h

pe
rc

en
til

e)

Internode round-trip (ping) time (in 5 ms buckets)

Routing Relative Delay Penalty (PlanetLab)

median = 25.6, 90th percentile = 195

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

R
D

P
(m

in
, m

ed
ia

n,
 9

0t
h

pe
rc

en
til

e)

Client to object round-trip (ping) time (in 1 ms buckets)

Location Relative Delay Penalty (PlanetLab)

90th percentile = 158

Figure 6.10: RDP of Routing to Nodes. The
ratio of Tapestry routing to a node versus
the shortest roundtrip IP distance between the
sender and receiver.

Figure 6.11: RDP of Routing to Objects. The
ratio of Tapestry routing to an object versus the
shortest one-way IP distance between the client
and the object’s location.

Micro Benchmarks on Stable Tapestry

We use microbenchmarks on a network of two nodes to isolate Tapestry’s message pro-

cessing overhead. The sender establishes a binary network with the receiver, and sends a stream of

10,001 messages for each message size. The receiver measures the latency for each size using the

inter-arrival time between the first and last messages.

First, we eliminate the network delay to measure raw message processing by placing both

nodes on different ports on the same machine. To see how performance scales with processor speed,

we perform our tests on a P-III 1GHz machine and a P-IV 2.4GHz machine. The latency results

in Figure 6.8 show that for very small messages, there is a dominant, constant processing time of

approximately 0.1 milliseconds for the P-IV and 0.2 for the P-III. For messages larger than 2 KB,

the cost of copying data (memory buffer to network layer) dominates, and processing time becomes

linear relative to the message size. A raw estimate of the processors (as reported by the bogomips

metric under Linux) shows the P-IV to be 2.3 times faster. We see that routing latency changes

proportionally with the increase in processor speed, meaning we can fully leverage Moore’s Law for

faster routing in the future.

127

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

90
th

 p
er

ce
nt

ile
 R

D
P

Client to object round-trip (ping) time

Effect of optimization on Routing to Objects RDP (Simulator)

Unoptimized
Opt(1 back, 1 near, 1 hop) [+2]
Opt(1 back, 5 near, 1 hop) [+6]
Opt(1 back, 1 near, 3 hop) [+6]

Opt(1 back, 5 near, 3 hop) [+18]
RDP = 1

Figure 6.12: 90th percentile RDP of Routing to Objects with Optimization. Each line represents a set
of optimization parameters (k backups, l nearest neighbors, m hops), with cost (additional pointers
per object) in brackets.

We also measure the corresponding routing throughput. As expected, Figure 6.9 shows that

throughput is low for small messages where a processing overhead dominates, and quickly increases

as messages increase in size. For the average 4KB Tapestry message, the P-IV can process 7,100

messages/second and the P-III processes 3,200 messages/second. The gap between this and the

estimate we get from calculating the inverse of the per message routing latency can be attributed

to scheduling and queuing delays from the asychronous I/O layer. We also measure the throughput

with two 2.4GHz P-IV’s connected via a 100Mbit/s ethernet link. Results show that the maximum

bandwidth can be utilized at 4 KB sized messages.

Routing Overhead to Nodes and Objects

Next, we examine the performance of routing to a node and routing to an object’s location

under stable network conditions, using 400 Tapestry nodes evenly distributed on 62 PlanetLab

machines. The performance metric is Relative Delay Penalty (RDP), the ratio of routing using the

overlay to the shortest IP network distance. Note that shortest distance values are measured using

ICMP ping commands, and therefore incur no data copying or scheduling delays. In both graphs

(see Figures 6.10 and 6.11), we plot the 90th percentile value, the median, and the minimum.

We compute the RDP for node routing by measuring all pairs roundtrip routing latencies

128

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

In
te

gr
at

io
n

L
at

en
cy

 (
m

s)

Size of Existing Network (nodes)

Single Node Integration Latency (PlanetLab)

0

10

20

30

40

50

1 4 16 64 256 1024T
ot

al
 B

an
dw

id
th

 u
se

d
in

 in
te

gr
at

io
n

(K
B

)

Number of nodes in original network

Node Insertion Bandwidth (PlanetLab)

Figure 6.13: Node Insertion Latency. Time for
single node insertion, from the initial request
message to network stabilization.

Figure 6.14: Node Insertion Bandwidth. To-
tal control traffic bandwidth for single node
insertion.

between the 400 Tapestry instances, and dividing each by the corresponding ping roundtrip time2. In

Figure 6.10, we see that median values for node to node routing RDP start at ∼3 and slowly decrease

to ∼1. The use of multiple Tapestry instances per machine means that tests under heavy load will

produce scheduling delays between instances, resulting in an inflated RDP for short latency paths.

This is exacerbated by virtual nodes on the same machine yielding unrealistically low roundtrip ping

times.

We also measure routing to object RDP as a ratio of one-way Tapestry route to object

latency, versus the one-way network latency (1
2 × ping time). For this experiment, we place 10,000

randomly named objects on a single server, planetlab-1.stanford.edu. All 399 other Tapestry nodes

begin in unison to send messages to each of the 10,000 objects by GUID. RDP values are sorted

by their ping values, and collected into 5 millisecond bins, with 90th percentile and median values

calculated per bin (see Figure 6.11).

Object Location Optimization

Although the object location results of Figure 6.11 are good at large distances, they diverge

significantly from the optimal IP latency at short distances. Further, the variance increases greatly
2Roundtrip routing in Tapestry may use asymmetric paths in each direction, as is often the case for IP routing.

129

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.05 0.1 0.15 0.2 0.25 0.3

C
on

ve
rg

en
ce

 T
im

e
m

s
(m

in
, m

ed
ia

n,
 9

0%
)

Ratio of nodes inserting in unison to network size

Convergence time for parallel node insertion (PlanetLab)

Figure 6.15: Parallel Insertion Convergence. Time for the network to stabilize after nodes are
inserted in parallel, as a function of the ratio of nodes in the parallel insertion to size of the stable
network.

at short distances. The reason for both of these results is quite simple: extraneous hops taken while

routing at short distances are a greater overall fraction of the ideal latency. High variance indicates

client/server combinations that will consistently see non-ideal performance and tends to limit the

advantages that clients gain through careful object placement. Fortunately, we can greatly improve

behavior by storing extra object pointers on nodes close to the object. This technique trades extra

storage space in the network for better routing.

We investigate this tradeoff by publishing additional object pointers to k backup nodes

of the next hop of the publish path, and the nearest (in terms of network distance) l neighbors of

the current hop. We bound the overhead of these simple optimizations by applying them along the

first m hops of the path. Figure 6.12 shows the optimization benefits for 90th percentile local-area

routing-to-objects RDP. To explore a larger topology, this figure was generated using the SOSS

simulator [106] with a transit stub topology of 1,092 nodes. We place 25 objects on each of 1,090

Tapestry nodes, and have each node route to 100 random objects for various values of k, l, and m.

This figure demonstrates that optimizations can significantly lower the RDP observed by

the bulk of all requesters for local-area network distances. For instance, the simple addition of two

pointers in the local area (one backup, one nearest, one hop) greatly reduces the observed variance

in RDP.

130

0
100
200
300
400
500
600
700
800
900

1000

0 4 8 12 16 20 24 28 32 36 40 44
0

2

4

6

8

10

12

14

16

%
 S

uc
ce

ss
fu

l L
oo

ku
ps

 /
N

um
. o

f
no

de
s

B
an

dw
id

th
 p

er
 I

P
L

in
k

(K
B

yt
es

/s
)

Time (minutes)

Routing to Nodes w/ fail & join (Simulator)

of Nodes

BW/link
Success Rate

0
100
200
300
400
500
600
700
800
900

1000

0 4 8 12 16 20 24 28 32 36 40 44
0

2

4

6

8

10

12

14

16

%
 S

uc
ce

ss
fu

l R
eq

ue
st

s
/ N

um
. o

f
no

de
s

B
an

dw
id

th
 p

er
 I

P
L

in
k

(K
B

yt
es

/s
)

Time (minutes)

Routing to Objects w/ fail & join (Simulator)

of Nodes

BW/linkSuccess Rate

Figure 6.16: Route to Node under failure and
joins. The performance of Tapestry route to
node with two massive network membership
change events. Starting with 830 nodes, 20%
of nodes (166) fail, followed 16 minutes later by
a massive join of 50% (333 nodes).

Figure 6.17: Route to Object under failure and
joins. The performance of Tapestry route to
objects with two massive network membership
change events. Starting with 830 nodes, 20% of
nodes (166) fail, followed 16 minutes later by a
massive join of 50% (333 nodes).

6.3.3 Convergence Under Network Dynamics

Here, we analyze Tapestry’s scalability and stability under dynamic conditions.

Single Node Insertion

We measure the overhead required for a single node to join the Tapestry network, in terms

of time required for the network to stabilize (insertion latency), and the control message bandwidth

during insertion (control traffic bandwidth).

Figure 6.13 shows insertion time as a function of the network size. For each datapoint, we

construct a Tapestry network of size N , and repeatedly insert and delete a single node 20 times.

Since each node maintains routing state logarithmically proportional to network size, we expect

that latency will scale similarly with network size. The figure confirms this belief, as it shows that

latencies scale sublinearly with the size of the network.

The bandwidth used by control messages is an important factor in Tapestry scalability.

For small networks where each node knows most of the network (size N < b2), nodes touched by

insertion (and corresponding bandwidth) will likely scale linearly with network size. Figure 6.14

131

shows that the total bandwidth for a single node insertion scales logarithmically with the network

size. We reduced the GUID base to 4 in order to better highlight the logarithmic trend in network

sizes of 16 and above. Control traffic costs include all distance measurements, nearest neighbor

calculations, and routing table generation. Finally, while total bandwidth scales as O(LogbN), the

bandwidth seen by any single link or node is significantly lower.

Parallel Node Insertion

Next, we measure the effects of multiple nodes simultaneously entering the Tapestry by

examining the convergence time for parallel insertions. Starting with a stable network of size 200

nodes, we repeat each parallel insertion 20 times, and plot the minimum, median and 90th percentile

values versus the ratio of nodes being simultaneously inserted (see Figure 6.15). Note that while the

median time to converge scales roughly linearly with the number of simultaneously inserted nodes,

the 90% value can fluctuate more significantly for ratios equal to or greater than 10%. Much of this

increase can be attributed to effects of node virtualization. When a significant portion of the virtual

Tapestry instances are involved in node insertion, scheduling delays between them will compound

and result in significant delays in message handling and the resulting node insertion.

Continuous Convergence and Self-Repair

Finally, we wanted to examine large-scale performance under controlled failure conditions.

Unlike the other experiments where we measured performance in terms of latency, these tests focused

on large-scale behavior under failures. To this end, we performed the experiments on the SOSS

simulation framework, which allows up to 1,000 Tapestry instances to be run on a single machine.

In our tests, we wanted to examine success rates of both routing to nodes and objects,

under two modes of network change: drastic changes in network membership and slow constant

membership churn. The routing to nodes test measures the success rate of sending requests to

random keys in the namespace, which always map to some unique nodes in the network. The

132

0
100
200
300
400
500
600
700
800
900

1000

0 4 8 12 16 20 24 28 32 36 40 44
0

2

4

6

8

10

12

14

16

%
 S

uc
ce

ss
fu

l R
eq

ue
st

s
/ N

um
. o

f
no

de
s

B
an

dw
id

th
 p

er
 I

P
L

in
k

(K
B

yt
es

/s
)

Time (minutes)

Routing to Nodes w/ Churn (Simulator)

Churn 1 Churn 2

of Nodes

BW/link
Success Rate

0
100
200
300
400
500
600
700
800
900

1000

0 4 8 12 16 20 24 28 32 36 40 44
0

2

4

6

8

10

12

14

16

%
 S

uc
ce

ss
fu

l R
eq

ue
st

s
/ N

um
. o

f
no

de
s

B
an

dw
id

th
 p

er
 I

P
L

in
k

(K
B

yt
es

/s
)

Time (minutes)

Routing to Objects w/ churn (Simulator)

Churn 1 Churn 2

of Nodes

BW/link
Success Rate

Figure 6.18: Route to Node under churn. Rout-
ing to nodes under two churn periods, starting
with 830 nodes. Churn 1 uses a Poisson process
with average inter-arrival time of 20 seconds and
randomly kills nodes such that the average life-
time is 4 minutes. Churn 2 uses 10 seconds and
2 minutes.

Figure 6.19: Route to Object under churn. The
performance of Tapestry route to objects under
two periods of churn, starting from 830 nodes.
Churn 1 uses random parameters of one node ev-
ery 20 seconds and average lifetime of 4 minutes.
Churn 2 uses 10 seconds and 2 minutes.

routing to objects test sends messages to previously published objects, located at servers which

were guaranteed to stay alive in the network. Our performance metrics include both the amount of

bandwidth used and the success rate, which is defined by the percentage of requests that correctly

reached their destination.

Figures 6.16 and 6.17 demonstrate the ability of Tapestry to recover after massive changes

in the overlay network membership. We first kill 20% of the existing network, wait for 15 minutes,

and insert new nodes equal to 50% of the existing network. As expected, a small fraction of requests

are affected when large portions of the network fail. The results show that as faults are detected,

Tapestry recovers, and the success rate quickly returns to 100%. Similarly, a massive join event

causes a dip in success rate which returns quickly to 100%. Note that during the large join event,

bandwidth consumption spikes as nodes exchange control messages to integrate in the new nodes.

The bandwidth then levels off as routing tables are repaired and consistency is restored.

For churn tests, we drive the node insertion and failure rates by probability distributions.

Each test includes two churns of a different level of dynamicity. In the first churn, insertion uses

133

0
10
20
30
40
50
60
70
80
90

100

0 30 60 90 120 150 180 210 240
0

100

200

300

400

500

600

700

800

%
 S

uc
ce

ss
fu

l L
oo

ku
ps

N
um

be
r

of
 N

od
es

Time (minutes)

Route to Node on PlanetLab

20% of
nodes fail

50% more
nodes join

Churn
starts

Success Rate
Nodes

Figure 6.20: Failure, join and churn on PlanetLab. Impact of network dynamics on the success rate
of route to node requests.

a Poisson distribution with average inter-arrival time of 20 seconds and failure uses an exponential

distribution with mean node lifetime of 4 minutes. The second churn increases the dynamic rates of

insertion and failure, using 10 seconds and 2 minutes as the parameters respectively.

Figures 6.18 and 6.19 show the impact of constant change on Tapestry performance. In

both cases, the success rate of requests under constant churn rarely dipped slightly below 100%.

These imperfect measurements occur independent of the parameters given to the churn, showing

that Tapestry operations succeed with high probability even under high rates of turnover.

Finally, we measure the success rate of routing to nodes under different network changes

on the PlanetLab testbed. Figure 6.20 shows that requests experience very short dips in reliability

following events such as massive failure and large joins. Reliability also dips while node membership

undergoes constant churn (inter-arrival times of 5 seconds and average life-times are 60 seconds)

but recovers afterwards. In order to support more nodes on PlanetLab, we use a UDP networking

layer, and run each instance in its own JVM (so they can be killed independently). Note that the

additional number of JVMs increases scheduling delays, resulting in request timeouts as the size of

the network (and virtualization) increases.

These experiments show that Tapestry is highly resilient under real-world dynamic con-

ditions, providing a near-optimal success rate for requests under high churn rates, and quickly

134

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

St
re

ss
 S

av
in

gs
 p

er
 B

ea
co

n
Pe

ri
od

Network Size (overlay nodes)

Savings by hopcount
Savings by latency

Figure 6.21: Maintenance Advantage of Proximity (Simulation). Proximity reduces relative band-
width consumption (TBC) of beacons over randomized, prefix-based routing schemes.

recovering from massive membership change events in under a minute. These results demonstrate

Tapestry’s feasibility as a long running service on dynamic networks, such as the wide-area Internet.

6.4 Resiliency under Failure

To explore the potential for adaptive fault tolerance as described in Sections 5.2.1 and 5.2.2,

we present simulation results as well as measurements from a functioning Tapestry system [139].

Tapestry comprises 55,000 lines of Java written in event-driven style on top of SEDA [130] for fast,

non-blocking I/O. This version of Tapestry3 includes all of the mechanisms of Section 5.2.1, including

components for beacon-based fault detection across primary and backup paths, first-reachable link

selection (FRLS), and constrained multicast with duplicate packet detection.

In this section, we take an in-depth look at the impact of Tapestry’s adaptive mechanisms.

Starting with baseline Tapestry, we examine the impact of the proposed routing policies through both

simulation and experimental measurements. We also test Tapestry’s ability to exploit underlying

network redundancy, and explore the tradeoff between beacon rate and responsiveness to failures.
3The Tapestry implementation is available for public download at http://oceanstore.cs.berkeley.edu/.

135

0

0.5

1

1.5

2

2.5

20 40 60 80 100 120 140 160 180

Pr
op

or
tio

na
l L

at
en

cy
 O

ve
rh

ea
d

 o
f

B
ac

ku
p

Pa
th

Latency from Source to Destination (ms)

Hop 0
Hop 1
Hop 2
Hop 3
Hop 4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9

O
ve

rl
ay

 h
op

s
to

 c
on

ve
rg

e

Length of overlay path in IP hops

Hop 0
Hop 1
Hop 2
Hop 3

Figure 6.22: Latency Cost of Backup Paths
(Simulation). Here we show the end-to-end
proportional increase in routing latency when
Tapestry routes around a single failure.

Figure 6.23: Convergence Rate (Simulation).
The number of overlay hops taken for duplicated
messages in constrained multicast to converge,
as a function of path length.

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160

Pr
op

or
tio

na
l I

nc
re

as
e

in
 B

an
dw

id
th

Latency from Source to Destination (ms)

Hop 0
Hop 1
Hop 2
Hop 3
Hop 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

Pe
rc

en
ta

ge
 o

f
A

ll
Pa

ir
-w

is
e

R
ou

te
s

Percentage of Broken Links

No Working Route

Route Exists, IP/T both fail

T succeeds, IP fails

IP succeeds, T fails

Both IP/T succeed

Figure 6.24: Bandwidth Overhead of Con-
strained Multicast (Simulation). The propor-
tional increase in bandwidth consumed by using
a single constrained multicast.

Figure 6.25: Routing Around Failures with
FRLS. Simulation of the routing behavior of a
Tapestry overlay (2 backup routes) and normal
IP on a transit stub network (4096 overlay nodes
on 5000 nodes) against randomly placed link
failures.

6.4.1 Analysis and Simulation

To evaluate the potential for adaptation, we start by examining several microbenchmarks

in simulation. To do this, we leverage our network simulator built on top of the Stanford Graph

Base libraries [69]. In the following measurements, we utilize seven different 5000-node transit stub

topologies. Unless otherwise specified, we then construct Tapestry overlay networks of size 4096

nodes against which to measure our results.

