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Abstract

The XSet XML Search Engine and XBench XML Query Benchmark

by

Ben Yanbin Zhao

Master of Science in Computer Science

University of California at Berkeley

Professor Anthony D. Joseph, Chair

Internet-scale distributed applications (such as wide-area service and device dis-

covery and location, user preference management, Domain Name Service) impose interesting

requirements on information storage, management, and retrieval. They maintain structured

soft-state and pose numerous queries against that state. These applications typically re-

quire the implementation of a customized proprietary query engine, often not optimized

for performance, and costly in resources. Alternatives include using traditional databases,

which can hamper exibility and extensibility (both of which are critical requirements of

Internet-scale applications), or LDAP (Lightweight Directory Access Protocol), which poses

composability problems and imposes rigid structure on queries. This paper proposes a dif-

ferent approach, based upon the use of the eXtensible Markup Language (XML) [7] as a

data storage language, along with a main memory-based database and search engine. Us-

ing XML allows applications to use dynamic, simple, exible data schemes and to perform

simpler, but faster queries. The approach yields a single, common data management plat-

form, XSet. XSet is an easy to use, main memory, hierarchically structured database with

incomplete ACID properties. Preliminary measurements show that XSet performance is

excellent: insertion time is a small constant value, and query time grows logarithmically
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with the dataset size. A portable Java-based version of XSet is available for download, both

as a standalone application and as a component of the Ninja service infrastructure.
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1 Introduction

The development of modern distributed applications has led to several interesting

information storage, management, and retrieval requirements. In particular, an increasing

number of applications are providing novel functionality by incorporating a fast searching

component. For the lack of a better term, we call this new class of applications \Query

Enabled" applications. These applications often maintain a mix of structured soft-state [8]

and durable hard-state, and pose numerous queries against that state. Examples of such

applications are service- and device-location and discovery protocols, such as DNS [24] and

LDAP [18], and applications which make use of simple and fast query functionality, such as

searchable XML-enabled email systems and personal location trackers. The problems with

these applications are three-fold: their extensibility is often very limited due to prede�ned,

rigid data schemas; they pay for query power and exibility with added schema complexity;

and many of them o�er similar functionality with signi�cantly di�erent implementations,

duplicating e�ort and functionality.

In this paper, we propose to unify this class of applications by using the eXten-

sible Markup Language (XML) [7] as a data storage language along with a memory-based

database and search engine we call XSet. We then de�ne a set of data semantics we propose

for these applications, with suÆcient semantic guarantees, that maximizes performance and

concurrency. Finally, we provide a simple benchmark for evaluating XML query engines,

such as XSet.

We chose XML as a description language because it o�ers numerous bene�ts in-

cluding structured extensibility, strong data validation capabilities, powerful expressiveness,

and ease of use. XML accentuates structure by making explicit the inherent structure of

the data, without imposing a rigid schema. XML also provides exible validation through

Document Type De�nitions (DTD). Furthermore, XML tags allow direct reference to data

�elds, extending expressiveness. Finally, XML is text-based, and o�ers data encapsulation
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in a human readable form without high overhead. These properties and a standardization

e�ort make XML a natural choice for our needs.

1.1 Existing Database Models

Given the bene�ts that XML can bring to information management applications,

there is the issue of how to store and query XML documents. At �rst, a database-based

approach would appear to be an appropriate choice. We will argue, however, that for the

set of metadata / distributed applications we have introduced, a streamlined minimalistic

approach should improve performance.

Relational and Object-Relational Approaches

There are currently two main thrusts of database design: relational and object-

relational databases. While relational databases have been extremely popular in existing

industrial applications, object-relational databases are becoming increasingly popular for

supporting correlated data of di�erent types and sizes, such those popularized by the World

Wide Web.

We believe that there are two main reasons why neither database design is well-

suited to the search functionality required by distributed applications. The �rst involves

the structure of XML data, which is usually simple, but hierarchically organized. Relational

databases are ill-equipped to handle such a structure. Translating hierarchically structured

documents into tabular relations is an unnatural and complex mapping. Furthermore, a

single query in a deeply nested tree may require repeated table retrievals for each level

of the tree. This intuition has been con�rmed by recent work [3]. The authors showed

that while most queries can be transformed into relational queries, there were exceptions.