Proximity Routing and TBC: As mentioned previously, Tapestry provides proximity routing.

We start by illustrating the advantage of proximity-based structures in reducing the Total Bandwidth

136

Consumption (TBC) of monitoring beacons4. To perform the comparison, we construct overlays of

different sizes both with and without proximity; without proximity means that we construct random

topologies that adhere to the basic prefix-routing scheme but which do not utilize network proximity

in their construction. The TBC saving with a proximity-enabled overlay is plotted in Figure 6.21.

We see that maintenance traffic with proximity routing provides a significant reduction (up to 50%)

in resources. Section 6.4.2 will explore the absolute amount of maintenance traffic.

Overhead of FRLS: To ensure our resilient routing policies do not impose unreasonable overhead

on tunneled traffic, we simulate their impact on end-to-end latency and bandwidth consumption

through simulation. We first measure the increase in latency we incur by using FRLS to route

around a failure. We expect that by taking locally suboptimal backup routes, we are increasing

end-to-end routing latency. Figure 6.22 shows the proportional increase in routing latency when

routing around a single failure. We see that when backup routes are taken closer to the destination

(3rd or 4th on a 6 hop overlay path), the overhead incurred is higher. Overall, the latency cost is

generally very small (< 20% of the end-to-end path latency).

Constrained Multicast and Path Convergence: We continue by quantifying the expected

bandwidth cost of constrained multicast, assuming a protocol with path convergence. First, we

verify that Tapestry routing provides path convergence. Path convergence allows us to limit the

amount of bandwidth consumed by duplicate messages in constrained multicast. As Figure 6.23

shows, duplicate messages generally converge with the original after 1 hop, minimizing additional

bandwidth used.

Next, Figure 6.24 measures the additional bandwidth consumed by the duplicated packets,

assuming they are dropped when they converge paths with the originals. The additional bandwidth

is plotted as a ratio to the end-to-end bandwidth consumed. Again, failures closer to the destination

are more costly, but the bandwidth overhead is generally low (< 20%).

4Recall from Section 5.2.1 that the TBC is computed by multiplying the beacon bit rate by distance—either in
number of IP hops or latency.

137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

E
st

im
at

ed
 L

in
k

Q
ua

lit
y

fr
om

 H
ea

rt
be

at
s

of Measurement Periods after Failure

{/Symbol a}=0.1, 50% loss
{/Symbol a}=0.2, 50% loss
{/Symbol a}=0.4, 50% loss

{/Symbol a}=0.1, Fail
{/Symbol a}=0.2, Fail
{/Symbol a}=0.4, Fail

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

Sw
itc

h
T

im
e

in
 m

s
(m

in
, m

ed
ia

n,

90
^{

th
}

pe
rc

en
til

e)

Probing Period (ms)

{/Symbol a}=0.2
{/Symbol a}=0.4

Figure 6.26: Hysteresis Tradeoff. A simulation
of the adaptivity of a function to incorporate
hysteresis in fault estimation using periodic bea-
cons. Curves show response time after both a
link failure and a loss event causing 50% loss.

Figure 6.27: Route Switch Time vs. Prob-
ing Frequency. Measured time between failure
and recovery is plotted against the probing fre-
quency. For this experiment, the hysteresis fac-
tors α = 0.2 and α = 0.4 are shown.

Reachability Simulation: In this experiment, we simulate the impact of random link failures on

a structured overlay in the wide area. We construct a 4096 node Tapestry topology on a 5000-node

transit stub network, using base 4 digits for prefix routing and 2 backups per routing entry.

We monitor the connectivity of pair-wise paths between all overlay nodes, and incrementally

inject randomly placed link errors into the network. After each new set of failures is introduced, we

measure the resulting connectivity of all paths routed through IP (estimated by the shortest path)

and through Tapestry with FRLS. We assume a time frame of one or two seconds, tolerable delay for

buffered multimedia applications, but insufficient time for IP level route convergence. We plot the

results in Figure 6.25 as a probability graph, showing the proportion of all paths which succeed or

fail under each protocol. The results show that Tapestry routing performs almost ideally, succeeding

for the large majority of paths where connectivity is maintained after failures. Cases where Tapestry

routing fails to find an existing path are rare.

6.4.2 Microbenchmarks of a Deployed System

Next, we use microbenchmarks to illustrate properties of the Tapestry implementation

deployed on PlanetLab. To probe Tapestry’s adaptation behavior, we implemented a fault-injection

138

layer that allows a centralized controller to inject network faults into running nodes. Nodes can be

instructed to drop some or all incoming network traffic based on message type (e.g. data or control)

and message source; we then report the results. In general, we present median values, with error

bars representing 90th percentile and minimum values. We use the 90th percentile values to remove

outlier factors such as garbage collection and virtualization scheduling problems.

Failover Time: Our first microbenchmark measures the correlation between fail-over time and

length of the beacon period. We start by selecting an appropriate hysteresis factor α for link quality

estimation (Equation 5.2). Figure 6.26 illustrates how quickly estimated values converge to actual

link quality for different values of α and link loss rate. Using this, we can see that an α value between

0.2 and 0.4 provides a reasonable compromise between response rate and noise tolerance.

For the experiment, we deploy a small overlay of 4 nodes, including nodes at U.C. Berkeley,

U. Washington, U.C. San Diego and MIT. NodeIDs are assigned such that traffic from Berkeley

routes to MIT via Washington, with UCSD as backup. The round-trip distance of the failing link

(Berkeley-Washington) is approximately 30ms.

Using hysteresis factors of 0.2 and 0.4, we inject faults at random intervals, and measure the

elapsed time to detect and redirect traffic around the fault. Figure 6.27 plots the min, median and

90th percentile values against the beacon period. As expected, switch-over time scales linearly to the

probing period with a small constant. With a reasonable beaconing period of 300ms, response times

for both α values (660ms and 580ms) are well within the acceptable limits of interactive applications,

including streaming multimedia. No messages were lost after traffic was redirected.

Redirection Penalty: To quantify the latency cost in redirecting traffic onto a backup path, we

deploy a Tapestry network of 200 nodes using digits of base 4 across the PlanetLab network. We

probe all pair-wise paths to select a random sample of source-destination pairs with sufficiently

distinct IDs to require five overlay hops. On each path, we measure the change in latency resulting

from taking a single backup path, plotted against the hop where the backup path was taken. The

139

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5

O
ve

rh
ea

d
(m

in
, m

ed
ia

n,

90
^{

th
}

pe
rc

en
til

e)

Position of Detour on Overlay Path

Figure 6.28: Overhead of Fault-Tolerant Routing. The increase in latency incurred when a packet
takes a backup path. Data separated by which overlay hop encounter the detour. Pairwise overlay
paths are taken from PlanetLab nodes, and have a maximum hop count of six.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
el

at
iv

e
O

ve
rh

ea
d

(m
in

, m
ed

ia
n,

90

^{
th

}
pe

rc
en

til
e)

Position of Detour on Overlay Path

0

1

2

3

4

5

6

7

0 50 100 150 200 250

B
an

dw
id

th
 p

er
 N

od
e

(K
B

yt
es

/s
)

Network Size (# of Nodes)

Beacon Period=300ms
Beacon Period=600ms

Figure 6.29: Overhead of Constrained Multicast.
The total bandwidth penalty for sending a du-
plicate message when loss is detected at the next
hop, plotted as a fractional increase over normal
routing. Data separated by which overlay hop
encounters the split.

Figure 6.30: Cost of Monitoring. Here we show
bandwidth used for fault-detection as a function
of overlay network size. Individual curves rep-
resent different monitoring periods, and band-
width is measured in kilobytes per second per
node.

results are shown in Figure 6.28.

The results mirror results shown in Figure 6.22, and confirm that taking a single backup

path has little impact on end-to-end routing latency. In fact, because of the small number of nodes

in our PlanetLab overlay, taking an alternate path can sometimes shorten the number of hops and

reduce overall latency. For example, given 3 nodes at Duke (000), Georgia Tech (213) and MIT

(222), a route from Duke to MIT would point to Georgia Tech as the optimal first hop and keep

MIT as a backup. If a failure occurs on the primary route, a message will use the backup path

and route directly to MIT, improving end-to-end latency. This explains the low minimum values in

140

Figure 6.28.

Constrained Multicast Penalty: To characterize the cost of constrained multicast, we start with

a deployed network of 200 nodes on PlanetLab. We select a group of paths with 5 overlay hops, and

plot the bandwidth overhead as a function of the hop where the duplicate message was sent out.

Without knowledge of IP level routers under PlanetLab, we approximate the TBC metric by using

the bandwidth latency product. Figure 6.29 shows that our deployed prototype performs as expected,

with duplicate messages incurring less than 30% of the end-to-end bandwidth consumption. This

figure reports the proportional increase in total bandwidth consumption (TBC) over the original

path and can be compared with simulation results in Figure 6.24.

Beaconing Overhead: We quantify the periodic beaconing overhead of our Tapestry implementa-

tion by measuring the total bandwidth used by beacon messages, and plotting that against the size

of the overlay network. Figure 6.30 shows the result as kilobytes per second sent by each node in the

overlay, using a beacon period of 300ms. Each routing entry has two backups, each beaconed every

600ms. The bandwidth used is low and scales logarithmically with the network size. Furthermore,

our measurements are consistent with bandwidth estimates in Section 5.2.1. Note that along with

Figure 6.27, this figure shows that moderate to large overlays can respond to link failures in under

700ms, while keeping beaconing traffic low (<7KB/s).

6.4.3 The Importance of Self-Repair

While low-rate transient failures can be handled with techniques from Section 5.2.1, long

term stability depends crucially on mechanisms that repair redundancy and restore locality. Without

continuous “precomputation” and path discovery, path redundancy will slowly degrade as backup

routes fail over time. In the case of Tapestry, this means that entries in the routing table must be

refreshed at a rate that keeps ahead of network failures and changes.

To illustrate this point, we deploy Tapestry nodes in a LAN cluster and subject them to

141

0
20
40
60
80

100

0 5 10 15 20 25 30
0

25

50

75

100

125

150

175

200

225

250
%

 S
uc

ce
ss

fu
l R

ou
te

 R
eq

ue
st

s

L
at

en
cy

 (
m

s)
 a

nd
 #

 o
f

no
de

s

Time (minutes)

Constant Churn

of nodes

Massive JoinMassive Fail

Startup

Success Rate

Median Lat

0
20
40
60
80

100

0 5 10 15 20 25 30
0

25

50

75

100

125

150

175

200

225

250

%
 S

uc
ce

ss
fu

l R
ou

te
 R

eq
ue

st
s

L
at

en
cy

 (
m

s)
 a

nd
 #

 o
f

no
de

s

Time (minutes)

Constant Churn

of nodes

Massive JoinMassive Fail

Startup

Success Rate

Median Lat

Figure 6.31: Pair-wise Routing without Repair.
Success rate of Tapestry routing between ran-
dom pairs of nodes with self-repair mechanisms
disabled during massive failure, massive join,
and constant churn conditions.

Figure 6.32: Pair-wise Routing with Self-Repair.
Success rate of Tapestry routing between ran-
dom pairs of nodes with self-repair enabled dur-
ing massive failure, massive join, and constant
churn conditions.

abrupt and continuous change; since this experiment focuses on fault resilience and not latency,

we do not impose a network topology or packet delay on the system. We then measure overlay

connectivity by measuring the rate of success in routing requests between random pairs of IDs in

the namespace. The result is shown in Figures 6.31 and 6.32.

Both of these figures illustrate an experiment that initializes the network with 150 nodes,

then introduces a massive failure event at T=5 minutes by manually killing (kill -9) 30 nodes. At

T=10 minutes, we add 75 nodes to the network in parallel. Finally, at T=15 minutes, all nodes in

the overlay begin to participate in a random churn test, where every 10 seconds nodes enter and

leave the network according to a randomized stochastic process, each with a mean duration of 2

minutes in the network.

We plot the number of nodes in the system along with average query latency and the

success rate of routing requests. Without repair, Figure 6.31 shows that routing success rate quickly

degrades after the massive fail event, and never recovers. Furthermore, nodes in the churn test

slowly lose their redundant paths as neighbors leave the network, leading to a steady decline in

route connectivity. In contrast, Figure 6.32 shows that Tapestry with self-repair quickly recovers

after massive failure and join events to restore routing success to 100%. Even under constant churn,

142

our algorithms repair routes fast enough to maintain a high level of routing availability. Note that

the relatively low routing latency shown in Figure 6.31 is due to the fact that inconsistent routes

lead to a portion of the massive join failing, resulting in shorter routes and lower latency for requests

that succeed.

6.4.4 Putting It All Together

Experiments and analysis quantify the benefits of our proposal, and verify its feasilibity.

While simulations show that FRLS exploits the majority of routing redundancy present in a net-

work, measurements show that our prototype can adapt to failure in under 700 milliseconds, even

with a reasonable dampening α factor. Furthermore, the bandwidth required to support such high

adaptivity is low. Finally, we show that in addition to circumventing link failures in the network,

the overlay self-repairs following node failures in order to maintain high availability.

6.5 Implementation Discussion

To conclude this chapter, we give a brief discussion of our implementation experience. As

one of the first wave of structured peer-to-peer systems, implementing Tapestry was an educational

process in and of itself. The implementation was an ongoing process that took over 18 months, and

resulted in two major software releases.

Several factors increased the complexity of the Tapestry implementation process. First,

without previous experience in building large event-driven systems, we were unprepared for the

complexity. The second release implemented the much more complex dynamic membership algo-

rithms described in [50]. Working with a low-level event management layer in SEDA [130], each of

the large number of asychronous operations required us to save the current execution state with a

label, and retrieve it when a thread picks up the corresponding return event. Without drawing out

the large state transition diagram, our lack of understanding which threads and transitions states

143

should share certain values resulted in numerous logic errors. In retrospect, a well-implemented

event-handling library could have drastically simplified the process.

Another time-consuming factor was the lack of a well-developed test framework. Asy-

chronous systems are more difficult to debug given the unpredictable nature of its execution paths.

This was exacerbated by the more complex algorithm and the resulting large number of state transi-

tions. We began with a test-suite approach that tested targeted functionality, but found that it did

not capture the large majority of bugs present in the asychronous system. Repeating tests captured

some additional bugs, but still did not cover the large number of possible execution paths. Addition-

ally, tracking down the source of errors was difficult given the non-repeatable nature of asychronous

bugs. Finally, we changed our approach to leverage the SOSS [106] network simulator, a discrete

event simulator that substituted the network layer with a set of ordered queues and used a logical

clock to provide deterministic and repeatable execution. SOSS allowed us to repeat execution paths

and track down errors. Additionally, by varying the random seed, we could explore a large number

of execution paths deterministically.

Understanding the invariants that define correctness in these structured overlays is the

first step towards building a test suite. The acceptance of Tapestry and similar protocols had led to

research efforts in providing metrics for quantifying performance and correctness [104].

144

Chapter 7

Tapestry as an Application

Framework

145

The goal of building a network infrastructure like Tapestry was to facilitate the design,

implementation and deployment of large-scale network applications. In this Chapter, we present

detailed designs and evaluations of several key applications on top of the Tapestry infrastructure.

The applications presented here utilize the pure routing, storage and object location,

and flexible indirection capabilities of Tapestry. The key motivating application for Tapestry is

OceanStore, a global-scale, decentralized storage system for high availability and long-term dura-

bility. Since a number of papers have been published on different aspects of the OceanStore sys-

tem [71, 105, 102], we will not present further details here. Instead we focus on three different ap-

plications: Warp [136], an adapative and efficient mobility infrastructure, Bayeux [145], large-scale

resilient application-level multicast, and SpamWatch [143], a collaborative spam-filtering system.

We demonstrate in detailed design discussions how Tapestry addresses the needs of each applica-

tion. Through individual evaluation, we show how the efficiency, resiliency and flexibility properties

of Tapestry carry through these applications, improving the overall user experience.

7.1 Warp: Adaptive and Efficient Mobility Infrastructure

Economies of scale and advancements in wide-area wireless networking are leading to the

availability of more small, networked mobile devices, placing higher stress on existing mobility

infrastructures. This problem is exacerbated by the formation of mobile crowds that generate storms

of location update traffic as they cross boundaries between base stations. In this section, we present

a novel aggregation technique we call type indirection that allows mobile crowds to roam as single

mobile entities. We discuss our design in the context of Warp, a mobility infrastructure based on a

peer-to-peer overlay, and show that its performance approaches that of Mobile IP with optimizations

while significantly reducing the effect of handoff storms.

146

7.1.1 Motivation

We consider two rapid mobility scenarios. The first is rapid individual mobility across

network cells (e.g., a mobile user on an inter-city bus travelling on a highway with cell sizes of half

a mile). This scenario requires fast handoff handling to maintain connectivity. A second, more

problematic scenario is a bullet train with hundreds of mobile users. With cell sizes of half a mile,

there are frequent, huge bursts of cell crossings that will overwhelm most mobility and application-

level protocols.

The challenge is to provide fast handoff across frequent cell crossings for a large number

of users, potentially traveling in clusters (mobile crowds). Handled naively, the delay in processing

handoffs will be exacerbated by the large volume of users moving in unison, creating congestion and

adding scheduling and processing delays and disrupting the timely delivery of packets to the mobile

hosts.

A similar problem exists in cellular networks. As mobile crowds travel across the network,

cells can “borrow” frequencies from neighbors, but base stations are often overloaded by control

traffic and as a result, drop calls [65]. In certain cases, specialized “mobile trunk” base stations

can be colocated with mobile crowds to aggregate control traffic. The mobile trunk maintains

connectivity with nearby base stations while forwarding traffic from local mobile hosts. Ideally, each

provider would place such a base station on each bus or train segment, but the individual component

and maintenance costs are prohibitive.

Previous works propose to minimize handoff delay using incremental route reestablishment

and hierarchical foreign agents or switches, or by organizing the wireless infrastructure as a static

hierarchy or collection of clusters [11, 126, 67]. A proposal also exists for Mobile IP to adopt a

simplified version of hierarchical handoff management [117]. These approaches specify separate

mechanisms to handle handoffs at different levels of the hierarchy. Also, since they statically define

aggregation boundaries in the infrastructure, foreign agents or switches are prone to overloading by

spikes in handoff traffic, such as those generated by the movement of large mobile crowds.