Certain types of queries cannot be mapped into SQL, while other simple queries on XML

were mapped to large numbers of SQL queries, or single queries with numerous joins.
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The second and more fundamental argument against using traditional database

systems is the strict nature of database consistency. In our class of XML-enabled applica-

tions, consistency requirements are generally less strict and more application-speci�c than

those in a traditional database model. For example, while directory applications such as

LDAP may support transactions, they generally make little use of such functionality, and

treat inserts as independent operations. These relaxed constraints can often be achieved

through simpler application-speci�c algorithms that do not incur the performance penalties

associated with strict ACID properties.

Semantics and Performance

Past work in the database community has recognized the evolutionary model

of database applications, and their changing semantic requirements [5]. While other ap-

proaches to address these changes give limited concessions for increased concurrency, we

want to focus instead on the tradeo� between semantics and performance.

Given these arguments against existing approaches in current database research,

we decided to develop a new XML storage and query mechanism called XSet. From a

database perspective, XSet can be described as a memory-resident, hierarchically structured

database with support for an incomplete set of the ACID semantics.

1.2 Evaluation

In Section 5, we present detailed performance analysis of a single-node XSet im-

plementation. The goal is to show that, by removing overhead due to transaction support,

XSet can provide much better performance. In practice, many industrial databases exe-

cute with relaxed runtime semantics, giving up serializability for concurrency. There still

remains a signi�cant overhead due to concurrency control and locking overhead. Concur-

rency is crucial to their performance, since synchronous I/O is a major factor in response
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time. In a memory-resident database such as XSet, however, most operations do not block

on I/O; and therefore, enforcing coarse-grain locking per thread reduces lock contention

overhead while minimizing the performance sacri�ce. The results in this section highlight

the performance bene�ts of relaxing traditional database semantics by showing that the

resulting query processing time is low, and scales logarithmically as the size of the dataset.

Given our implementation of XSet, we want to compare its performance with

similar XML query engines. Choosing the metric of evaluation, however, is non-trivial.

With the currently ill-de�ned XML query languages, query engines may return drastically

di�erent results for an identical query on two di�erent sets of data. To produce a fair

performance comparison that would reect real application performance, we need to take

a closer look at how applications use XML queries, and we produce a set of benchmarks

that accurately reect the result. We present the resulting benchmark we call XBench, in

Section 6.

1.3 Assumptions and Goals

In designing XSet, we make three assumptions about application workloads and

environments: we set the design goal that a single XSet server can handle a reasonably sized

data collection, such as a local area directory service; we avoid the problem of updating

to conform to new XML standards by assuming that our data model is constrained to a

well-de�ned core set of XML functionality; and we require that XSet servers have large

amounts of memory (e.g., 1 to 2 GB, an amount that is readily available in o�-the-shelf

servers). In a few months, we expect this memory capacity to be available in mid- to

high-end workstations. Because of XSet's use of physical memory, it may incur a higher

performance penalty when the dataset size scales beyond memory capacity. In Section 9,

we propose a cluster model which ameliorates this problem.

Within these constraints, the primary goals of XSet are to support the XML
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storage, query, and semantic requirements of \Query Enabled" applications, while accom-

modating a range of semantic constraints and maintaining fast and scalable performance

and simplicity.

The rest of the paper is organized as follows: In Section 2, we present XSet's

architecture, and then discuss the implications on data semantics in Section 3, the imple-

mentation in Section 4, and analyze XSet's performance in Section 5. Next, we explore

several motivating applications that use XSet's simple, high performance XML functional-

ity in Section 7 and discuss related work in Section 8. Finally, we discuss future work in

Section 9 and conclude in Section 10.

2 Architectural Design

In this section, we discuss the use of XML as a type of semistructured data,

provide a scenario that motivates the need for XSet, and present the XSet architecture and

its components.

2.1 Semistructured Data

The structure and organization of data is often a limiting factor in how it can be

used by applications. Data with a �xed, well-de�ned structure, as in a relational database,

allows static typing, consistency checking, and well-de�ned queries, but can be con�ning

should the data or query model evolve. Free-form data supports all data types and query

models, but nothing can be known about the data statically.