147

To address these issues, we introduce Warp, a mobility infrastructure leveraging flexible

points of indirection in a peer-to-peer overlay. Warp uses a mobile node’s unique name to choose the

members of a virtual hierarchy of indirection nodes. These nodes act as hierarchical foreign agents

to support fast handover operations. Warp also supports hierarchical types, where mobile crowds

can redirect traffic through single indirection points and aggregate handoffs as a single entity. For

example, an access point on the train can perform handoffs as a single node while forwarding traffic

to local mobile nodes. Although our techniques can be applied by layering the decentralized object

location and routing (DOLR) API on several structured peer-to-peer networks [28], we discuss Warp

in the context of the Tapestry overlay network.

7.1.2 Mobility Support

We now discuss how to layer mobility support on top of a structured peer-to-peer overlay,

referring to mobile nodes (MN) interacting with correspondent hosts (CH).

Basic Mobility Support

A mobile node roaming outside of its home network connects to a local proxy node as its

temporary care-of-addresses. Mobile nodes are client-only nodes that do not route or store data for

the overlay. We assume that infrastructure nodes are nodes with relatively fixed positions, giving

them the perspective of a relatively stable infrastructure. Nodes join and leave the infrastructure

using Tapestry’s dynamic membership algorithms [50].

Node Registration As with mobile IP, a mobile node MN registers itself with a nearby proxy node P1.

When a proxy receives a registration from MN, it uses the DOLR interface [28] to publish MN as an

endpoint. The infrastructure then routes messages destined for the MN endpoint to the proxy. We

call this use of the natural indirection facility to perform redirection of messages (possibly multiple

times) type indirection. At each node along the path from proxy to MN’s root node, a local pointer

1Registrations are encrypted with a node’s private key. Node IDs are hashes of public keys and verified by
certificates issued by a central certificate authority

148

P

mn

Root

Forwarding Ptrs

RegisterMsg

Route taken by Msg

Tapestry Pointers

A

CH

Figure 7.1: Communicating with a mobile host. Mobile node mn registers with proxy P, and correspondent
host CH sends a message to mn.

to the last node on the path is stored. The result is a multi-hop forwarding path from MN’s root to

its proxy.

When a correspondent host CH sends a message to MN, Tapestry routes the message towards

MN’s root. When the message intersects the forwarding path, it follows the path of pointers to the

proxy and MN. Figure 7.1 shows a node CH routing a message to MN. Note that hops in structured

overlays such as Tapestry generally increase in physical length (# of IP hops) closer to the destina-

tion. Messages avoid the longer hops to the root by intersecting the forwarding path. This is key to

reducing routing stretch for communication with closeby CH’s.

Unlike other approaches to traffic redirection [121], Tapestry uses the overlay to transport

both control and data traffic. By using points inside the network to redirect traffic, we eliminate

the need to communicate with the endpoints when routes change. In the case of Warp, it means

that as nodes move, proxy handover messages modify the forwarding path between proxies without

incurring a roundtrip back to the home agent or correspondent host.

Mobile nodes listen for periodic broadcasts from nearby proxies for discovery, similar to

techniques used by Mobile IP. Fast-moving nodes can proactively solicit proxy nodes via expanding

ring search multicast to reduce discovery latency.

Proxy Handover Mobile node MN performs a proxy handover from P to Q by sending a Proxy-

149

mn

Forwarding Ptrs

ProxyHandoverMsg

Tapestry Pointers

Route taken by Msg
newPoldP

Root

A

CH

Figure 7.2: Updating a location binding via ProxyHandoverMsg . Correspondent host CH sends a message to
mobile node mn after mn moves from proxy P to Q.

HandoverMsg to Q, <MN, P, Q> signed with its secret key. Q sets up a forwarding route to MN, and

requests that P sets up a forwarding pointer to Q. Q then routes the ProxyHandoverMsg towards

MN’s root node, and builds a forwarding path to itself. The message is forwarded until it intersects

P’s forwarding path. Note the path taken by the handover message is roughly proportional to the

distance between P and Q. This is a key distinction from basic Mobile IP, and is analogous to a

version of hierarchical handoff [11] with dynamically constructed, topologically-aware hierarchies.

When the message intersects a node A that is on the forwarding path to MN, it redirects the

forwarding pointers to point to the new path. A then forwards the message downwards to P. Each

node along the way schedules its forwarding pointer for deletion and forwards the message towards

P2. When the message reaches P, P schedules the forwarding pointer to Q for deletion. Once all

deletions are completed, handover is complete. The process is shown in Figure 7.2.

If the proxies do not overlap in coverage area, then MN will have a window of time after

it leaves coverage of P and before it completes handover to Q. In this scenario, P performs a lim-

ited amount of buffering for MN, and then forwards the buffer to Q when a forwarding pointer is

established [7].

Location Services for Mobile Objects We also support the routing of messages to objects
2A delay in deleting forwarding pointers is required to handle potential reorderings of messages between nodes by

the underlying transport layer.

150

mn

MobileObj Publish Route taken by Msg

B

R(G2)R(G1)

CH

P

A

Forwarding PtrsTapestry Pointers

Figure 7.3: Node aliasing with 2 IDs. This shows CH communicating to a mobile host (MH) using
node aliasing. MH registers with two independent pseudorandom IDs mnG1 and mnG2. CH measures
the end to end latency to MH using both and caches the shorter route for future communication.

residing on mobile nodes. An object named O residing on mobile node MN is published in the overlay

with the location mapping from O to MN. A message for O routes towards O’s root until it finds the

location mapping. Recognizing MN’s ID as a mobile address3, the overlay routes the message for O

as a normal message addressed to the mobile node MN. The message routes to MN’s proxy, MN, then

O.

Node Aliasing

One way to improve resilience and performance is for the mobile node mn to advertise its

presence via multiple identities, each mapping to an independent root. We call this node aliasing.

Here, mn hashes its original ID concatenated with each of a small set of sequential natural numbers

to generate independent pseudorandom IDs, and registers under each ID, creating several forwarding

paths to the mobile proxy via independent root nodes.

When establishing a connection, a correspondent host (CH) generates these IDs indepen-

dently, and sends messages in parallel on all forwarding paths. With feedback from the mobile node,

CH chooses the ID that incurs the least latency for their connection, effectively reducing message

delivery time to that of the shortest forwarding path. Figure 7.3 shows how CH begins communica-

tion with mn using a node aliasing factor of two. Note that after significant movement across the
3All mobile node IDs share a specialized tag appended to their normal ID

151

Client−end DaemonControl Traffic Tunneling Traffic

P2P Overlay Network

Peer Proxy

P1

Legacy
Node A

Register: A=P1

RouteToID(P2)

RouteToID(P1)

P2

Mobile
Proxy

Mobile

ProxyHandover

Node B

��

Figure 7.4: Tunneling legacy application traffic through client-end daemons and overlay proxies.. A legacy
node A communicates with mobile node B.

network, MN can repeat the path selection process to try to reduce end-to-end latency.

Alternatively, the CH can choose to continue to send duplicate messages out to several

forwarding paths for additional fault-tolerance. We show in Section 7.1.4 that two IDs provide

significant reduction in routing latency.

Supporting Legacy Applications

Warp supports communication between mobile nodes and legacy (non-overlay) nodes using

a mechanism similar to those presented in the contexts of the Tapestry and I3 projects ([138, 121]).

Mobile nodes are assigned unique DNS names with a specialized suffix, such as .tap. The mobile

node stores a mapping from a hash of its DNS name to its overlay ID into the overlay.

Figure 7.4 shows an example of the connection setup. Legacy node A wants to establish

a connection to mobile node B. The local daemon redirects the DNS lookup request, retrieves the

mobile node’s stored ID using a hash of B, and forwards traffic through the overlay address to B’s

overlay ID.

7.1.3 Supporting Rapid Mobility

Recall that in our approach, routing to mobile nodes uses indirection to translate a mobile

ID into an overlay identifier. Routing to a mobile object goes through two levels of this type

indirection, from object ID to mobile node ID to proxy ID. Here we discuss chaining multiple levels

152

Tapestry Pointers

MobileObj Publish

Forwarding Ptrs Mapping: (mp1−>bt)

Route taken by Msg

mp1

bullet train

newP oldP

R(bt)
R(mp1)

mp2 mp3

mp5mp4 ProxyHandoverMsg

CH

A

B

Figure 7.5: Mobile crowds. Five members (m1..5) of a crowd connected to a mobile trunk (mt). A message
routes to m1 as the crowd moves from proxy P to Q.

Proxy Node

Static Node
Object on

Mobile Node

Object on
Mobile Node

Mobile Node

Object on
Mobile Node

residing on indirection as residing on indirection as residing on

Figure 7.6: A figure summarizing levels of type indirection. The arrows on right illustrate relative relation-
ships between types.

of type indirection to aggregate mobile crowds as single entities, reducing handoff message storms

to single handoff messages.

Mobile Crowds

A mobile crowd forms where large groups of mobile users travel together. Examples include

a large number of train passengers with wireless laptops and PDAs or tourists wirelessly accessing

information on historic sites on a group tour. Such groups cause large bursts of handoff messages as

they move in unison across cell boundries.

To minimize the resulting delay and congestion at nearby basestations, we choose a mobile

node as the mobile trunk , and use it as a secondary proxy for others in the mobile crowd. The trunk

advertises each member of the crowd (a mobile leaf), as a locally available object. Messages to a

mobile leaf routes first to the trunk, then to the leaf. As the crowd moves across cell boundaries,

only the trunk needs to update its location with a single handover.

Figure 7.5 shows an example. When a mobile node joins a mobile trunk in the crowd, the

153

trunk publishes the <m1,mt> “location mapping.” A message addressed to m1 routes towards m1’s

root. When it finds a location mapping, the message is redirected towards node mt. It encounters

the mapping from mt to its proxy Q, routes to Q, mt, then m1.

Discussion

Type indirection reduces handoff messages from one message per node to one message

per crowd. For more flexibility, a crowd can choose an unique crowd ID. Any mobile trunk would

register with the proxy using the crowd ID instead of its own node ID. This allows multiple trunks to

function simultaneously to guard against trunk failures or departures. Furthermore, since the trunk

can suffer degraded performance, the responsibility can rotate across crowd members at periodic

intervals to provide fairness.

We can further chain together type indirections for more interesting scenarios. For example,

multiple bluetooth-enabled devices on a passenger may form a personal mobile crowd. These devices

connect to a local mobile trunk, which joins a mobile trunk on the tour bus, which itself acts as a

mobile node traveling through the network. Figure 7.6 shows different types of mobility, and how

we leverage type indirection.

7.1.4 Measurements and Evaluation

In this section, we evaluate our infrastructure design via simulation. Our performance

metric is routing stretch, the ratio of routing latency on an overlay to the routing latency of IP.

We use the shortest path latency as the IP layer latency. Note that our results do not account for

computational overhead at nodes. We believe that processing time will be dominated by network

latencies. More comprehensive measurement results are available [141].

We use a packet-level simulator running on transit stub topologies [134] of 5,000 nodes.

Each topology has 6 transit domains of 10 nodes each; each transit node has 7 stub domains with an

average of 12 nodes each. Our simulator measures network latency, but does not simulate network

154

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

R
ou

tin
g

L
at

en
cy

 R
D

P

Shortest Path Latency

MIP Far
MIP Medium

MIP Close
Warp

Warp 2 aliases

Figure 7.7: Routing stretch. Routing latency via Warp (with and without node aliasing) and Mobile IP
measured as a ratio of shortest path IP latency.

effects such as congestion, routing policies, or retransmission at lower layers. To reduce variance,

we take measurements on 9 different 5,000 node transit stub topologies, each with 3 random overlay

assignments.

Routing Efficiency

We studied the relative routing performance of our system and Mobile IP under different

roaming scenarios. Mobile IP performance is a function of the distance from MN to NODECH, and

from MN to its HA. Our system allows free roaming without a home network, and latency is dependent

on the distance between CH and MN. We compare our system against three Mobile IP scenarios, where

the distance between MN and its HA is (1) < 1
3 · D (near), (2) > 2

3 · D (far), and (3) > 1
3 · D and

< 2
3 · D (mid), where D is network diameter.

Figure 7.7 shows that for correspondents close to the mobile node (i.e., MN near CH), basic

Mobile IP generally performs quite poorly under scenarios 1 and 3 due to triangle routing. In

contrast, Warp’s RDP shows some initial variability for short routing paths, but generally performs

well with low stretch. Warp with node aliasing of factor 2 significantly outperforms all others. Note

that Mobile IP with route optimization [91] achieves a routing stretch of 1.

155

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

T
im

e
to

 C
om

pl
et

e
H

an
do

ff
 (

m
s)

Distance between Handover Proxies (ms)

Warp
Warp Conv.

MIP Far
MIP Close

Figure 7.8: Handoff latency as a function of density
of adjacent proxies or base stations. For Mobile IP,
we measure both when the MN is close and far from
home. Warp converge is the time to full routing
state convergence.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

H
an

do
ff

 M
es

sa
ge

s
in

 W
ar

p

Number of Mobile Hosts

No Crowds
Uniform Dist.

Exponential Dist.
Binomial Dist.

Figure 7.9: Handoff load. Reducing handoff mes-
sages of mobile crowds in Warp as a function of pop-
ulation size. Crowd sizes follow uniform, exponen-
tial, and binomial distributions.

Rapid Mobility

We evaluate Warp’s support for rapid mobility by comparing latency to handle cell han-

dovers relative to Mobile IP. Time is measured from the initial request for location binding update to

when all forwarding routes are updated and consistent. Figure 7.8 show that when the mobile node

roams far from its home network, it can take between 1-2 seconds for basic Mobile IP to converge

after a handoff request. Note that this result is independent of the rate of movement, and is only a

function of distance from the home network. In contrast, handoff latency in Warp is linear to the

movement rate. Note that the redirection of traffic via convergence points in Tapestry is similar in

function to hierarchical foreign agents in Mobile IP [117].

Note that the “jitter” or delay in traffic seen by the application during handoff is not

identical to handoff latency. It is the time elapsed before a valid forwarding path is constructed to

the new proxy. Warp sets up an immediate forwarding path between the proxies to allow seamless

traffic forwarding while updating the full forwarding path, similar to the Mobile IP smooth handoffs

scheme [92]. In cellular networks, the jitter, or latency between adjacent proxies, is often less than

50ms and within the tolerable range of most streaming media applications.

Finally, we examine the load placed on network routers by mobile crowds. Specifically, we

count the expected number of handoff messages required as mobile crowds cross boundaries between

156

base stations. We consider several scenarios: 1) naive mobility support with no aggregation, 2) using

aggregation while assuming uniform distribution of crowd sizes from 1 to 50, 3) using aggregation

with exponential distribution of crowd sizes with parameter p = 0.1, 4) using aggregation with a

binomial distribution of crowd sizes centered around 20 with parameter p = 0.5. Figure 7.9 shows

the significant reduction in handoff messages. As the overall population increases, the net effect is a

linear factor reduction in handoffs based on the mean crowd size. The result means that Warp can

support larger and faster mobile crowds while using less bandwidth.

7.2 Bayeux: Application-level Multicast

The nature of Tapestry unicast routing provides a natural ground for building an application-

level multicasting system. Tapestry overlay assists efficient multi-point data delivery by forwarding

packets according to suffixes of listener node IDs. The node ID base defines the fanout factor used

in the multiplexing of data packets to different paths on each router. Because randomized node IDs

naturally group themselves into sets sharing common suffixes, we can use that common suffix to

minimize transmission of duplicate packets. A multicast packet only needs to be duplicated when

the receiver node identifiers become divergent in the next digit. In addition, the maximum number

of overlay hops taken by such a delivery mechanism is bounded by the total number of digits in

the Tapestry node IDs. For example, in a Tapestry namespace size of 4096 with an octal base, the

maximum number of overlay hops from a source to a receiver is 4. The amount of packet fan-out at

each branch point is limited to the node ID base. This fact hints at a natural multicast mechanism

on the Tapestry infrastructure.

Note that unlike most existing application level multicast systems, not all nodes of the

Tapestry overlay network are Bayeux multicast receivers. This use of dedicated infrastructure

server nodes provides better optimization of the multicast tree and is a unique feature of the

Bayeux/Tapestry system.

157

7.2.1 Bayeux Base Architecture

Bayeux provides a source-specific, explicit-join multicast service. The source-specific model

has numerous practical advantages and is advocated by a number of projects [54, 120, 123, 133].

A Bayeux multicast session is identified by the tuple <session name, UID>. A session name is a

semantic name describing the content of the multicast, and the UID is a distinquishing ID that

uniquely identifies a particular instance of the session.

Session Advertisement

We utilize Tapestry’s data location services to advertise Bayeux multicast sessions. To

announce a session, we take the tuple that uniquely names a multicast session, and use a secure

one-way hashing function (such as SHA-1 [108]) to map it into a 160 bit identifier. We then create

a trivial file named with that identifier and place it on the multicast session’s root node.

Using Tapestry location services, the root or source server of a session advertises that

document into the network. Clients that want to join a session must know the unique tuple that

identifies that session. They can then perform the same operations to generate the file name, and

query for it using Tapestry. These searches result in the session root node receiving a message from

each interested listener, allowing it to perform the required membership operations. As we will see in

Section 7.2.3, this session advertisement scheme allows root replication in a way that is transparent

to the multicast listeners.

Tree Maintenance

Constructing an efficient and robust distribution tree to deliver data to session members

is the key to efficient operation in application-level multicast systems. Unlike most existing work in

this space, Bayeux utilizes dedicated servers in the network infrastructure (in the form of Tapestry

nodes) to help construct more efficient data distribution trees.

There are four types of control messages in building a distribution tree: JOIN, LEAVE,

158

**39

1250

JOIN JOIN JOIN
xx76 x876

7876

Receiver
Group

xx50 x250

7250

xx39

JOIN
xx76 x876xxx6

xxx6

JOIN JOIN JOIN

JOIN

Root

Receiver TREE

TREE TREE

TREETREE

TREE

TREE
Receiver

Receiver

Group

1250xxx0

xxx2

xxx9
Receiver

Figure 7.10: Tree maintenance

TREE, PRUNE. A member joins the multicast session by sending a JOIN message towards the root,

which then replies with a TREE message. Figure 7.10 shows an example where node 7876 is the root

of a multicast session, and node 1250 tries to join. The JOIN message from node 1250 traverses

nodes xxx6, xx76, x876, and 7876 via Tapestry unicast routing, where xxx6 denotes some node

that ends with 6. The root 7876 then sends a TREE message towards the new member, which sets up

the forwarding state at intermediate application-level routers. Note that while both control messages

are delivered by unicasting over the Tapestry overlay network, the JOIN and TREE paths might be

different, due to the asymmetric nature of Tapestry unicast routing.