Between these extremes is the semistructured data model provided by XML, a

model that provides many of the bene�ts of both extremes. Not only can one reason about

(and validate) the data a priori, but the data is also exible enough to adjust to new data

and query models.
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2.2 Motivating Scenario

To motivate the functional requirements for XSet, consider an academic or cor-

porate campus of the near future where people migrate between oÆces and buildings, and

their networked personal devices alert the environment to their presence while exporting

interfaces for them to access local resources.

Ideally, these users would like to utilize context-aware applications to access a wide

range of ever-changing data. For instance, a visitor wants to specify and �nd resources in

their immediate surroundings, such as their meeting contacts, video projectors, and available

lecture halls. This application query model works equally well in reverse. People who enter

a building become temporary services, and register their personal preferences and pro�les

with local servers. Other applications, such as group paging or meeting reminders, can then

query the XSet server to locate and reach users.

To support these type of applications using only traditional databases, it would

be necessary to design a large number of static schemas, ranging from personal location

pro�les to printer speci�cations, to lecture room scheduling events. Given the dynamic

nature of these resources, constant rewriting of these schemas would be necessary to keep

databases up to date. Furthermore, most queries would not bene�t from transactional

support and consistency guarantees available in most transactional databases. Finally,

these costs would be duplicated per administrative domain, and possibly exacerbated by

incompatible databases and schemas.

In the XSet world, these problems are solved through the use of the combination

of schema standardization, semi-structured schemas, and the simplicity of XSet queries.

XSet servers are easily deployed across administrative domains. Servers can bene�t from

the lack of constraint on schemas, to support a standardized core set of datatypes, while

allowing for locally customized tags and objects as they appear. Also, the simplicity and

directness of XSet queries reduce the implementation e�ort necessary to extend the query
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processor interface to the user.

In our ideal environment: users, given a standard search and browse interface, can

specify exible queries on thin clients which translate the queries to XSet queries and send

them to local servers. An example of a common query might look for a color printer on the

fourth oor, the nearest set of accessible workstations with a DVD drive, or a lecture hall

reserved with the visitor's name. Descriptions of long-lived services are encoded in simple

XML schemas, and stored on the server. Short lived services such as roaming projectors and

thin client docking stations might not conform to any static schema, and would periodically

broadcast their XML descriptions to the XSet server, with a timeout period associated

with each description. At regular intervals, a cleaner runs through the server dataset and,

following a exible user policy, �lters out any outdated services.

Under the covers, XSet servers parse and index incoming XML documents, op-

tionally validate them with a cached Document Type De�nition (DTD), and depending on

the intended longevity of the data, provide the appropriate level of durability. Incoming

XML queries are parsed, and then processed against the memory-resident index to access

the documents. These queries could even embed personal certi�cates that are matched

to access control lists in service descriptions. Such a resource discovery mechanism would

handle large volumes of requests eÆciently with relaxed semantic data guarantees.

2.3 Overall Design

Figure 1 shows the internals of a single XSet Server. A single server consists

of several components: a main-memory component, which we refer to as the SetServer,

a disk-based component consisting of a �le backing store, a write-ahead log, and a fuzzy

checkpointing system. The SetServer includs a XML index and a memory-resident data

store.

During registration / insertion, the SetServer receives XML documents via a
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XML Documents

XML

Index
Treaps

Backup

Paging /

Disk / Persistent Store

XML Backing Store

Write Ahead Log

Fuzzy Checkpoints

Recovery
Manager

R    M    I        I   N   T   E   R   F   A   C   E

XSet Client XSet ClientXSet Client XSet Client XSet Client

In-Memory
SetServer

Figure 1: Single XSet Server

JavaRMI interface, adds the documents to the disk backing store, parses the XML, and

merges the document structure into the hierarchical tag index structure. In the backing

store, documents are assigned a monotonically increasing unique identi�er, which can be

used in paging and logging operations. Each subtree of the document is merged into the

index. For each tag in the index, documents are stored as sets inside a treap [27] (proba-

bilistic self-balancing tree structures), each set indexed by a common tag value. A single

document would have its reference indexed into tag treaps, each corresponding to XML

tags inside the document. To summarize, tags are the keys used to access the index, and

document references are the �nal data values.

XSet supports both \soft-state" and persistent state. Whereas \soft-state" or

short-lived data can be handled by the main memory index and store alone, long-lived data

makes use of the XSet durability layer. An up to date copy of the dataset resides on stable

storage. Modify operations (inserts and deletes) are logged to a �nite-sized log bu�er in

memory. The bu�er is ushed to disk when full, or when an explicit ush operation is issued

by the client. XSet also supports fuzzy checkpoints (where data is still available during

the checkpointing process), both at regular intervals, and also by explicit client request.
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Additionally, XSet exposes functionality to the user for explicitly paging documents in and

out of the memory store, providing support for user-designed paging policies.

Since many of the target applications deal with soft-state data, XSet also includes

an optional data cleaner that incrementally removes stale data at regular intervals.

In the following sections, we discuss the query model and several components in

more detail.

2.4 Query Model

To simplify query composition and make query processing fast, we chose a simple

XML document subset model with minor functionality extensions.

XSet queries are themselves well-formed XML documents, with optional embedded

query instructions for the query processor. XSet queries exploit the exibility of XML

tag structure by using the subset tag model, where satis�ability of the query is de�ned as

whether an XML document's tag structure is a strict superset of that of the query document.

Tags that are not explicitly stated in the XSet query are assumed to be \wildcards" that

can match any XML tag value or subtree. In query processing, collections of document

references that match each search constraint undergo global intersection to return the result

set. Some simple query examples are shown in Figure 2.

                     <OFFICE CLEAN="NO">443</OFFICE>

Matches:    <PERSON><FIRST>Ben</FIRST>
                      <LAST>Zhao</LAST>
                      <OFFICE CLEAN="NO" WINDOW="YES">
                      443</OFFICE>
                 </PERSON>

                 </PERSON>

Query:        <PERSON><FIRST>Ben</FIRST>

No Match:   <PERSON><FIRST>Ben</FIRST>
                      <OFFICE WINDOW="YES">443</OFFICE>
                 </PERSON>

No Match:   <PERSON><FIRST>Ben</FIRST>
                      <OFFICE>443</OFFICE>
                  </PERSON>

Figure 2: Sample Queries

Special query instructions passed to the XSet query processor are encoded inside
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the query as non-standard XML attributes, and removed by XSet prior to processing the

query. For example, a constraint that searches for an integer value in tag DOC between 10

and 20 would look like: <DOC GT=\10" LT=\20" KEY T=\INTEGER">RANGEQ</DOC>

In addition to the XSet query model, several XML query languages have been

proposed and implemented, including XML{QL [10], LOREL [1], and XQL [25]. Compared

to XSet, these languages chose di�erent points on the simplicity vs. functionality tradeo�

scale. On the same scale, XSet has the least complex query model, and supports a much

smaller set of queries. XSet queries can be characterized as a subset of the XQL language,

represented as a XML document. As a query model, XSet queries also resemble the asso-

ciative matching aspects of Linda Tuplespaces [12]. Linda di�ers from XSet in that it is a

distributed communication mechanism, rather than a standalone query engine.

2.5 Tag Index

The tag index is a simple, hierarchical indexing structure. It can be characterized

as a dynamic structural summary of the documents in the dataset.

A B

T1 T2 T3 T4

W X Y Z

IndexRoot

Root1 Root2

C

T5

XML Index

B

Hello World

X Y

A

Root1
  <A>

  </A>
  <B>

  </B>

Document 1

    <X>Hello</X>

    <Y>World</Y>

<ROOT1>

</ROOT1>

parse
insert
into

Figure 3: Simple Indexing Example

When a document is indexed, its tag hierarchy is merged with the overall XSet

tag index, and each tag value from the document becomes the document index key for

the corresponding tag Treap in the main index. Figure 3 shows an indexing example of

a short document. In this case, the document reference would be inserted into Treap T2
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with \Hello" as the key, and Treap T3 with \World" as the key. Additionally, references to

documents also keep any attributes and their values attached to the relevant tag, so that

they can be checked against queries with attribute constraints.