When a router receives a TREE message, it adds the new member node ID to the list of

receiver node IDs that it is responsible for, and updates its forwarding table. For example, consider

node xx50 on the path from the root node to node 1250. Upon receiving the TREE message from the

root, node xx50 will add 1250 into its receiver ID list, and will duplicate and forward future packets

for this session to node x250. Similarly, a LEAVE message from an existing member triggers a PRUNE

message from the root, which trims from the distribution tree any routers whose forwarding states

become empty after the leave operation.

7.2.2 Evaluation of Base Design

Here, we compare the basic Bayeux algorithm against IP multicast and naive unicast.

By naive unicast we mean a unicast star topology rooted at the source that performs one-to-one

transmission to all receivers.

159

Simulation Setup

To evaluate our protocol, we implemented Tapestry unicast routing and the Bayeux tree

protocol as a packet-level simulator. Our measurements focus on distance and bandwidth metrics,

and do not model the effects of any cross traffic or router queuing delays.

We use the Stanford Graph Base library [69] to access four different topologies in our sim-

ulations (AS, MBone, GT-ITM and TIERS). The AS topology shows connectivity between Internet

autonomous systems (AS), where each node in the graph represents an AS as measured by the Na-

tional Laboratory for Applied Network Research based on BGP routing tables. The MBone graph

presents the topology of the MBone as collected by the SCAN project at USC/ISI on February

1999. To measure our metrics on larger networks, we turned to the GT-ITM [134] package, which

produces transit-stub style topologies, and the TIERS [32] package, which constructs topologies by

categorizing routers into LAN, MAN, and WAN routers. In our experiments, unicast distances are

measured as the shortest path distance between any two multicast members.

Performance Metrics

We adopt the two metrics proposed in [20] to evaluate the effectiveness of our application-

level multicast technique:

• Relative Delay Penalty, a measure of the increase in delay that applications incur while using

overlay routing. For Bayeux, it is the ratio of Tapestry unicast routing distances to IP unicast

routing distances. Assuming symmetric routing, IP Multicast and naive unicast both have a

RDP of 1.

• Physical Link Stress, a measure of how effective Bayeux is in distributing network load across

different physical links. It refers to the number of identical copies of a packet carried by a

physical link. IP multicast has a stress of 1, and naive unicast has a worst case stress equal to

number of receivers.

160

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDP

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 P

ai
rs

 o
f M

em
be

rs

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Figure 7.11: Cumulative distribution of RDP

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Stress of Physical Link

of

 P
hy

si
ca

l L
in

ks

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Unicast
Bayeux

Figure 7.12: Comparing number of stressed links
between naive unicast and Bayeux using Log
scale on both axis.

Snapshot Measurements

In this experiment, we used a topology generated by the transit-stub model consisting

of 50000 nodes, with a Tapestry overlay using node namespace size of 4096, ID base of 4, and a

multicast group size of 4096 members. Figure 7.11 plots the cumulative distribution of RDP on this

network. RDP is measured for all pairwise connections between nodes in the network. As we can

see, the RDP for a large majority of connections is quite low.

In Figure 7.12, we compare the variation of physical link stress in Bayeux to that under

naive unicast. We define the stress value as the number of duplicate packets going across a single

physical link. We pick random source nodes with random receiver groups, and measure the worst

stress value of all links in the tree built. We plot the number of links suffering from a particular

stress level on the Y-axis, against the range of stress levels on the X-axis. We see that relative

to unicast, the overall distribution of link stress is substantially lower. In addition, naive unicast

exhibits a much longer tail, where certain links experience stress levels up to 4095, whereas the

Bayeux measurement shows no such outliers. This shows that Bayeux distributes the network load

evenly across physical links, even for large multicast groups.

161

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Bayeux Dataflow

Tap. Location Ptrs

Root Search via Tap.

Root 3

Root 1

Tapestry
Location

Root

Receiver

Figure 7.13: Receivers self-configuring into Tree Partitions

7.2.3 Scalability Enhancements

In this section, we demonstrate and evaluate optimizations in Bayeux for load-balancing

and increased efficiency in bandwidth usage. These enhancements, Tree Partitioning and Receiver

Clustering, leverage Tapestry-specific properties, and are unique to Bayeux.

Tree Partitioning

The source-specific service model has several drawbacks. First, the root of the multicast

tree is a scalability bottleneck, as well as a single point of failure. Unlike existing multicast protocols,

the non-symmetric routing in Bayeux implies that the root node must handle all join and leave

requests from session members. Second, only the session root node can send data in a source-specific

service model. Although the root can act as a reflector for supporting multiple senders [54], all

messages have to go through the root, and a network partition or root node failure will compromise

the entire group’s ability to receive data.

To remove the root as a scalability bottleneck and point of failure, Bayeux includes a Tree

Partitioning mechanism that leverages the Tapestry location mechanism. The idea is to create

multiple root nodes, and partition receivers into disjoint membership sets, each containing receivers

closest to a local root in network distance. Receivers organize themselves into these sets as follows:

1. Integrate Bayeux root nodes into a Tapestry network.

162

2. Name an object O with the hash of the multicast session name, and place O on each root.

3. Each root advertises O in Tapestry, storing pointers to itself at intermediate hops between it

and the Tapestry location root, a node deterministically chosen based on O.

4. On JOIN, new member M uses Tapestry location services to find and route a JOIN message to

the nearest root node R.

5. R sends TREE message to M , now a member of R’s receiver set.

Figure 7.13 shows the path of various messages in the tree partitioning algorithm. Each

member M sends location requests up to the Tapestry location root. Tapestry location services

guarantee M will find the closest such root with high probability [95, 50]. Root nodes then use

Tapestry routing to forward packets to downstream routers, minimizing packet duplication where

possible. The self-configuration of receivers into partitioned sets means root replication is an efficient

tool for balancing load between root nodes and reducing first hop latency to receivers when roots are

placed near listeners. Bayeux’s technique of root replication is similar in principle to root replication

used by many existing IP multicast protocols such as CBT [8] and PIM [35, 36]. Unlike other root

replication mechanisms, however, we do not send periodic advertisements via the set of root nodes,

and members can transparently find the closest root given the root node identifier.

We performed preliminary evaluation of our root replication algorithms by simulation.

Our simulation results on four topologies (AS, MBone, Transit-stub and TIERS) are quite similar.

Here we only show the Transit-stub results for clarity. We simulate a large multicast group that

self-organizes into membership partitions, and examine how replicated roots impact load balancing

of membership operations such as join. Figure 7.14 shows the average number of join requests

handled per root as members organize themselves around more replicated roots. While the mean

number of requests is deterministic, it is the standard deviation which shows how evenly join

requests are load-balanced between different replicated roots. As the number of roots increases, the

standard deviation decreases inversely, showing that load-balancing does occur, even with randomly

163

0 5 10 15 20 25 30 35
−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Multicast Roots
A

ve
ra

ge
 N

um
be

r
of

 J
oi

ns
 H

an
dl

ed
 b

y
a

M
ul

tic
as

t R
oo

t

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4063>

transit−stub 5000

Figure 7.14: Membership Message Load Balancing by Roots

Root Nodes
Bayeux

Cluster of 16 Cluster of 16

Cluster of 16

Cluster of 16Cluster of 16

0200

nodes *200

**00 **29

1200, 2200...

0100

Cluster of 16
nodes *100

1100, 2100... 0629
1629, 2629...

nodes *629

nodes *429

0429
1429, 2429...

nodes *510

0510
1510, 2510...

**10

nodes *310

0310
1310, 2310...

Figure 7.15: Receiver ID Clustering according
to network distance

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

Fraction of domains that use receiver identifier clustering

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, CLUSTER SIZE 16>

transit−stub 50000

Figure 7.16: Worst case physical link stress vs.
fraction of domains that use receiver ID cluster-
ing for the transit-stub model

distributed roots, as in our simulation. One can argue that real-life network administrators can do

much better by intelligently placing replicated roots to evenly distribute the load.

Receiver Identifier Clustering

To further reduce packet duplication, Bayeux introduces the notion of receiver node ID

clustering. Tapestry delivery of Bayeux packets approaches the destination ID digit by digit, and

one single packet is forwarded for all nodes sharing a suffix. Therefore, a naming scheme that

provides an optimal packet duplication tree is one that allows local nodes to share the longest

164

possible suffix. For instance, in a Tapestry 4-digit hexadecimal naming scheme, a group of 16 nodes

in a LAN should be named by fixing the last 3 digits (XYZ), while assigning each node one of the 16

result numbers (0XYZ, 1XYZ, 2XYZ, etc.) This means upstream routers delay packet duplication

until reaching the LAN, minimizing bandwidth consumption and reducing link stress. Multiples of

these 16-node groups can be further organized into larger groups, constructing a clustered hierarchy.

Figure 7.15 shows such an example. While group sizes matching the Tapestry ID base are unlikely,

clustered receivers of any size will show similar benefits. Also note that while Tapestry routing

assumes randomized naming, organized naming on a small scale will not impact the efficiency of a

wide-area system.

To quantify the effect of clustered naming, we measured link stress versus the fraction of

local LANs that utilize clustered naming. We simulated 256 receivers on a Tapestry network using

ID base of 4 and IDs of 6 digits. The simulated physical network is a transit stub modeled network of

50000 nodes, since it best represents the natural clustering properties of physical networks. Receivers

are organized as 16 local networks, each containing 16 members. Figure 7.16 shows the dramatic

decrease in worst cast link stress as node names become more organized in the local area. By

correlating node proximity with naming, the duplication of a single source packet is delayed until

the local router, reducing bandwidth consumption at all previous hops. The result shows an inverse

relationship between worst case link stress and local clustering.

7.2.4 Fault-resilient Packet Delivery

In this section, we examine how Bayeux leverages Tapestry’s routing redundancy to main-

tain reliable delivery despite node and link failures. Each entry in the Tapestry neighbor map

maintains secondary neighbors in addition to the closest primary neighbor. In Bayeux, member-

ship state is kept consistent across Tapestry nodes in the primary path from the session root to all

receivers. Routers on potential backup routes branching off the primary path do not keep mem-

ber state. When a backup route is taken, the node where the branching occurs is responsible for

165

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of failed links

F
ra

ct
io

n
of

 r
ou

tin
g

co
nd

iti
on

s
A

, B
, C

, D
, E

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, TIERS 5000>

A
B
C
D
E

Figure 7.17: Maximum Reachability via Multiple Paths vs. Fraction of Failed Links in Physical
Network

forwarding on the necessary member state to ensure packet delivery.

We explore in this section approaches to exploit Tapestry’s redundant routing paths for

efficient fault-resilient packet delivery, while minimizing the propagation of membership state among

Tapestry nodes. We first examine fault-resilient properties of the Tapestry hierarchical and redun-

dant routing paths, then present several possible protocols and present some simulation results.

Infrastructure Properties

A key feature of the Tapestry infrastructure is its backup routers per path at every routing

hop. Before examining specific protocols, we evaluate the maximum benefit such a routing structure

can provide. To this end, we used simulation to measure maximum connectivity based on Tapestry

multi-path routes. At each router, every outgoing logical hop maintains two backup pointers in

addition to the primary route.

Figure 7.17 shows maximum connectivity compared to IP routing. We used a topology

generated by the TIERS model consisting of 5000 nodes and 7084 links. Results are similar for

other topologies. We used a Tapestry node identifer namespace size of 4096, a base of 4, and a

multicast group size of 256 members. Links are randomly dropped, and we monitor the reachability

of IP and Tapestry routing. As link failures increase, region A shows probability of successful IP and

Tapestry routing. Region C shows cases where IP fails and Tapestry succeeds. Region E represents

166

Convergence vs Branch Position

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

Position of Branch Point

A
ve

ra
g

e
H

o
p

s
B

ef
o

re
C

o
n

ve
rg

en
ce

Secondary Branch Tertiary Branch

Figure 7.18: Average Hops Before Convergence vs. Position of Branch Point

cases where the destination is physically unreachable. Finally, region B shows instances where IP

succeeds, and Tapestry fails; and region D shows where both protocols fail to route to a reachable

destination. Note that regions B and D are almost invisible, since the multiple paths mechanism

in Tapestry finds a route to the destination with extremely high probability, if such a route exists.

This result shows that by using two backup pointers for each routing map entry, Tapestry achieves

near-optimal maximum connectivity.

Another notable property of the Tapestry routing infrastructure is its hierarchical na-

ture [142]. All possible routes to a destination can be characterized as paths up to a tree rooted at

the destination. With a random distribution of names, each additional hop decreases the expected

number of next hop candidates by a factor equal to the base of the Tapestry identifier. This prop-

erty means that with evenly distributed names, paths from different nodes to the same destination

converge within an expected number of hops equal to Logb(D), where b is the Tapestry digit base,

and D is number of nodes between the two origin nodes in the network.

This convergent nature allows us to intentionally fork off duplicate packets onto alternate

paths. Recall that the alternate paths from a node are sorted in order of network proximity to

it. The expectation is that a primary next hop and a secondary next hop will not be too distant

in the network. Because the number of routers sharing the required suffix decreases quickly with

167

each additional hop, alternate paths are expected to quickly converge with the primary path. We

confirm this hypothesis via simulation in Figure 7.18. On a transit-stub topology of 5000 nodes,

Tapestry IDs with base 4, where the point to point route has 6 logical hops, we see that convergence

occurs very quickly. As expected, an earlier branch point may incur more hops to convergence, and

a secondary route converges faster than a tertiary route.

Fault-resilient Delivery Protocols

We now examine more closely a set of Bayeux packet delivery protocols that leverages

the redundant route paths and hierarchical path reconvergence of Tapestry. While we list several

protocols, we only present simulation results for one, and continue to work on simulation and analysis

of the others. The protocols are presented in random order as follows:

1. Proactive Duplication: Each node forwarding data sends a duplicate of every packet to its

first backup route. Duplicate packets are marked, and routers on the secondary path cannot

duplicate them, and must forward them using their primary routers at each hop.

The hypothesis is that duplicates will all converge at the next hop, and duplication at each hop

means any single failure can be circumvented. While incurring a higher overhead, this protocol

also simplifies membership state propagation by limiting traffic to the primary paths and first

order secondary nodes. Membership state can be sent to these nodes before the session. This

protocol trades off additional bandwidth usage for circumventing single logical hop failures.

2. Application-specific Duplicates: Similar to previous work leveraging application-specific data

distilling [93], this protocol is an enhancement to Proactive Duplication, where an application-

specific lossy duplicate is sent to the alternate link. In streaming multimedia, the duplicate

would be a reduction in quality in exchange for smaller packet size. This provides the same

single-failure resilience as protocol 1, with lower bandwidth overhead traded off for quality

degradation following packet loss on the primary path.

168

3. Prediction-based Selective Duplication: This protocol calls for nodes to exchange periodic UDP

probes with their next hop routers. Based on a moving history window of probe arrival success

rates and delay, a probability of successful delivery is assigned to each outgoing link, and a

consequent probability calculated for whether a packet should be sent via each link. The

weighted expected number of outgoing packets per hop can be varied to control the use of

redundancy (e.g between 1 and 2).

When backup routes are taken, a copy of the membership state for the next hop is sent along

with the data once. This protocol incurs the overhead of periodic probe packets in exchange

for the ability to adapt quickly to transient congestion and failures at every hop.

4. Explicit Knowledge Path Selection: This protocol calls for periodic updates to each node from

its next hop routers on information such as router load/congestion levels and instantaneous

link bandwidth utilization. Various heuristics can be employed to determine a probability

function which choose the best outgoing path for each packet. Packets are not duplicated.

5. First Reachable Link Selection: This protocol is a relatively simple way to utilize Tapestry’s

routing redundancy. Like the previous protocol, a node receives periodic UDP packets from

its next hop routers. Based on their actual and expected arrival times, the node can construct

a brief history window to predict short-term reliability on each outgoing route. Each incoming

data packet is sent on the shortest outgoing link that shows packet delivery success rate

(determined by the history window) above a threshold. No packet duplication takes place.

When a packet chooses an alternate route, membership state is sent along with the data. This

protocol is discussed more in Section 7.2.4.

Note that several of these protocols (1, 2, 3) may send additional packets down secondary

or tertiary routes in addition to the original data. As we have shown in Figure 7.18, the bandwidth

overhead of those protocols is limited, since the duplicates quickly converge back on to the primary

path, and can be suppressed. This gives us the ability to route around single node or link failures.

169

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of failed links

F
ra

ct
io

n
of

 r
ou

tin
g

co
nd

iti
on

s
A

, B
, C

, D
, E

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, TIERS 5000>

A
B
C
D
E

Figure 7.19: Fault-resilient Packet Delivery using First Reachable Link Selection

Duplicate packet supression can be done by identifying each packet with a sequential ID, and keeping

track of the packets expected but not received (in the form of a moving window) at each router.

Once either the original or the duplicate packet arrives, it is marked in the window, and the window

boundary moves if appropriate. All packets that have already been received are dropped.

First Reachable Link Selection

Each of the above protocols has advantages and disadvantages, making them best suited

for a variety of different operating conditions. We present here preliminary evaluation of First

Reachable Link Selection (FRLS), by first examining its probability of successful packet delivery,

and then simulating the increasing latency associated with sending membership state along with the

data payload.

Figure 7.19 shows that FRLS delivers packets with very high success rate despite link

failures. The regions are marked similarly to that of Figure 7.17, where region A represents successful

routing by IP and Tapestry, region B is where IP succeeds and Tapestry fails, region C is where IP

fails and Tapestry succeeds, region D is where a possible route exists but neither IP nor Tapestry

find it, and region E is where no path exists to the destination. When compared to Figure 7.17,

we see that by choosing a simple algorithm of taking the shortest predicted-success link, we gain

170

Packet Delivery Latency vs. Link Failures

0

5

10

15

20

25

30

35

40

45

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

% of Failed Links

A
ve

ra
g

e
P

ac
ke

t
D

el
iv

er
y

L
at

en
cy

Tap.ID Base 8 Tap.ID Base 4

Figure 7.20: Bandwidth Delay Due to Member State Exchange in FRLS

almost all of the potential fault-resiliency of the Tapestry multiple path routing. The end result is

that FRLS delivers packets with high reliability in the face of link failures.

FRLS delivers packets with high reliability without packet duplication. The overhead comes

in the form of bandwidth used to pass along membership state to a session’s backup routers. FRLS

keeps the membership state in each router on the primary path that the packets traverse. The size

of membership state transmitted decreases for routers that are further away from the data source

(multicast root). For example, a router with ID “475129” that is two hops away from the root keeps

a list of all members with Tapestry IDs ending in 29, while another router 420629 two hops down the

multicast tree will keep a list of all members with IDs ending in 0629. When a backup route is taken

and routing branches from the primary path, the router at the branching point forwards the relevant

portion of its own state to the branch taken, and forwards it along with the data payload. This

causes a delay for the multicast data directly proportional to the size of member state transmitted.

We plot a simulation of average delivery latency in FRLS, including the member state

transmission delay, on a transit-stub 5000 node topology, using both base 4 and base 8 for Tapestry

IDs. Note that average time to delivery does not include unreachable nodes as failure rate increases.

Figure 7.20 shows that as link failures increase, delivery is delayed, but not dramatically. The

standard deviation is highest when link failures have forced half of the paths to resort to backup

171

Client Node

fv2, fv3}

Look up approximate
object with FV = {fv1,

(2) send msg
to "guid1" �����

�����
�����

�����
�����
�����
����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

DOLR Layer

{guid1}

{guid1, guid4}

{guid2, guid3}

fv1

fv4

fv3

return GUID object set {guid1}

return GUID object set {guid1, guid4}

(1) look up fv1

(1) look up fv2
(1) look up fv3

"LocationFailure" msg

Object Node X

Object Node Y

Figure 7.21: Location of an approximate object. Client node wants to send a message to all objects
with at least 2 feature in {fv1, fv2, fv3}. It first sends lookup message to feature fv1, fv2 and
fv3. fv2 does not exists. A Location Failure message is sent back. fv1 is managed by object node
X. It sends back a list of IDs of all objects having feature fv1, which is {guid1}. Similar operation
is done for feature fv3, whose IDs list {guid1, guid4}. Client node counts the occurrence of all
IDs in all lists and finds out guid1 to be the ID it is looking for. It then sends the payload message
to object guid1 using Tapestry location message.

links, and it spikes again as the number of reachable receivers drops and reduces the number of

measured data points.

7.3 Approximate Location and Spam Filtering

In this section, we discuss an extension to DOLR systems to publish objects using generic

feature vectors instead of content-hashed GUIDs, which enables the systems to locate similar objects.

We discuss the design of a distributed text similarity engine, named Approximate Text Addressing

(ATA), built on top of this extension that locates objects by their text descriptions. We then

outline the design and implementation of a motivating application on ATA, a decentralized spam-

filtering service. We evaluate this system with 30,000 real spam email messages and 10,000 non-spam

messages, and find a spam identification ratio of over 97% with zero false positives.

7.3.1 Approximate DOLR

DOLR systems like Tapestry provide deterministic, scalable, and efficient location and

routing services, making them attractive platforms for deploying wide-area network applications.

172

Files, in particular, can be located efficiently if their canonical name is known. Previous approaches,

however, generate Globally Unique IDentifiers (GUID) by a secure hash (e.g. SHA-1) of the content.

This approach significantly limits the usability of the system in scenarios where users do not known

exact names of objects, but rather perform searches based on general characteristics of the system.

In particular, these scenarios might include searches for data that closely approximates, or is similar

to known data with certain properties. Examples might include searching for audio or video that

matches existing works in content features, or searching or lightly modified replicas of existing data.

Approximate DOLR Design

Here we propose an extension to DOLR, Approximate DOLR, as a generic framework to

address some of the needs of these applications. In an ADOLR system, we apply application-specific

analysis to given objects to generate feature vectors that describe its distinctive features, and provide

a translation mechanism between these application-driven features and a traditional GUID obtained

from a secure content hash of the object contents.

This query ability on features applies to a variety of contexts. In the world of multimedia

search and retrieval, we can extract application-specific characteristics, and hash those values to

generate feature vectors. Any combination of field to value mappings can be mapped to a feature

vector, given a canonical ordering of those fields. For example, this can be applied to searching

for printer drivers given printer features such as location, manufacturer, and speed. If features are

canonically ordered as [location, manufacturer, speed], then an example feature vector might

be [hash(443 Soda), hash(HP), hash(12ppm)].

Each member of the vector, a feature, is an application-specific feature encoded as a hashed

identifier. For each feature f, an object (feature object) is stored within the network. The feature

object is a simple object that stores the list of GUIDs of all objects whose feature vectors include f.

Clients searching for objects with a given feature set finds a set of feature objects in the network,

each associated with a single feature, and selects the GUIDs which appear in at least T feature

173

objects, where T is a tunable threshold parameter used to avoid false positives while maintaining

the desired generality of matches.

The “publication” of an object O in an ADOLR system proceeds as follows. First, its

content-hash derived GUID is first published using the underlying P2P DOLR layer. This assures

that any client can route messages to the object given its GUID. Next, we generate a feature vector

for O. For each feature in the vector, we try to locate its associated feature object. If such an object

is already available in the system, we append the current GUID to that object. Otherwise, we create

a new feature object identified by the feature, and announce its availability into the overlay.

To locate an object in an ADOLR system, we first retrieve the feature object associated with

each entry of the feature vector. We count the number of distinct feature objects each unique GUID

appears in, and select the GUID(s) that appear in a number greater than some preset threshold.

The GUID(s) are then used to route messages to the desired object.

The ADOLR API is as follows:

• PublishApproxObject (FV, GUID). This publishes the mapping between the feature

vector and the GUID in the system. A feature vector is a set of feature values of the object,

whose definition is application specific. Later, one can use the feature vector instead of the

GUID to search for the object. Notice that PublishApproxObject only publishes the map-

ping from FV to GUID. It does not publish the object itself, which should be done already using

publish primitive of Tapestry when PublishApproxObject is called.

• UnpublishApproxObject (FV, GUID). This removes the mapping from the FV to the

GUID if this mapping exists in the network, which is the reverse of PublishApproxObject.

• RouteToApproxObject (FV, THRES, MSG). This primitive routes a message to the

location of all objects which overlap with our queried feature vector FV on more than THRES

entries. The basic operations involve for each feature, retrieving a list of GUIDs that share

that feature, doing a frequency count to filter out GUIDs that match at least THRES of those

174

features, and finally routing the payload message MSG to them. For each object in the system

with feature vector FV ∗, the selection criterion is:

|FV ∗ ⋂
FV | ≥ THRES AND 0 < THRES ≤ |FV |

The location operation is deterministic, which means all existing object IDs matching the

criterion will be located and be sent the payload message. However, it is important to notice

that this does not mean every matching object in the system will receive the message, because

each object ID may correspond to multiple replicas, depending on the underlying DOLR

system. The message will be sent to one replica of each matching object ID, hopefully a

nearby replica if the DOLR utilizes locality.

With this interface, we reduce the problem of locating approximate objects on P2P systems

to finding a mapping from objects and search criteria to feature vectors. The mapping should

maintain similarity relationships, such that similar objects are mapped to feature vectors sharing

some common entries. We show one example of such a mapping for text documents in Section 7.3.2.

A Basic ADOLR Prototype on Tapestry

Here we describe an Approximate DOLR prototype that we have implemented on top of

the Tapestry API. The prototype serves as a proof of concept, and is optimized for simplicity. The

prototype also allows us to gain experience into possible optimizations for performance, robustness

and functionality.

The prototype leverages the DOLR interface for publishing and locating objects, given

an associated identifier. When PublishApproxObject is called on an object O, it begins by

publishing O’s content-hashed object GUID using Tapestry. Then the client node uses Tapestry to

send messages to all feature objects involved. Tapestry routes these messages to the nodes where

these feature objects are stored. These nodes then add the new object GUID to the list of GUIDs

inside the feature object. If any feature object is not found in the network, the client node receives

175

Client Node

FV={fv1, fv2, fv3, fv4}

Send a message to
approximate object with

����
����
����
����guid1

match FV
look up and

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

DOLR Layer

To fv3: (FV, msg)

Object Node X

{guid1}

{guid1, guid2}

{guid1, guid3}

guid1{fv1, fv3, fv4, fv5}

guid2{fv4, fv6, fv7, fv8}

guid3{fv3, fv9, fv10, fv11}

fv1

fv4

fv3
To fv1: (FV, msg)

To fv2: (FV, msg)

To fv4: (FV, msg)

msg

Figure 7.22: Optimized ADOLR location. Client node wants to route a message to a feature vector
{fv1, fv2, fv3, fv4}. It sends message to each identifier fv1, fv2, fv3, fv4. fv2 doesn’t exist,
so no object node receives this message. When object node X receives the messages to fv1, fv3 and
fv4, it scans its local storage for all IDs matching fv1, fv3 and fv4, which is guid1. Then, object
node X sends msg to guid1.

a LocationFailure message, creates a new feature object containing the new object, and publishes

it.

For the RouteToApproxObject call, the client node first uses Tapestry location to send

messages to all feature objects, asking for a list of IDs associated with each feature value. Nodes

where these feature objects reside receive these messages, do the lookup in their maps and send

back the result. LocationFailure messages are sent back for nonexistent feature objects, and are

counted as an empty ID list. The client node counts the occurrence of each GUID in the resulting

lists. GUIDs with less than the threshold number of counts are removed. Finally, the message in this

call is sent to the remaining object GUIDs An example of executing a RouteToApproxObject

call is shown in Figure 7.21.

Note that an analogous system can be implemented on top of a distributed hash table

(DHT) abstraction on P2P systems. Instead of routing messages to previously published feature

objects, one would retrieve each feature object by doing a get operation, appending the new GUID,

and putting the object back using put.

Optimizing ADOLR Location

Our initial description of the RouteToApproxObject operation involves several round-

trips from the client node to nodes where the feature objects are stored. We propose two opti-

176

mizations here that eliminates a network round-trip, reducing overall latency to that of a normal

RouteToObject in a DOLR system at the cost of keeping a small amount of state on overlay nodes.

The first optimization involves a client node caching the result of translating a feature vector to a

GUID. now all future messages to the same feature vector are routing to the cached GUID.

The second optimization is more complex, and illustrated in Figure 7.22. Normally, the

client node retrieves a set of feature objects, counts GUID occurrences locally, then routes a message

to the resulting GUID(s). The intuition here is that if features are identified as hashed keys with

reasonably low collision rates, each feature will likely only identify a small number (one or two) of

objects with that feature. Furthermore, multiple feature objects are likely to be colocated together

along with the object they identify, because new feature objects are created by the same node where

the object is stored. Another way to look at this is that the feature object is in most cases published

at the same time with the object itself by the same node. This implies we can route the application-

level message to each feature in the feature vector, and expect it to arrive at the node where the

desired object is stored.

The key change here is that any node that is storing a feature object, (a file providing a

mapping from a feature to all GUIDs that share that feature), also stores the feature vectors of each

of those GUIDs. Routing a message to a feature vector {X, Y, Z} means sending the message to

each identifier X , Y , and Z. Each message also includes the entire feature vector we’re querying for.

When a node receives such a message, it immediately scans its local storage for all feature objects

matching X , Y , or Z. For each GUID in these feature objects, the node determines the amount of

overlap between its feature vector and the queried feature vector. If the overlap satisfies the query

threshold, the message is delivered to that GUID’s location.

This implies that any of the query messages contains enough information for a node to

completely evaluate the ADOLR search on local information. If any locally stored feature objects

contain references to matching objects, they can be evaluated immediately to determine if it satisfies

the query. Because each message contains all necessary information to deliver the payload to the

177

desired GUID, the set of messages sent to X , Y , and Z provide a level of fault-resilience against

message loss. Finally, the determination of the desired GUID can occur when the first message is

received, instead of waiting for all messages to arrive.

The translation from the feature vector to one or more GUIDs occurs in the network, not

the client node. This provides significant communication savings.

Nodes need to keep more state to support this optimization, however. In addition to storing

feature objects (that keep the mapping between feature values and GUIDs), they also need to keep

track of previously resolved feature vectors in order to drop additional requests for the same feature

vector. This state can be stored on a temporary basis, and removed after a reasonable period of

time (during which any other requests for the same feature vector should have arrived).

Concurrent Publication

There is one problem with the PublishApproxObject implementation described above.

The lookup of feature objects and publication of new feature objects are not atomic. This can result

in multiple feature objects for the same feature value being published if more than one node tries to

publish an object with this feature value concurrently.

We propose two solutions. First, we can exploit the fact that every object is mapped to a

unique root node and serialize the publication on the root node. Every node is required to send a

message to the root node of the feature value to obtain a leased lock before publishing the feature

object. After the lock is acquired by the first node, other nodes trying to obtain it will fail, restart

the whole process, and find the newly published feature object. This incurs another round-trip

communication to the root node.

In a more efficient “optimistic” way to solve this problem, the client node always assumes

the feature object does not exist in the network. It tries to publish the object without doing a

lookup beforehand. When the publication message travels through the network, each node checks

whether it knows about an already published feature object with the same feature value. If such an

178

object does exist, some node or at least the root will know about this. The node who detects this

then cancels this publication and sends an message to the existing feature object to “merge” the

new information. This process is potentially more efficient since conflicts should be rare. In general,

the operation is accomplished with a single one-way publication message.

This optimistic approach can easily be implemented on top of DOLRs such as Tapestry

using the recently proposed common upcall interface for peer to peer (P2P) overlays [28]. This

proposed upcall interface allows P2P applications to override local routing decisions. Specifically, a

node can “intercept” the publication message and handle conflicts as specified above.

7.3.2 Approximate Text Addressing

In this section, we present the design for the Approximate Text Addressing facility built

on the Approximate DOLR extension, and discuss design decisions for exploring trade-offs between

computational and bandwidth overhead and accuracy.

Finding Text Similarity

Our goal is to efficiently match documents distributed throughout the network that share

strong similarities in their content. We focus here on highly similar files, such as modified email

messages, edited documents, or news article published on different web sites.

The algorithm is as follows. Given a text document, we use a variant of block text fin-

gerprinting first introduced in [81] to generate a set of fingerprints. The fingerprint vector of a

document is used as its feature vector in publication and location, using the Approximate DOLR

layer.

To calculate a block text fingerprint vector of size N for a text document, we divide the

document into all possible consecutive substrings of length L. A document of length n characters

will have (n − L + 1) such strings. Calculating checksums of all such substrings is a fast operation

which scales with n. We sort the set of all checksums by value, select a size N subset with the

179

N

...
... Vector

Fingerprint

...
...

...
Checksum
Substring

L

n

S
 O

 R
 T

S
 E

 L
 E

 C
 T

R
 E

 V
 E

 R
 S

 E

1303805399

7518253209

8814255728

Figure 7.23: Fingerprint Vector. A fingerprint vector is generated from the set of checksums of all
substrings of length L, post-processed with sort, selection and reverse operations.

highest values, and reverse each checksum by digit (i.e. 123 ⇒ 321). This deterministically selects

a random set without biasing the ID for prefix or numerical routing.

L is a parameterized constant chosen for each application to tune the granularity of sim-

ilarity matches. For example, a size L of 50 might work well for email, where complete sentences

might account for one substring; but less well for source code, where code fragments are often much

longer in length. Figure 7.23 illustrates the fingerprint process. The calculation is not expensive.

Our Java prototype has a processing throughput of > 13MB/s for L = 50 on a 1Ghz PIII laptop.

Trade-offs

There are obvious trade-offs between network bandwidth used and the accuracy of the

search. First, the greater the number of entries N in a vector, the more accurate the match (less

false-positives), and also the greater number of parallel lookup requests for each document. Next,

the distance each lookup requests travels directly impacts bandwidth consumption on the overall

network. ATA-enabled applications 4 can benefit from exploiting network-locality by matching

against similar documents nearby in the network via a DOLR/DHT with object location locality

such as Tapestry. Finally, a trade-off exists between the number of publishers (those who indicate

they have a particular document), and the resources required for a client to find a match in their

4Some example applications include spam filters, plagiarism detection and news article clustering.

180

query. Bandwidth and accuracy can be tuned by placing a Time-to-Live (TTL) field on the lookup

query, constraining the scope of query messages. Clients who fail to find a match may publish their

own documents, improving lookup performance for other clients. These are explored in detail in

Section 7.3.4.

7.3.3 Decentralized Spam Filtering

Spam, or unsolicited email, wastes time and valuable network resources, causing headaches

for network administrators and home users alike. Currently the most widely-deployed spam filtering

systems scale to a university- or company- wide network, and use keyword matching or source address

matching [118]. Although easy to deploy and manage, these systems often walk a fine line between

letting spam through and blocking legitimate emails. Our observation is that human recognition is

the only fool-proof spam identification tool. Therefore, we propose a decentralized spam filter that

pools the collective spam recognition results of all readers across a network.

There already exist centralized collaborative spam filtering systems, such as SpamNet [119],

which claims to be peer-to-peer but actually uses a Napster-like architecture. To our knowledge ours

is the first attempt to build a truly decentralized collaborative spam filtering system. Compared

to alternative university-wide centralized collaborated designs, the most important benefit of our

wide-area decentralized design lies in the fact that the effectiveness of the system grows with the

number of its users. In such a system with huge number of users world-wide, it is highly probable

that every spam email you receive has been received and identified by somebody else before because

of the large number of users. The deterministic behavior of DOLR systems will prove useful, because

when any single peer publishes information about a specific email, that piece of information can be

deterministically found by all clients. Therefore we can expect this system to be more responsive

to new spam than systems in which different nodes publish/exchange spam information at certain

intervals, such as [31]. Additionally, decentralized systems provide higher availability and resilience

to failures and attacks than similar centralized solutions such as SpamNet.

181

Basic Operation

The decentralized spam filtering system consists of two kinds of nodes, user agents and

peers. User agents are extended email client programs that users use. They query peers when new

emails are received and also send user’s feedback regarding whether a certain email is or is not

spam to peers. A peer is a piece of long-running software that is installed typically on a university,

department or company server that speaks to other peers worldwide and forms a global P2P network.

When an email client receives a message from the server, the user agent extracts the body

of the mail, drops format artifacts like extra spaces and HTML tags, generates a fingerprint vector,

and sends it to a peer in the DOLR system. The peer in turn queries the network using the

Approximate DOLR API to see if information on the email has been published. If a match is found,

and it indicates the email is spam, the email will be filed separately or discarded depending on user

preference. Otherwise, the message is delivered normally. If the user marks a new message as spam,

the user agent marks the document, and tells the peer to publish this information into the network.

Enhancements and Optimizations

The basic design above allows human identification of spam to quickly propagate across

the network, which allows all users of the system to benefit from the feedback of a few. There

are several design choices and optimizations which will augment functionality and reduce resource

consumption.

Our fingerprint vectors make reverse engineering and blocking of unknown emails very

difficult. With the basic system, however, attackers can block well known messages (such as those

from group mailing lists). We propose to add a voting scheme on top of the publish/search model.

A count of positive and negative votes is kept by the system, and each user can set a threshold value

for discarding or filing spam using the count as a confidence measure. A central authority controls

the assignment and authentication of user identities. A user agent is required to authenticate itself

before being able to vote for or against an email. Thus we can restrict the number of votes a certain

182

user agent can perform on a certain email.