The key distinction between this index scheme and some other XML indices [23, 10]

is the notion of contextual semantics. We believe that the semantics associated with a

tag value are only valid given the exact context in which the tag appears. For example,

the same tag for PHONENUMBER can have entirely di�erent meanings whether it appears

inside the sequence of tags PERSON -> HOME -> ADDRESS or BUSINESS -> CONTACTINFO

-> SHIPPING -> ADDRESS. For that reason, tags are de�ned uniquely by a combination of

context and tag name, and cannot be indexed purely on their tag names. This type of

contextual semantics is similar to path-based queries in LORE [23], except the root node

end of the path is �xed.

2.6 Document Paging

Both advantageous and perhaps limiting to the XSet model is its dependence on

large amounts of physical memory. The memory overhead per document can be as large as

2kb, which can be signi�cant for the smallest of documents. One solution is to remove from

memory (page out) less frequently referenced documents, keep their indexing information

in memory, and read them back from the backing store on disk (page in) on a on-demand

basis. XSet provides such a exible paging mechanism, while leaving policy decisions to the

application writer.

Document objects in XSet export a paging interface which can be invoked by the

user to exploit application speci�c paging information. When documents are paged out to

disk, their indexing information remains in memory, and the document is paged in lazily if

its is found to be a part of a solution set.

Simple paging algorithms such as LRU, random, and MRU can be implemented
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easily using this approach. Additionally, more complex algorithms, ones which better exploit

XML tag structure, can also be used. For example, one potential policy in a directory service

could partition services by type, and apply a prioritized LRU algorithm, giving priority to

more dynamic service data, such as the current location of a professor, while paging out

more static data, such as his or her telephone number.

2.7 Durability Mechanisms

Two related components provide the persistence and failure recovery functionality

for long-lived data in XSet. The in-memory SetServer interacts directly with the backing

store on disk. It ensures durability by adding the document to the backing store, and also

pages documents out to disk as needed to free up memory. The recovery manager (RM),

exposes a useful set of recovery API calls to both internal XSet components and the exter-

nal application interface. These calls give explicit control over all durability mechanisms,

including the use and compaction of the write-ahead/redo log, when and how often the

fuzzy checkpointing mechanism is called, and the use of the in-memory log bu�ers.

The redo log records log entries both before the beginning and after the end of

each operation. Each entry records the type operation it is and unique identi�ers of the

document(s) operated on. During recovery, this allows large numbers of logged operations

to be aggregated eÆciently into a single patch, and applied to a checkpointed index. When

a logging operation discovers a full log bu�er, it ushes the bu�er synchronously before pro-

ceeding. Further details of the fuzzy checkpointing and redo log optimizations are discussed

in Section 3.3.

As an application component, XSet focuses on providing the mechanisms on top

of which a wide range of policies can be implemented. This is reected in the in-memory

log bu�er, which is regularly ushed to disk to ensure durability of operations. Varying

the bu�er size controls the tradeo� between performance (reected in frequency of I/O
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operations) and durability. Similarly, there is no preset algorithm for determining when

the document pager is run, and what order documents are evicted from memory. Finally,

we leave it to the application writer to de�ne an algorithm that determines when and how

often to checkpoint.

2.8 Cleaner Mechanism

XSet also includes an optional data cleaner component for soft-state data manage-

ment. Applications that periodically refresh their data can have the cleaner run at regular

intervals with user speci�ed policies to incrementally clean out the XML dataset. For

example, transient user location data could be invalidated after 5 minutes, while printer

description documents could have a lifetime of 5 days. This allows an administrator to

provide customized soft guarantees on the freshness of the dataset contents.

3 Semantic Guarantees

In this section, we de�ne the data semantics provided by XSet. We assert several

assumptions regarding the nature of data used by \Query Enabled" applications (see Sec-

tion 1), general access patterns on this data, and use them to motivate a data model that

focuses on performance and simplicity.

3.1 Partial ACID Semantics

To help the reader better gauge the relative semantics of XSet and typical databases,

we discuss XSet's semantics in terms of ACID [16] terminology, where ACID stands for

Atomicity, Consistency, Isolation, and Durability. As explained below, XSet does not

support the notion of transactions, and the semantic list below follow the context of a

transaction-free model.
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From the discussions of semantics in previous subsections, we summarize these

points, which are further explored in following sections:

� Atomicity: Atomicity is provided on the granularity of single operations.

� Consistency: Consistency is guaranteed. No inconsistency can occur during normal

operations, since only one thread is allowed into the database at one time.

� Isolation: Isolation is not provided in the context of transactions, but single operations

are isolated via the lock mechanism.

� Durability: XSet provides full durability and recovery across failures, by providing a

simple and eÆcient combination of write-ahead logging and fuzzy checkpointing.

3.2 Applications Semantics

As stated above, XSet provides di�erent data semantics from those provided by

typical database systems. While XSet is a database providing full durability, it is motivated

by applications which gather soft-state data, and pose large numbers of queries against it.

The queries are generally self-contained, and single queries produce useful results. Directory

services are an example which exempli�es this class of applications. We optimized the XSet

design towards certain properties of data used in these applications, such as immutability

and short lifetimes. Applications using data that break these assumptions, however, can

still bene�t from the overall XSet model.

The �rst simpli�cation XSet makes is in its approach to concurrency. In database

systems where the majority of data is stored on disk, disk I/O cost dominates query latency.

Concurrency is necessary to maximize utilization of resources. XSet, however, is a main

memory database, where memory access latency is the dominating latency factor. As a

result, threads spend few cycles waiting for memory I/O; and increasing concurrency does

not greatly bene�t latency, since the cost of a context switch is comparable to a memory
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fetch operation. Also important in this consideration is the absence of transactions in

XSet. Transactional databases use concurrency to eliminate waiting on user latency between

operations in a transaction. This is no longer a concern in XSet. The XSet design reects

this shift of focus o� of concurrency control, by placing a global lock on the server, and only

allowing a single thread to enter at any time. This guarantees single operation consistency

trivially.

A second optimization derives from the types of documents XSet serves. Whereas

traditional databases operate on large numbers of small records in a single database, XSet

targets large numbers of small descriptive XML documents, the whole of which make up

the XML database. These documents can describe large numbers of di�erent objects such

as services, preferences, people and locations, and tend to be compact XML documents

with limited number of attributes. XSet optimizes for this type of small records by using

a \replace-only" update model, where any changes to a document are made by replacing

the existing document with a new version. Documents become immutable. We show in

the next section how by using this model, we greatly reduce the complexity of logging and

recovery.

Finally, the majority of \Query Enabled" applications use an access model con-

sisting of single queries. The notion of transactions, while useful in certain contexts, is

not used enough to justify the additional complexity and performance overhead. Instead,

we choose the single operation as the granularity of operation. Furthermore, because data

is immutable, and operations are independent, modify operations in XSet become idempo-

tent; that is, single operations can be repeated in order without fear of making the database

inconsistent.
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Figure 4: Recovery Mechanism

3.3 Fast Recovery

As a result of XSet data semantics, recovery of failures is simple and eÆcient. In

addition to a standard write-ahead log, XSet includes a fuzzy checkpointing mechanism.

Because of the idempotent nature of modify operations in XSet, a fuzzy checkpoint can be

taken any time without extensive use of locks. The begin checkpoint and end checkpoint

operations are both logged, and the Log Sequence Number (LSN) of the begin checkpoint

operation is stored with the checkpoint. While the checkpoint itself is inconsistent, it

is easily brought up-to-date by rolling forward all log entries after the begin checkpoint

operation.

Figure 4 is a simple illustration that demonstrates how recovery occurs after a

system failure. We assume that persistent storage, such as disk, survives major failures

by using mechanisms, such as replication or mirroring. After a system failure removes the

memory contents of the server, the recovery process follows two steps: First, the system

restores a memory image using the fuzzy checkpoint. Then, the system takes the Log

Sequence Number (LSN) of the begin checkpoint operation, and applies the redo log starting

at that LSN. Because operations are idempotent, any inconsistencies in the fuzzy checkpoint

will be made consistent through the redo log.