Another type of attack is for spammers to find arbitrary text segments with checksum val-

ues more likely to be selected by the fingerprint selection algorithm. By appending such “preferred”

segments to their spam emails, spammers can fix the resulting email fingerprint vectors to attempt

to avoid detection. Note that this attack can only succeed if a continuous stream of unique text

segments are generated and an unique segment is appended to each spam message. This places a sig-

nificant computational overhead on the spammer that scales with the number of spam messages sent.

Additionally, mail clients can choose randomly from a small set of fingerprint calculation algorithms.

Different fingerprinting methods can include transforming the text before calculating the checksums,

changing the checksum method, or changing the fingerprint selection method. To circumvent this,

the spammer would need to first determine the set of fingerprint algorithms, and then append a

set of preferred segments, each segment overcoming a known selection algorithm. While different

fingerprint algorithms generate distinct spam signatures for the same spam, partitioning the user

population and reducing the likelihood of a match, it also requires significantly more computational

overhead to overcome.

Optimizations can be made for centralized mail servers to compute fingerprint vectors for

all incoming messages. These vectors can be compared locally to identify “popular” messages, and

lookups performed to determine if they are spam. Additionally, the server can attach precomputed

fingerprint vectors and/or spam filtering results as custom headers to messages, reducing local com-

putation, especially for thin mail clients such as PDAs.

7.3.4 Evaluation

In this section, we use a combination of analysis, experimentation on random documents

and real emails to validate the effectiveness of our design. We look at two aspects of fingerprint-

ing, robustness to changes in content and false positive rates. We also evaluate fingerprint routing

constrained with time-to-live (TTL) fields, tuning the trade-off between accuracy and network band-

183

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of complete match for FP vector size x

Number of Matching Fingerprints

P
ro

ba
bi

lit
y

1K−sized, analytical
1K−sized, simulation
5K−sized, analytical
5K−sized, simulation

modify 10 consecutive
characters:

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of complete match for FP vector size x

Number of Matching Fingerprints

P
ro

ba
bi

lit
y

1K−sized, analytical
1K−sized, simulation
5K−sized, analytical
5K−sized, simulation

modify 50 consecutive
characters:

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of complete match for FP vector size x

Number of Matching Fingerprints

P
ro

ba
bi

lit
y

1K−sized, analytical
1K−sized, simulation
5K−sized, analytical
5K−sized, simulation

modify 25 characters
with 5 a group

Figure 7.24: Robustness Test (Experimental and Analytical). The probability of correctly recognizing
a document after modification, as a function of threshold. |FV | = 10.

width consumption.

Fingerprint on Random Text

We begin our evaluation by examining the properties of text fingerprinting on randomly

generated text. In particular, we examine the effectiveness of fingerprinting at matching text after

small modifications to their originals, and the likelihood of matching unrelated documents (false

positive rate).

Robustness to Changes in Content

We begin by examining the robustness of the fingerprint vector scheme against small

changes in a document, by measuring the probability a fingerprint vector stays constant when we

modify small portions of the document. We fix the fingerprint vector size, and want to measure the

184

robustness against small changes under different threshold constants (THRES).

In experiments, we take 2 sets of random text documents of size 1KB and 5KB, which

match small- and large-sized spam messages respectively, and calculate their fingerprint vectors

before and after modifying 10 consecutive bytes. This is similar to text replacement or mail merge

schemes often used to generate differentiated spam. We measure the probability of at least THRES

out of |FV | fingerprints matching after modification as a function of threshold (THRES) and the

size of the document (1KB or 5KB). Here, fingerprint vector size is 10, |FV | = 10. We repeat that

experiment with a modification of 50 consecutive bytes, simulating the replacement of phrases or

sentences and finally modifying 5 randomly placed words each 5 characters long.

In addition to the simulated experiments, we also developed a simple analytical model for

these changes based on basic combinatorics, the details of which can be found in [143]. For each

experiment, we plot analytical results predicted by our model in addition to the experimental results.

In Figure 7.24, we show for each scenario experimental results gathered on randomized

text files, by comparing fingerprint vectors before and after modifications. From Figure 7.24, we can

see our model predicts our simulation data almost exactly under all three patterns of modification.

More specifically, modifying 10 characters in the text only impacts 1 or 2 fingerprints out of 10

with a small probability. This means setting any matching threshold below 8 will guarantee near

100% matching rate. When we increase the length of the change to 50 characters, the results do

not change significantly, and still guarantee near perfect matching with thresholds below 7. Finally,

we note that multiple small changes (in the third experiment) have the most impact on changing

fingerprint vectors. Even in this case, setting a threshold value around 5 or less provides a near

perfect matching rate.

Avoiding False Positives

In addition to being robust under modifications, we also want fingerprint vectors to provide

a low rate of false positives (where unrelated documents generate matching entries in their vectors).

In this section, we evaluate fingerprint vectors against this metric with simulation on random text

185

10
3

10
4

10
5

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

False Positive Test

Document Size (Byte)

P
ro

ba
bi

lit
y

1 Matching Fingerprint
2 Matching Fingerprint

Probability of # Matching Fingerprint
between a Pair of Documents
(* >2 Matching Fingerprint = 0)

Figure 7.25: False Positives. The probability
of two random text files matching i (i = 1, 2)
out of 10 fingerprint vectors, as a function of
file size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15
0%

7%

14%

21%

28%

35%
Distribution of Junk Email Size

Email Size (KByte)

%
 o

f E
m

ai
ls

C
um

ulative %

20%

40%

60%

80%

100%

Figure 7.26: Spam Mail Sizes. Size distribu-
tion of the 29996 spam email messages used in
our experiments, using both histogram and CDF
representations.

documents. In Section 7.3.4, we present similar tests on real email messages.

First, we generate 100,000 random text files and find document pairs that match 1 out of

10 fingerprint entries. This experiment is done for different file sizes ranging from 1KB to 64KB.

Figure 7.25 shows the resulting false positive rate versus the file size. While the results for one

fingerprint match are already low, they can be made statistically insignificant by increasing the

fingerprint matches threshold (THRESH) for a “document match.” Out of all our tests (5 × 109

pairs for each file size), less than 25 pairs of files (file size > 32K) matched 2 fingerprints, no pairs

of files matched more than 2 fingerprints. This result, combined with the robustness result, tells us

that on randomized documents, a threshold from 2 to 5 fingerprints gives us a matching mechanism

that is both near-perfect in terms of robustness against small changes and absence of false positives.

Fingerprint on Real Email

We also repeat the experiments in Section 7.3.4 on real emails. We collected 29996 total

spam email messages from http://www.spamarchive.org. Histogram and CDF representations of

their size distribution are shown in Figure 7.26.

In order to get an idea of whether small modifications on spam email is a common practice

of spammers, we used a variant of our fingerprint techniques to fully categorize the email set for

uniqueness. We personally confirmed the results. We found that, out of all these 29996 junk emails,

186

THRES Detected Failed Total Succ. %
3 3356 84 3440 97.56
4 3172 268 3440 92.21
5 2967 473 3440 86.25

Table 7.1: Robustness Test on Real Spam
Emails. Tested on 3440 modified copies of 39
emails, 5629 copies each. |FV | = 10.

Match FP # of Pairs Probability
1 270 1.89e-6
2 4 2.79e-8

>2 0 0

Table 7.2: False Positive Test on Real Spam
Emails. Tested on 9589(normal)×14925(spam)
pairs. |FV | = 10.

there are:

• 14925 unique junk emails.

• 9076 modified copies of 4585 unique ones.

• 5630 exact copies of the unique ones.

From statistics above, we can see that about 1/3 junk emails have modified version(s),

despite that we believe the collectors of the archive have already strive to eliminate duplicates. This

means changing each email they sent is really a common technique used by spammers, either to

prevent detection or to misdirect the end user.

We did the robustness test on 3440 modified copies of 39 most “popular” junk emails in the

archive, which have 5−629 copies each. The standard result is human processed and made accurate.

The fingerprint vector size is set to 10, |FV | = 10. We vary threshold of matching fingerprint from

3 to 5, and collect the detected and failed number. Table 7.3.4 shows the successful detection rate

with THRES = 3, 4, 5 are satisfying.

For the false positive test, we collect 9589 normal emails, which is compose of about half

from newsgroup posts and half from personal emails of project members. Before doing the exper-

iment, we expect collisions to be more common, due to the use of common words and phrases in

objects such as emails. We do a full pair-wise fingerprint match (vector size 10) between these 14925

unique spam emails and 9589 legitimate email messages. Table 7.2 shows that only 270 non-spam

email messages matched some spam message with 1 out of 10 fingerprints. If we raise the match

threshold T to 2 out of 10 fingerprints, only 4 matches are found. For match threshold more than

187

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Expected Latency (ms)

0.5%
1%
2%
3%
4%
5%
10%

Mark Rate

 1 2 0 TTL= 3

Success Probability vs. Expected Latency and TTL

Figure 7.27: Finding an Ideal TTL. A graph that shows, for a “marked” document, the correlation
between TTL values on queries, probability of a successful search, and percentage of nodes in the
network who “marked” it.

2, no matches are found. We conclude that false positives for threshold value T > 1 are very rare

(∼ 10−8) even for real text samples.

Efficient Fingerprint Routing w/ TTLs

We want to explore our fingerprint routing algorithms in a more realistic context. Specifi-

cally, we now consider the additional factor mark rate, which is the portion of all users in the network

that actively report a particular spam. A user who “marks” a spam message actively publishes this

fact, thereby registering that opinion with the network. For example, a 10% mark rate means that

10% of the user population actively marked the same message as spam.

To simulate the trade-off between bandwidth usage, “mark” rate, and search success rate,

we simulate the searching of randomly generated fingerprints on transit-stub networks, and vary

the required number of overlay hops to find a match, as well as the mark rate. We assume users

marking the spam are randomly distributed. With an efficient DOLR layer, the more users who

mark a document as spam, the fewer number of hops we expect a query to travel before finding a

match. We can set a TTL value on queries to conserve bandwidth while maintaining a reasonably

high search success rate.

188

We performed experiments on 8 transit stub topologies of 5000 nodes, latency calibrated

such that the network diameter is 400ms. Each Tapestry network has 4096 nodes, and each exper-

iment was repeated with 3 randomized overlay node placements. By aggregating the data from all

placements and all topologies, we reduced the standard deviation below 0.02 (0.01 for most data

points).

The results in Figure 7.27 show the expected latency and success probability for queries

as a function of the number of hops allowed per query (TTL). Since there is a high correlation

between the TTL value and the network distance traveled in ms, we plot both the TTL used and

the associated network distance. For example, we see that queries with TTL of 2 on these topologies

travel a distance of approx. 60ms. Further, at 10% publication rate, we expect those queries to be

successful 75% of the time. We note that a Time-to-Live value of 3 overlay hops results in a high

probability of finding an existing document even if it has only been reported by a small portion of

the participating nodes (2-5%).

7.4 Other Applications

There are a number of other existing applications based on Tapestry. We describe them

briefly here.

Mnemosyne [47] is a stegnographic file system, where erasure coded data fragments of

encrypted files are stored across a peer-based storage layer. The goal is to provide secure storage

to data while maintaining deniability of responsibility. Data blocks are mapped to specific block

locations on each peer node, and traffic interdispersed along with cover traffic to rpevent identifi-

cation. Not only can attackers not read the contents of data, they cannot even identify the actual

storage location of data. Clients write data ignoring the possibility of overwriting other users’ data.

To maintain availability of data then, it is necessary to periodically rewrite data to ensure enough

replicas exist in the system. Mnemosyne uses Tapestry to determine the mapping from data blocks

189

(identified by unique IDs) and the machines they should be stored on.

Interweave is a reliable file sharing system built on top of the Tapestry peer to peer in-

frastructure. Unlike existing file-sharing systems, Interweave guarantees under normal operating

conditions, if any files exist in the system that satisfies a particular query, those files are returned

by the query. Even if a single copy of a file exists, clients will be able to find it. When a file

is inserted into the system, a number of metadata fields are automatically extracted from the file.

These metadata values are then used as index keys to store the name and location of the file. Clients

can then search for exact matches on any of several searchable fields such as date created, author

name, file name, and keywords. In Interweave, fields of meatadata are indexed by concatenating the

metadata field and value as a string. That concatenated string is used as a key to store information

about the relevant file. For example, to index a file named “Ben’s travel.doc” with a key value pair

of author = Ben, Interweave would take the SHA1 hash value of author = Ben, and use it as a key

to store relevant information about this file. Interweave uses Tapestry as a distributed storage layer

to storage these search field to metadata values. An implementation of Interweave is distributed

with the current Tapestry software distribution.

Cashmere 5 is a resilient anonymous routing layer built on top of a structured peer-to-

peer overlay network. Like other Chaum-Mix-like approaches to anonymous routing [17, 125, 42],

Cashmere encrypts the forwarding path of messages in layers of public key encryption. Unlike these

approaches, however, Cashmere uses relay groups to forward messages instead of single nodes, where

relay groups are defined by all overlay nodes sharing a common prefix. Instead of per node public

keys, forwarding paths are encrypted by public prefix keys known by all nodes sharing the prefix.

Additionally, we decouple the encrypted path and encrypted payload in order to reduce the number

of asymmetric cryptographic operations while maintaining the same level of anonymity [29, 116].

5A paper on Cashmere is under submission to ACM CCS.

190

Chapter 8

Lessons and Future Work

191

In this Chapter, we conclude by looking back at our work on Tapestry, and discussing a few

lessons learned through the project. We then outline some of the limitations of our current work,

and highlight a few promising areas for ongoing and future work.

8.1 Lessons Learned

When we first started working on the Tapestry project, the notion of a structured overlay

was not defined, nor was key-based routing, or distributed hash tables or DOLR APIs. Much of

what we have developed was done without previous context. In light of what we know now, there

are a few decisions we might reconsider. We outline them briefly in this section.

8.1.1 Namespace Continuity

The notion of a namespace being divided amongst all of the active nodes in the overlay

was first discuss in the context of Consistent Hashing [61]. We learned through experience that for

protocols that route incrementally closer to the desired name, how the protocol deals with “empty”

routing entries is highly related to how the namespace is divided between neighboring nodes.

For example, one of the few differences between Pastry [111] and Tapestry at the routing

level is how we deal with null entries in our routing table. Where Pastry uses the leaf set to maintain

a per-node set of neighbors in the namespace (similar to the successor fingers in Chord [122]),

Tapestry uses a distributed surrogate routing algorithm to route around holes in the namespace (see

Section 3.3.2). When a message encounters a null entry where it would route to reach its destination

key, it simply looks in the same routing level for the next higher-valued non-null routing entry. For

example, if a message routing towards 1234 routes to 12** and finds that no 123* nodes exist, it

will try to route to the next higher 12** value, 124* or 125*, and so on. At the next hop, it will

continue trying to match the next digit in the destination key.

While this satisfies the determinism and consistency requirements such that different nodes

192

routing to the same key will arrive at the same node, this has the undesirable effect that it divides

the namespace in a non-contiguous fashion. In addition to a main block that matches its prefix, a

node is also responsible for smaller “slivers” of the namespace that match long prefixes with one or

two differing digits in the middle.

It turns out having a numerically contiguous namespace division has a number of advan-

tages. First, a node can quickly determine what the boundaries of its responsible piece of the

namespace is, allowing it to quickly determine if a particular key belongs in its space without con-

sulting other nodes. Another benefit is that each node only has two boundary points, one on each

side of its piece of namespace. Therefore when nodes need to communicate to redivide the namespace

(such as when a new node enters the network), each node only needs to talk to its two neighbors. For

new nodes whose IDs belong to a single contiguous allocation in the current network, this greatly

simplifies the problem of issue of serializing them and notifying them about each other. These nodes

will all need to communicate with the current owner of the namespace block, who can then tell them

about each other. In Tapestry’s distributed namespace assignment scheme, however, serialization

of parallel inserting nodes becomes a much more difficult problem. We solve the problem using a

decentralized locking mechanism in [50], but the resulting algorithm is fairly complex.

We see further benefits of a contiguous namespace in the Bamboo [103] project, where the

protocol exploits the decoupling of routing consistency (handled by the leafset) and routing efficiency

(handled by a routing table). By quickly obtaining a consistent leafset, Bamboo can tradeoff routing

performance for fast routing consistency. The result is a protocol that operates correctly under high

node membership churn.

8.1.2 Algorithmic Complexity

Through the development of our algorithms, we found that we did not fully appreciate

the tradeoff between performance benefits of more complex algorithms, and the implications of the

additional complexity. There are two main sources of complexity in the Tapestry protocol. First

193

is the distributed surrogate routing scheme and the resulting non-continuous namespace allocation.

Second is the nearest neighbor algorithm that uses a provenly sound approach to approximating

the nearest neighbor selection for each node’s local routing table. In contrast, the simplicity of

Chord [122] led to ease of understanding and implementation, both key components in its success.

The additional complexity has a number of disadvantages. One key factor is the complexity

in development and deployment. Implementation of the Tapestry parallel insertion scheme was

complex, and involved a large number of different control messages. The resulting complexity led to

longer time to implementation and deployment, and also made understanding the algorithm more

challenging than it otherwise would have been.

8.1.3 Event Handling

The recent SEDA work has focused on how the direct control of events can improve per-

formance (throughput in particular) for application servers [130]. After implementing Tapestry, we

now better understand the limitations of event programming models such as SEDA.

There are two areas where event layers like SEDA can be improved to make development

of large-scale peer to peer protocols like Tapestry easier. First, having explicit control over events

in a programming model meant that the code needed to manage its own stack state. In particular,

these protocols have a large number of asynchronous control message handlers that must save state

and pause execution pending the return of some asychronous control messages. For example, a

number of steps during the Tapestry node insertion protocol requires asychronous network latency

measurements to other network nodes. Without explicit support from the language or software

development toolkit layers, such a “pause” in execution requires the protocol code to manually save

all local execution state with a label, so that after the asychronous reply message is received, local

state can be easily retrieved and execution resumed. Such explicit management of execution state

was a main source of code complexity in our Tapestry implementations. support from the language

or toolkit layer could have significantly reduced code complexity.

194

Another observation we made after developing Tapestry is that distributed protocols like

Tapestry are significantly different from traditional event-driven applications. Programming libraries

such as SEDA are focused on traditional application servers, where all incoming events are identical

in type (all requests). Furthermore, these events are all mutually independent, meaning that delaying

one event has no implications on others, and the critical metric for performance was throughput.

Therefore, a layer such as SEDA can use intelligent scheduling policies at the queue layer to perform

load balancing.