As previously mentioned, log entries contain three �elds, the \begin" or \end"
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of an operation, the type of operation, and unique identi�ers for documents it operates

on. An additional optimization made possible by the immutable data abstraction is that

during recovery, the log can be traversed to generate a compact, simulated mapping of \live"

documents at the time of failure, each reference by their identi�er. We use this mapping

as a single patch, and apply it to the in-memory document store, bringing it up-to-date in

one single operation. This guarantees that only documents present in memory at time of

failure are loaded, and frequent insert/delete operations in the log will not impact recovery

time.

4 Implementation and Status

XSet has undergone several major modi�cations in both design and implementa-

tion and a distribution is now publicly available in two forms: a stand-alone application1,

and as an application written using the Ninja distributed services framework [29]. XSet has

also been integrated or is being integrated in to several applications (see Section 7). In this

section, we discuss XSet's implementation details.

4.1 Implementation Platform

For portability and ease of implementation, we chose Java [15] as the programming

language. As a result, the stand-alone version of XSet is small (5000 lines) and runs without

modi�cation on several OS platforms.

The third major revision of XSet has been implemented on top of the Ninja dis-

tributed services architecture. The Ninja operating environment strives to provide services

with fault-tolerance, load balancing and fast communication. The two versions of XSet are

mostly identical in implementation.

XSet uses the XML4J parser from IBM Research Labs to parse XML. Since XSet

1The XSet distribution is available at: http://www.cs.berkeley.edu/~ravenben/xset.
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uses the DOM API [17], the implementation is largely parser independent, and minimal

changes can be made to integrate XSet with alternative parsers.

4.2 Persistent Datastore

For simplicity, XSet currently uses the �lesystem as its persistent backing store.

Flushed log bu�ers are appended to a single log �le, the head of which is truncated after each

successful checkpoint operation. This allows XSet to be easily portable, while leveraging

large amounts of research in �le system fault-tolerance and recovery. Furthermore, XSet's

I/O interface can easily be modi�ed to operate on top of an alternative backing store, such

as a MMAP interface or a log-based �le system [26].

4.3 Treaps

Treaps are probabilistically self-balancing trees that achieve O(Log2(n)) time for

all operations [27]. As the data structures for indexing documents by their tag values, they

were chosen for their research value rather than performance. While a data structure with

a larger branch factor such as a B-tree would reduce the tree traversal time, the choice

of treaps gave us a chance to explore novel properties of a cartesian tree (trees using two

indexing keys).

While treap performance characteristics are similar to other binary trees such as

T-trees and red-black or AVL trees, treaps have the advantage of preserving heap order on a

secondary key. In the naive case, this secondary key is a pseudo-random \priority" generated

at insertion time, used to provide self balancing qualities. In practice, this secondary key

can be further manipulated by the treap structure during accesses to implement speci�c

heap order policies. One example of an useful policy is to increment the priority with a

small randomized number during each access, and then rotate the treap to maintain heap

order if necessary. The net result of such a policy is that the values accessed most often
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tend to \rise" in the heap, providing shorter trips down from the root node and exploiting

temporal locality for improved performance. This property could prove especially useful

when considering cache versus main-memory performance on future systems [21].

Treaps have also been shown to be extremely eÆcient for parallel algorithms on

ordered sets [6]. Using treaps allows us to investigate these fast parallel algorithms in

distributed and parallel versions of XSet.

5 Performance

In this section, we evaluate the performance and scalability under di�erent work-

loads of the current XSet implementation. Our hypothesis is that given XSet's relaxed

consistency constraints relative to conventional database systems, XSet should yield very

high performance.

5.1 Experimental Background

We performed XSet experiments on two platforms: Linux 2.0.36 with Black-

down.org's port of Sun's JDK 1.1.7B (Intel Pentium II 350 Mhz with 128MB of memory),

and Windows NT 4.0 Terminal Server with Sun Microsystems' JDK 1.1.7B (Intel Pentium

II Xeon 450Mhz with 1 GB of memory). All measurements were taken with Just-In-Time

compilers enabled. The TYA JIT2 was used on Linux, and Symantec's JIT3 was used on

Windows NT.