Protocols such as Tapestry are different, however. These protocols contain a significant

amount of control traffic, where events are not only different in type, but are often mutually de-

pendent. For example, in order for an entry B to be successfully added into A’s routing table, A

needs to measure its distance to B and notify B of the addition. A delay in either response can

significantly delay overall progress. Therefore, scheduling policies at the event-layer without under-

standing application-level relationships between different event types can lead to undesirable results

in control protocol performance.

8.1.4 Recursive versus Iterative Routing

Whether routing is done iteratively [122] from the source or recursively [139] through the

network has implications on anonymity and performance. Iterative routing is good for destination

anonymity for routing, since each query is only a single hop towards the next hop. So you can

restrict what each hop knows by only giving it a single piece of information (whatever is enough to

perform routing resolution to determine the next hop). The tradeoff is lack of source anonymity (all

nodes can directly identify he source node). Basic recursive routing, on the other hand, allows the

sender to be anonymous, but requires knowledge of the full destination address.

For performance, recursive routing is widely recognized as being more efficient than iterative

routing. Recursive routing eliminates the need for a full roundtrip latency back to the source node

with each additional hop. The tradeoff, however, is in resilience. A recursive scheme might be lost

195

during one of the overlay hop transmissions, and the source node must wait for end-to-end timeouts

to expire before resending the message. Even then it will be unclear where the fault occured and

how to avoid it in retransmissions. For iterative approaches, however, the source sacrifies latency for

more control over routing, and knows exactly when and where a fault occurs and how to get around

it.

8.1.5 Wide-area State Management

For large-scale distributed protocols, there is an issue of how to manage distributed control

state spread across the wide-area network. In particular, the issue is how to keep state consistent

and up to date as events trigger state updates. What makes this challenge different from the ones

faced by clusters is the lossy and potentially congested nature of the wide-area links.

There are two general approaches to managing consistency of state, a proactive approach

and a soft-state or periodic approach. In a proactive approach, the protocol reacts immediately to

the occurence of an event by sending out messages to the pertinent nodes to modify their state. The

benefit of this approach is that messages are only sent out once, and that under non-faulty conditions,

the window of inconsistency between the occurence of the event and subsequent change in control

state is minimal. The problem with this approach on the wide-area network is that messages are

often lost due to loss in the network. Should such control messages be lost after an event, control

state on remote nodes will never be brough up to date, and the window of inconsistency is infinite.

The alternative approach is one based on the soft-state. In this approach, control messages

are not sent immediately after the occurence of an event. Instead, messages containing the up-

to-date control state are sent on regular intervals regardless of the frequency or actual time that

events occur. The soft-state approach has the benefit of being extremely robust to failures. State on

remote nodes will be brought up to date as soon as one of the periodic messages gets through. The

disadvantage is that since nodes can be remote, the wide-area bandwidth costs are not negligible.

Combined with large latencies across the wide-area, this means that soft-state period is high, thus

196

resulting in a large window of inconsistency, regardless of the presence of failures.

Our solution is to use a hybrid of the two approaches. First, we employ a proactive approach

and try to correct remote control state as soon as a relevant event occurs. We augment this with a

soft-state protocol in the background that uses large period values. Should the proactive approach

fail, state will be made consistent by the next periodic message. At the same time, the high period

keeps the bandwidth cost of soft-state messages low.

Extreme operating conditions also affect the design choice. For example, under extremely

high node membership churn, a reactive approach would be less desirable. The high rate of node

membership changes would trigger a constant stream of corrective algorithms, resulting in high

bandwidth consumption. The Bamboo project [103] has shown that under these conditions, resource

conservation would only occur if a soft-state approach was used to put an upper-bound on the amount

of maintenance traffic. The ideal approach would be a hybrid that adapts to the environmental churn

rate in order to achieve the ideal level of consistency while limiting maintenance costs.

8.2 Limitations and Future Work

There are a number of limitations to current peer-to-peer protocols today. We quickly

outline them here and discuss some future research directions.

8.2.1 Security

One of the biggest challenges facing the real adoption of peer-to-peer overlay networks is

security. By their nature, large-scale distributed network applications pose a significant security

challenge. Nodes are physically distributed across different network and administrative domains,

making centralized explicit control impossible. Additionally, the heterogeneity expected in these

large scale networks means securing nodes is much more difficult, since nodes likely will run different

operating systems and different versions, each presenting a different set of security vulnerabilities.

197

Therefore nodes cannot rely on mutual trust.

The decentralized nature of these algorithms also makes the security problem more difficult.

In the spirit of decentralized algorithms, nodes need to make decisions regarding security using

only local information. While malicious nodes can actively collude amongst themselves to attack

“good” nodes, the good nodes can only make use of local information to fight back. The odds are

overwhelmingly in favor of the attackers. As such, recent work has shown that often it is not a

question of if good nodes will fall to attackers, but when [14].

The security attack known as the Sybil Attack [33] has been addressed in literature. In this

attack, malicious nodes can request and assume a large number of identities in the overlay network,

giving it disproportionally high control over names in the overlay. The solution proposed is to use

a centralized authority to verify identity and handle name assignment.

8.2.2 Flexible Deployment

Much discussion (and outside criticism) has focused on why despite the large number

of proposed research applications based on structured peer-to-peer overlays, very few of them are

actually deployed in the wide-area, and none come close to the success of the file-sharing applications

commonly used today.

Several factors might help explain this fact. First, research on structured peer-to-peer

networks is still relatively young, and viewed by some outside of the community as still immature

and growing. Critical issues including security have yet to be addressed sufficiently for the common

user to feel comfortable.

The second and much more fundamental reason we see is that the benefit to cost ratio is

not yet high enough to attract the interest of the common user. Peer-to-peer file sharing enjoyed

great success because of its cost proposition: users share a small amount of storage and bandwidth;

and in return, they can download digital music which would otherwise cost non-trivial amounts of

money. When we consider the fact that one of the file-sharing applications, Overnet, does use a

198

protocol with similarities to structured overlays, we see that the primary factor for success is not

how the protocol works, but the application chosen. Users seem to be willing to deal with less than

ideal performance if the incentives are strong enough.

In contrast, if we look at the current set of proposed peer to peer applications, including

global-scale file systems, wide-area multicast, these are generally applications that normal Internet

users have yet to show a real demand for. These applications, while ambitious and challenging from

a research perspective, do not present the right combination of utility and ease of use to the average

home user. One of our focuses for new work is to develop and deploy a light-weight application with

a combination of high ease of use with attractive utility.

Shared versus per-application Infrastructure

The peer to peer research community is only now beginning to examine some of the other

key challanges to wide-area deployment. As we briefly discussed in section 1.3.3, one of the key

decisions is whether multiple applications are deployed on a single common infrastructure, or whether

individual applications embed their own instance of the infrastructure inside its own deployment.

In the shared infrastructure approach, a company can deploy a number of stable nodes,

and use them to provide the stable core infrastructure for a large set of applications. This can

significantly improve robustness on the infrastructure. Less stable client nodes can attach to the

infrastructure as client-only nodes, such that the infrastructure is shielded from their much higher

membership change rates. Two challenges stand in the way of this approach. First, the underlying

routing protocol needs to be able to distinguish between nodes running an instance of a particular

application and other nodes. OpenHash [64] and DiminishedChord [63] are both working to address

this problem. Second, by allowing applications to share an infrastructure, there is by default no

isolation between multiple applications. A single subverted application can wreak havoc on other

applications running on the infrastructure.

The alternative calls for each application to control its own deployment and embed an

199

instance of the infrastructure. This provides isolation between applications, but it makes providing

infrastructure nodes much more difficult per application, resulting in less robust per-application net-

works. In addition, if a large number of applications are deployed, each instance of the infrastructure

will incur its own maintenance and measurement overhead traffic, resulting in overall stress on the

IP network that scales with the number of applications.

A third alternative is to allow the deployment of per-application infrastructures, but reduce

the cost of maintenance and measurement traffic by abstracting those services out as an external

service shared by all applications. This is the promising approach proposed in [87].

Other deployment issues

Other less fundamental deployment issues remain. One challenge is how these protocols

deal with Network Address Translation (NAT) boxes, which are commonly deployed inside home

networking products today. For machines behind NATs to communicate with an existing infrastruc-

ture, they must be the first to initiate any new network connection. One approach is to provide a

proxy outside of the NAT that maintained a connection and forwarded traffic on behalf of machines

behind the NAT.

Another challenge is how to provide better fine grain control of functionality over different

types of nodes in the network. While many efforts are focusing on recognizing and adapting to

the heterogeneity present in the network, most provide a generalized adaptive mechanism, such as

using a cost function to optimize routing tables. If there is significant differences in performance

and stability, such as what might arise between well-maintained core nodes and client nodes in a

shared infrastructure model, more explicit control over per node functionality might be desired. For

example, highly dynamic nodes might operate only as clients but not forward traffic for other nodes,

where core infrastructure nodes might handle traffic and control state for client nodes, but not act

as clients. Such a decoupling of client and server responsibility is not available in current protocols.

200

8.2.3 Other Topics

There are a number of topics for future work in the area of structured peer to peer overlay

networking. One such area is how to recognize heterogeneity in different resource metrics, and how

to allow overlay nodes to leverage them on a fine-granularity scale.

Another area for future work is to expose more network level information to the overlay.

A key limitation to overlay networks today is the limited access to network level information, such

as network latencies, bandwidth along different links, and actual network topologies. If a hardware

component were attached to router hardware, for example, it could potentially propagate IP level

network information up to the application stack. This can have many benefits in overlay construction.

For example, overlay nodes can have access to accurate latency measurements between node pairs,

allowing them to optimize for the most efficient routing mesh construction. Also, knowing the

network topology will allow overlay nodes to choose backup routes that do not share IP level hops

with their primary hops, and therefore reducing the probability of correlated failures. Finally, having

access to router level announcements will allow overlay nodes to be quickly notified of IP level failure

notifications and adapt to them quickly without relying on periodic probes.

8.3 Conclusions

In this work, we have explored in detail the design, implementation, and evaluation of an

infrastructure for large-scale applications base based on a structured peer-to-peer overlay network.

We have proposed a new application interface called Decentralized Object Location and Routing

(DOLR), and justified our design decisions based on performance arguments. We described mecha-

nisms and algorithms for making our infrastructure both efficient and resilient on top of a dynamic

and fragile wide-area network. Our performance results show that Tapestry performs very well,

routing within a small linear factor of the ideal network latency. Finally, our approach has been val-

idated by the implementation of several large scale network applications, showing that Tapestry does

201

simplify the development of network applications and making previously intractable applications a

reality.

At the core of the Tapestry infrastructure is the ability to route to location-independent

names in a scalable, efficient, and resilient fashion. Our work has shown that using automated

embedding of redirection pointers in the network infrastructure, traffic can be redirected efficiently

to advertised names. The resulting system resembles a decentralized directory service built from a

collection of virtual hierarchies, each forming a distinct tree for a given object. We also demonstrate

how by using proximity in a randomized namespace as a metric, we can build a highly scalable

and flexible routing protocol. In addition, its flexible nature allows us to build in and maintain

redundancy into the protocol, resulting in a highly resilient and responsible routing network. Finally,

our proximity neighbor selection techniques allow nodes to leverage network latency information for

efficient routing.

By combining the key functionality of scalable location independent routing with mech-

anisms for efficient and resilient routing, Tapestry addresses the main communication and data

management challenges facing large-scale network applications. We have proposed and built a num-

ber of novel network applications and showed how relying on the Tapestry infrastructure greatly

simplified their construction and improved their scalability and robustness.

We see much promise in the future development and deployment of structured peer-to-

peer networks. As we continue to better understand and overcome the challenges facing large-scale

deployment, structured overlays provide a promising launchpad for large-scale applications, helping

us become yet one step closer to the vision of ubiquitous computing and one step closer to realizing

the enormous potential of the wide-area network.

202

Bibliography

[1] Abraham, I., Malkhi, D., and Dobzinski, O. LAND: Locality aware networks for dis-

tributed hash tables. Tech. Rep. TR 2003-75, Leibnitz Center, The Hebrew University, June

2003.

[2] Alon, N., and Luby, M. Linear time erasure codes with nearly optimal recovery. IEEE

Transactions on Information Theory 42, 6 (November 1996), 1732–1736.

[3] Andersen, D. G., Balakrishnan, H., Kaashoek, M. F., and Morris, R. Resilient

overlay networks. In Proc. of SOSP (Oct 2001), ACM.

[4] Anderson, R. J. The eternity service. In Proc. of Pragocrypt ’96 (1996), pp. 242–252.

citeseer.ist.psu.edu/anderson96eternity.html.

[5] Anonymous. What is gnutella? http://www.gnutellanews.com/information/what_is_

gnutella.shtml.

[6] Aspnes, J., and Shah, G. Skip graphs. In Proc. of SODA (Baltimore, MD, Jan. 2003),

pp. 384–393.

[7] Balakrishnan, H., Seshan, S., and Katz, R. H. Improving reliable transport and handoff

performance in cellular wireless networks. ACM Wireless Networks 1, 4 (Dec 1995).

[8] Ballardie, A. Core based trees (CBT) multicast routing architecture. Internet Request for

Comments RFC 2201, Sep 1997. http://www.landfield.com/rfcs/rfc2201.html.

203

[9] Bloom, B. Space/time trade-offs in hash coding with allowable errors. In Communications

of the ACM (July 1970), vol. 13(7), pp. 422–426.

[10] Bu, T., Gao, L., and Towsley, D. On routing table growth. In Proc. of Global Internet

Symposium (2002), IEEE.

[11] Caceres, R., and Padmanabhan, V. N. Fast and scalable handoffs for wireless internet-

works. In Proceedings of MobiCom (November 1996), ACM.

[12] Callon, R. Use of OSI IS-IS for Routing in TCP/IP and Dual Environments. IETF, Dec

1990. RFC-1195.

[13] Canny, J. UCB CS174 Fall 1999, lecture note 8. http://www.cs.berkeley.edu/~jfc/

cs174lecs/lec7/lec7.html, 1999.

[14] Castro, M., Druschel, P., Ganesh, A., Rowstron, A., and Wallach, D. S. Secu-

rity for structured peer-to-peer overlay networks. In Proceeding of OSDI (Dec 2002), ACM,

pp. 299–314.

[15] Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A. Exploiting network proximity

in peer-to-peer overlay networks. Tech. Rep. MSR-TR 2002-82, Microsoft, 2002.

[16] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., and

Singh, A. Splitstream: High-bandwidth multicast in a cooperative environment. In Proc. of

SOSP (Lake Bolton, NY, October 2003).

[17] Chaum, D. Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-

nications of the ACM 24, 2 (February 1981), 84–88.

[18] Chawathe, Y., McCanne, S., and Brewer, E. A. Rmx: Reliable multicast for heteroge-

neous networks. In Proc. of IEEE INFOCOM (Tel Aviv, Israel, Mar 2000), IEEE.

204

[19] Chen, Y., Katz, R. H., and Kubiatowicz, J. D. Dynamic replica placement for scalable

content delivery. In Proc. of IPTPS (Cambridge, MA, March 2002).

[20] Chu, Y., Rao, S. G., and Zhang, H. A case for end system multicast. In Proc. of

SIGMETRICS (June 2000), ACM, pp. 1–12.

[21] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., and

Bowman, M. Planetlab: An overlay testbed for broad-coverage services. ACM Computer

Communication Review 33, 3 (July 2003), 3–12.

[22] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. Freenet: A distributed anonymous

information storage and retrieval system. In Designing Privacy Enhancing Technologies: In-

ternational Workshop on Design Issues in Anonymity and Unobservability (New York, 2001),

H. Federrath, Ed., Springer, pp. 46–66.

[23] Cohen, B. Incentives build robustness in bittorrent. In Proc. of 1st Workshop on Economics

of Peer-to-Peer Systems (June 2003).

[24] Cox, L. P., Murray, C. D., and Noble, B. D. Pastiche: Making backup cheap and easy.

In Proc. of OSDI (Dec 2002), ACM, pp. 285–298.

[25] Cox, L. P., and Noble, B. D. Samsara: Honor among thieves in peer-to-peer storage. In

Proc. of SOSP (Bolton Landing, NY, Oct. 2003).

[26] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Wide-area

cooperative storage with CFS. In Proc. of SOSP (Oct 2001), ACM, pp. 202–215.

[27] Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M. F., and Morris, R. Designing

a dht for low latency and high throughput. In Proc. of NSDI (San Francisco, CA, March 2004),

pp. 85–98.

205

[28] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., and Stoica, I. Towards a

common API for structured P2P overlays. In Proc. of IPTPS (Berkeley, CA, Feb 2003),

pp. 33–44.

[29] Diaz, C., Seys, S., Claessens, J., and Preneel, B. Towards measuring anonymity. In

Proc. of Privacy Enhancing Technologies Workshop (PET) (April 2002), R. Dingledine and

P. Syverson, Eds., Springer-Verlag, LNCS 2482.

[30] Dingledine, R., Freedman, M. J., and Molnar, D. The free haven project: Distributed

anonymous storage service. In Workshop on Design Issues in Anonymity and Unobservability

(July 2000).

[31] Distributed checksum clearinghouse. http://www.rhyolite.com/anti-spam/dcc/.

[32] Doar, M. B. A better model for generating test networks. In Proc. of Global Internet

(London, England, Nov 1996), IEEE.

[33] Douceur, J. R. The Sybil attack. In Proc. of IPTPS (Mar 2002), pp. 251–260.

[34] Edelstein, H. Unraveling client/server architecture. DBMS 7, 5 (May 1994), 34–40.

[35] Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Ja-

cobson, V., Liu, C., Sharma, P., and Wei, L. Protocol independent multicast - sparse

mode (pim-sm): Protocol specification. Internet Request for Comments RFC 2117, June 1997.

[36] Estrin, D., Farinacci, D., Jacobson, V., Liu, C., Wei, L., Sharma, P., and Helmy,

A. Protocol independent multicast - dense mode (pim-dm): Protocol specification.

[37] Fanning, S. Napster. http://www.napster.com.

[38] Farrow, R. Dns root servers: Protecting the internet. Network Magazine, Jan. 2003. http:

//www.networkmagazine.com/article/NMG20021223S0008.

206

[39] Feamster, N., Andersen, D. G., Balakrishnan, H., and Kaashoek, M. F. Measuring

the effects of internet path faults on reactive routing. In Proc. of SIGMETRICS (June 2003),

ACM.

[40] Freedman, M. J., Freudenthal, E., and Mazires, D. Democratizing content publication

with coral. In Proc. of NSDI (March 2004).

[41] Freedman, M. J., and Mazieres, D. Sloppy hashing and self-organizing clusters. In

Proceedings of IPTPS (February 2003), pp. 45–55.

[42] Freedman, M. J., and Morris, R. Tarzan: A peer-to-peer anonymizing network layer. In

Proc. of CCS (Washington, D.C., Nov. 2002), ACM.

[43] http://www.grokster.com. Using Fasttrack: http://www.fasttrack.nu.

[44] Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Schenker, S., and Stoica,

I. The impact of DHT routing geometry on resilience and proximity. In Proc. of SIGCOMM

(Karlsruhe, Germany, Sep 2003), ACM, pp. 381–394.

[45] Gummadi, K. P., Dunn, R. J., Saroiu, S., Gribble, S. D., Levy, H. M., and Za-

horjan, J. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In

Proc. of the 19th Symposium on Operating Systems Principles (SOSP) (Bolton Landing, NY,

October 2003), ACM.

[46] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service Location Protocol, Version

2, Nov 1998. RFC 2165.

[47] Hand, S., and Roscoe, T. Mnemosyne: Peer-to-peer steganographic storage. In Proc. of

IPTPS (Mar 2002), pp. 130–140.

[48] Harvey, N. J., Jones, M. B., Saroiu, S., Theimer, M., and Wolman, A. Skipnet: A

scalable overlay network with practical locality properties. In Proc. of USITS (Seattle, WA,

Mar 2003), USENIX, pp. 113–126.

207

[49] Hildrum, K., and Kubiatowicz, J. Asymptotically efficient approaches to fault-tolerance

in peer-to-peer networks. In Proc. of the 17th Intl. Symposium on Dist. Computing (Oct.

2003), pp. 321–336.

[50] Hildrum, K., Kubiatowicz, J. D., Rao, S., and Zhao, B. Y. Distributed object location

in a dynamic network. In Proc. of SPAA (Winnipeg, Canada, Aug 2002), ACM, pp. 41–52.

[51] Hildrum, K., Kubiatowicz, J. D., Rao, S., and Zhao, B. Y. Distributed object location

in a dynamic network. Theory of Computing Systems, 37 (March 2004), 405–440.

[52] Hinden, R., and Haberman, B. Ip version 6 working group (ipv6). http://www.ietf.

org/html.charters/ipv6-charter.html.

[53] Hodes, T. D., Czerwinski, S. E., Zhao, B. Y., Joseph, A. D., and Katz, R. H. An

architecture for a secure wide-area service discovery service. Wireless Networks 8, 2–3 (Mar

2002), 213–230.

[54] Holbrook, H. W., and Cheriton, D. R. Ip multicast channels: EXPRESS support for

large-scale single-source applications. In Proc. of SIGMETRICS (Aug 1999).

[55] Huitema, C., and Weerahandi, S. Internet measurements: the rising tide and the dns snag.

In Proc. of the 13th ITC Specialist Seminar on Internet Traffic Measurement and Modelling

(Monterey, CA, Sept. 2000).

[56] Iannaccone, G., Chuah, C.-N., Mortier, R., Bhattacharyya, S., and Diot, C.

Analysis of link failures in an IP backbone. In Proc. of the Internet Measurement Workshop

(Marseille, France, Nov 2002), ACM.

[57] Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., and O’Toole,

J. W. Overcast: Reliable multicasting with an overlay network. In Proc. of OSDI (Oct 2000),

ACM, pp. 197–212.

208

[58] Johnson, D. B. Scalable support for transparent mobile host internetworking. Wireless

Networks 1, 3 (Oct 1995), 311–321. special issue on “Recent Advances in Wireless Networking

Technology”.

[59] Jung, J., Sit, E., Balakrishnan, H., and Morris, R. Dns performance and the effective-

ness of caching. In Proc. of SIGCOMM Workshop on Internet Measurement (San Francisco,

CA, Nov. 2001), ACM, pp. 153–167.

[60] Kaashoek, F., and Karger, D. R. Koorde: A simple degree-optimal hash table. In Proc.

of IPTPS (Berkeley, CA, Feb 2003), pp. 98–107.

[61] Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., and Panigrahy, R.

Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on

the world wide web. In Proc. of STOC (El Paso, TX, May 1997), pp. 654–663.

[62] Karger, D., and Ruhl, M. Find nearest neighbors in growth-restricted metrics. In Proc.

of STOC (Montral, Canada, 2002), ACM, pp. 741–750.

[63] Karger, D. R., and Ruhl, M. Diminished chord: A protocol for heterogeneous subgroup

formation in peer-to-peer networks. In Proc. of IPTPS (San Diego, CA, Feb. 2004).

[64] Karp, B., Ratnasamy, S., Rhea, S., and Shenker, S. Spurring adoption of dhts with

openhash, a public dht service. In Proc. of IPTPS (San Diego, CA, Feb. 2004).

[65] Katzela, I., and Naghshineh, M. Channel assignment schemes for cellular mobile telecom-

munication systems: A comprehensive survey. IEEE Personal Communications Magazine 3,

3 (June 1996).

[66] KaZaa media desktop. http://www.kazaa.com. Using Fasttrack: http://www.fasttrack.nu.

[67] Keeton, K., Mah, B. A., Seshan, S., Katz, R. H., and Ferrari, D. Providing

connection-oriented network services to mobile hosts. In Proceedings of MLIC (August 1993),

USENIX.

209

[68] Keromytis, A., Misra, V., and Rubenstein, D. SOS: Secure overlay services. In Proc.

of SIGCOMM (Pittsburgh, PA, Aug 2002), ACM, pp. 61–72.

[69] Knuth, D. E. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM

Press and Addison-Wesley, New York, 1993.

[70] Kubiatowicz, J. Extracting guarantees from chaos. Communications of the ACM 46, 2

(February 2003), 33–38.

[71] Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea,

S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. OceanStore: An archi-

tecture for global-scale persistent storage. In Proc. of ASPLOS (Nov 2000), ACM.

[72] Kumar, A., Merugu, S., Xu, J., and Yu, X. Ulysses: A robust, low-diameter, low-latency

peer-to-peer network. In Proc. of ICNP (Atlanta, GA, Nov. 2003).

[73] Labovitz, C., Ahuja, A., Abose, A., and Jahanian, F. Delayed internet routing con-

vergence. In Proc. of SIGCOMM (Aug 2000), ACM, pp. 175–187.

[74] Labovitz, C., Ahuja, A., Wattenhofer, R., and Venkatachary, S. The impact of

internet policy and topology on delayed routing convergence. In Proc. of INFOCOM (2001),

IEEE.

[75] Labovitz, C., Malan, G. R., and Jahanian, F. Internet routing instability. IEEE/ACM

Transactions on Networking 6, 5 (1998), 515–526.

[76] Labovitz, C., Malan, G. R., and Jahanian, F. Origins of pathological internet routing

instability. In Proc. of INFOCOM (Mar 1999), IEEE.

[77] Lamport, L., Shostak, R., and Pease, M. The byzantine generals problem. Transactions

on Programming Languages and Systems 4, 3 (July 1982), 382–401.

210

[78] LDAP Group, Univ. of Michigan. The SLAPD distribution. Available at http://www.

umich.edu/~dirsvcs/ldap.

[79] Mahajan, R., Wetherall, D., and Anderson, T. Understanding BGP misconfiguration.

In Proc. of SIGCOMM (Pittsburgh, PA, Aug 2002), ACM, pp. 3–16.

[80] Malkhi, D., Naor, M., and Ratajczak, D. Viceroy: A scalable and dynamic emulation

of the butterfly. In Proc. of PODC (2002), ACM, pp. 183–192.

[81] Manber, U. Finding similar files in a large file system. In Proc. of Winter USENIX Conference

(1994).

[82] Manku, G. S. Routing networks for distributed hash tables. In Proc. of Symposium on

Principles of Distributed Computing (PODC) (Boston, MA, July 2003), ACM, pp. 133–142.

[83] Maymounkov, P., and Mazieres, D. Kademlia: A peer-to-peer information system based

on the XOR metric. In Proc. of IPTPS (Mar 2002), pp. 53–65.

[84] Mockapetris, P. V., and Dunlap, K. Development of the domain name system. In Proc.

of SIGCOMM (Aug 1988), ACM.

[85] Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. Ivy: A read/write peer-

to-peer file system. In Proc. of OSDI (Dec 2002), ACM, pp. 31–44.

[86] Myles, A., Johnson, D. B., and Perkins, C. A mobile host protocol supporting route

optimization and authentication. IEEE J-SAC 13, 5 (June 1995), 839–849.

[87] Nakao, A., Peterson, L., and Bavier, A. A routing underlay for overlay networks. In

Proc. of SIGCOMM (Karlsruhe, Germany, August 2003).

[88] Padmanabhan, V. N., Wang, H. J., Chou, P. A., and Sripanidkulchai, K. Distributing

streaming media content using cooperative networking. In Proc. of NOSSDAV (Miami Beach,

FL, May 2002).

211

[89] Pendarakis, D., Shi, S., Verma, D., and Waldvogel, M. ALMI: An application level

multicast infrastructure. In Proc. of the 3rd USENIX Symposium on Internet Technologies

and Systems (USITS) (San Francisco, CA, March 2001).

[90] Perkins, C. SLP White Paper. http://playground.sun.com/srvloc, June 1998.

[91] Perkins, C. E., and Johnson, D. B. Route optimization in Mobile IP. IETF draft., Nov

1997.

[92] Perkins, C. E., and Wang, K. Optimized smooth handoffs in Mobile IP. In Proceedings

of ISCC (July 1999), IEEE.

[93] Perkins, C. S., Hudson, O., and Hardman, V. Network adaptive continuous-media

applications through self-organised transcoding. In Proc. of Network and Operating Systems

Support for Digital Audio and Video (Cambridge, UK., July 1998), ACM.

[94] Peterson, L., Anderson, T., Culler, D., and Roscoe, T. A blueprint for introducing

disruptive technology into the internet. In Proc. of HotNets-I (2002), ACM.

[95] Plaxton, C. G., Rajaraman, R., and Richa, A. W. Accessing nearby copies of replicated

objects in a distributed environment. In Proc. of SPAA (June 1997), ACM, pp. 311–320.

[96] Raman, R., Livny, M., and Solomon, M. Matchmaking: Distributed resource manage-

ment for high throughput computing. In Proc. of the Seventh IEEE International Symposium

on High Performance Distributed Computing (July 1998).

[97] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. A scalable

content-addressable network. In Proc. of SIGCOMM (Aug 2001), ACM, pp. 161–172.

[98] Ratnasamy, S., Handley, M., Karp, R., and Schenker, S. Application-level multicast

using content-addressable networks. In Proc. of NGC (Nov 2001), ACM, pp. 14–29.

212

[99] Ratnasamy, S., Handley, M., Karp, R., and Schenker, S. Topologically-aware overlay

construction and server selection. In Proc. of INFOCOMM (2002), IEEE.

[100] Rekhter, Y., and Li, T. An Architecture for IP Address Allocation with CIDR. IETF,

1993. RFC 1518, http://www.isi.edu/in-notes/rfc1518.txt.

[101] Rekhter, Y., and Li, T. A border gateway protocol 4 (BGP-4). IEEE Micro 19, 1 (Jan.

1999), 50–59. Also IETF RFC 1771.

[102] Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., and Kubiatowicz, J.

Pond: The OceanStore prototype. In Proc. of FAST (San Francisco, Apr 2003), USENIX.

[103] Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. Handling churn in a dht. In

Proc. of USENIX (June 2004).

[104] Rhea, S., Roscoe, T., and Kubiatowicz, J. Structured peer-to-peer overlays need

application-driven benchmarks. In Proc. of IPTPS (Berkeley, CA, February 2003).

[105] Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., and

Kubiatowicz, J. Maintenance-free global storage in OceanStore. IEEE Internet Computing

5, 5 (Sept/Oct 2001), 40–49.

[106] Rhea, S. C., and Kubiatowicz, J. Probabilistic location and routing. In Proc. of INFO-

COM (June 2002), IEEE.

[107] Ritter, J. Why gnutella can’t scale. no, really. http://www.darkridge.com/~jpr5/doc/

gnutella.html, Feb 2001.

[108] Robshaw, M. J. B. MD2, MD4, MD5, SHA and other hash functions. Tech. Rep. TR-101,

RSA Laboratories, 1995. v. 4.0.

[109] Rodrigues, R., Liskov, B., and Shrira, L. The design of a robust peer-to-peer system.

In Proc. of SIGOPS European Workshop (September 2002).

213

[110] Rosenberg, J., Schulzrinne, H., and Suter, B. Wide Area Network Service Location,

Nov 1997.

[111] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems. In Proc. of Middleware (Nov 2001), ACM, pp. 329–350.

[112] Rowstron, A., and Druschel, P. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. In Proc. of SOSP (Oct 2001), ACM, pp. 188–201.

[113] Rowstron, A., Kermarrec, A.-M., Druschel, P., and Castro, M. SCRIBE: The

design of a large-scale event notification infrastructure. In Proc. of NGC (Nov 2001), ACM,

pp. 30–43.

[114] Saito, Y., Karamanolis, C., Karlsson, M., and Mahalingam, M. Taming aggressive

replication in the pangaea wide-area file system. In Proc. of OSDI (Dec 2002), ACM, pp. 15–

30.

[115] Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy, H. M. An analysis

of internet content delivery systems. In Proc. of OSDI (Dec 2002), ACM, pp. 315–328.

[116] Serjantov, A., and Danezis, G. Towards an information theoretic metric for anonymity.

In Proc. of Privacy Enhancing Technologies Workshop (PET) (April 2002), R. Dingledine and

P. Syverson, Eds., Springer-Verlag, LNCS 2482.

[117] Soliman, H., Castelluccia, C., El-Malki, K., and Bellier, L. Hierarchical mobile

ipv6 mobility management, June 2003. IETF Mobile IP Working Group Internet Draft.

[118] Spamassassin. http://spamassassin.org.

[119] Spamnet. http://www.cloudmark.com.

[120] Source-specific multicast (SSM) working group at IETF. http://sith.maoz.com/SSM.

214

[121] Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and Surana, S. Internet indirection

infrastructure. In Proc. of SIGCOMM (Aug 2002), ACM, pp. 73–86.

[122] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord:

A scalable peer-to-peer lookup service for internet applications. In Proc. of SIGCOMM (Aug

2001), ACM, pp. 149–160.

[123] Stoica, I., Ng, T. S. E., and Zhang, H. REUNITE: A recursive unicast approach to

multicast. In Proc. of INFOCOM (Mar 2000).

[124] Stribling, J., Hildrum, K., and Kubiatowicz, J. D. Optimizations for locality-aware

structured peer-to-peer overlays. Tech. Rep. UCB/CSD-03-1266, UC Berkeley, Computer

Science Division, Aug. 2003.

[125] Syverson, P. F., Goldschlag, D. M., and Reed, M. G. Anonymous connections and

onion routing. In IEEE Symposium on Security and Privacy (Oakland, California, 4–7 1997),

pp. 44–54.

[126] Toh, C.-K. The design and implementation of a hybrid handover protocol for multi-media

wireless LANs. In Proceedings of MobiCom (1995), ACM.

[127] Tsuchiya, P. F. The landmark hierarchy: A new hierarchy for routing in very large networks.

Computer Communication Review 18, 4 (Aug 1988), 35–42.

[128] van Steen, M., Hauck, F. J., Homburg, P., and Tanenbaum, A. S. Locating objects

in wide-area systems. IEEE Communications Magazine (Jan 1998), 104–109.

[129] Waldman, M., Rubin, A. D., and Cranor, L. F. Publius: A robust, tamper-evident,

censorship-resistant, web publishing system. In Proc. 9th USENIX Security Symposium (Au-

gust 2000), pp. 59–72.

[130] Welsh, M., Culler, D., and Brewer, E. SEDA: An architecture for well-conditioned,

scalable internet services. In Proc. of SOSP (Banff, Canada, Oct 2001), ACM, pp. 230–243.

215

[131] Wieder, U., and Naor, M. A simple fault tolerant distributed hash table. In Proc. of

IPTPS (Berkeley, CA, Feb 2003), pp. 88–97.

[132] Wilcox-O’Hearn, B. Experiences deploying a large-scale emergent network. In Proc. of

IPTPS (Mar 2002), pp. 104–110.

[133] Yano, K., and McCanne, S. The breadcrumb forwarding service: A synthesis of PGM and

EXPRESS to improve and simplify global IP multicast. Computer Communication Review 30,

2 (2000).

[134] Zegura, E. W., Calvert, K., and Bhattacharjee, S. How to model an internetwork.

In Proc. of INFOCOM (1996), IEEE.

[135] Zhao, B. Y., Duan, Y., Huang, L., Joseph, A., and Kubiatowicz, J. Brocade: Land-

mark routing on overlay networks. In Proc. of IPTPS (Mar 2002), pp. 34–44.

[136] Zhao, B. Y., Huang, L., Joseph, A., and Kubiatowicz, J. Rapid mobility via type

indirection. In Proc. of IPTPS (February 2004).

[137] Zhao, B. Y., Huang, L., Kubiatowicz, J. D., and Joseph, A. D. Exploiting routing

redundancy using a wide-area overlay. Tech. Rep. CSD-02-1215, U. C. Berkeley, Nov 2002.

[138] Zhao, B. Y., Huang, L., Stribling, J., Joseph, A. D., and Kubiatowicz, J. D. Ex-

ploiting routing redundancy via structured peer-to-peer overlays. In Proc. of ICNP (Atlanta,

GA, Nov 2003), IEEE, pp. 246–257.

[139] Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubiatowicz,

J. D. Tapestry: A global-scale overlay for rapid service deployment. IEEE J-SAC 22, 1

(January 2004), 41–53.

[140] Zhao, B. Y., Joseph, A. D., and Kubiatowicz, J. Locality-aware mechanisms for large-

scale networks. In Proc. of International Workshop on Future Directions in Distributed Com-

puting (Bertinoro, Italy, June 2002).

216

[141] Zhao, B. Y., Joseph, A. D., and Kubiatowicz, J. D. Supporting rapid mobility via

locality in an overlay network. Tech. Rep. CSD-02-1216, U. C. Berkeley, Nov 2002.

[142] Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D. Tapestry: An infrastructure for

fault-tolerant wide-area location and routing. Tech. Rep. CSD-01-1141, U. C. Berkeley, Apr

2001.

[143] Zhou, F., Zhuang, L., Zhao, B. Y., Huang, L., Joseph, A. D., and Kubiatowicz,

J. D. Approximate object location and spam filtering on peer-to-peer systems. In Proc. of

Middleware (Rio de Janeiro, Brazil, June 2003), ACM, pp. 1–20.

[144] Zhuang, S. Q., Lai, K., Stoica, I., Katz, R. H., and Shenker, S. Host mobility using

an internet indirection infrastructure. In Proceedings of MobiSys (May 2003).

[145] Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D.

Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In Proc.

of NOSSDAV (June 2001), ACM, pp. 11–20.