5.2 Performance Components

There are three performance components in XSet's normal operation: validation,

indexing, and queries. Validation is the important one-time process of certifying that an

2The TYA JIT compiler is available at http://www.dragon1.net/software/tya/.
3The Symantec JIT compiler is included in all Sun Microsystems Java Development Kits (JDK) after

1.1.6.
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Figure 5: Query time versus dataset size (Linux and NT)
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XML document conforms to an external DTD. Indexing is the process of adding a new XML

document to an existing XSet index. Indexing performance a�ects both �rst time insertions

of documents and per document recovery time after a crash. Finally, query processing is

the latency involved in servicing a query.

5.3 Experimental Results

For the large data set, we converted an HTTP web server access log into small

(slightly less than 1KB) XML �les, where each �le encoded the information for one HTTP

request. The resulting tree has a depth of 3 levels with an average branch factor of 5 at each

tag. We did not use the complete dataset for all of the experiments. Because of di�erent

host memory sizes, the experiments on Linux used 16100 �les, while the experiments on

NT used 224330 �les. Figure 7 shows a sample XML database �le.
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<?xml version="1.0"?>
<WEBLOG>
  <SOURCEIP>www.yahoo.com</SOURCEIP>
  <TIME>
    <DATE>
      <DAYOFMONTH>07</DAYOFMONTH>
      <MONTH>Dec</MONTH>
      <YEAR>1998</YEAR>
    </DATE>
    <TIMEOFDAY>
      <HOUR>01</HOUR>
      <MIN>57</MIN>
      <SEC>25</SEC>
    </TIMEOFDAY>
  </TIME>
  <TIMEZONE>-800</TIMEZONE>
  <ACTION>
    <COMMAND>GET</COMMAND>
    <LOCATION>/sequoia/schema/html/saif/section4.5.html</LOCATION>
    <HTTPPROTO>HTTP/1.0</HTTPPROTO>
  </ACTION>
  <RETCODE>200</RETCODE>
  <TRANSIZE>3868</TRANSIZE>
</WEBLOG>

Figure 7: A sample XML database �le

While this is a large dataset, it is not an optimal choice. Most data about each

HTTP access is unique, so queries performing exact matches only return small result sets.

Also, we found that accesses by the same IP address tend to be grouped closely in the

indexing sequence, resulting in IP address locality in the storage treaps. To circumvent this

problem in our measurements, the queries in the query set are based upon a collection of

IP addresses evenly distributed in the database. We then averaged the results across the

query set.

Figures 5 and 6 shows the time to perform a query as a function of the number

of documents in the dataset. The results show that, as expected, the query time grows

logarithmically with the dataset size (i.e., approximately 1.28 ms at 200 documents, 3.12

for 16,000, and 6.88 ms for 224,000 documents). From the �gure, one can also observe

when a query takes XSet to an additional level of a treap. A surprising result is that the

Linux times closely match those for Windows NT, even though they have di�erent processor

speeds. It is likely that the similarity is a result of XSet being memory bound on queries

Note that the gap in Linux times between 2000 and 4000 �les is due to outliers (they are

not visible because they are o� the scale of the graph). The outliers are due to the Java

VM performing garbage collection during the measurement.
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Figure 8: Incremental dataset memory usage versus dataset size (Linux)

There is an interesting performance artifact observed in comparing the NT and

Linux performance measurements. While the Linux latency numbers increases smoothly,

the NT measurements show a \staircase" e�ect, where measurements jump across discrete

latency levels. We conjecture that this is due to a di�erence between the memory allocation

policies of the NT and Linux Java JVM implementations.

The second set of experiments measured the incremental increase in the size of the

dataset as documents are indexed (see Figure 8). The results show that the average increase

is 3800 bytes (400 byte standard deviation). While this number is signi�cantly larger than

the document size (slightly less than 1KB), we believe it is mostly due to constant factors

(e.g., the data structures used to store documents and index information). We expect that

incremental growth will be linear in the size of documents and not a multiplicative factor.

We also measured the variance in query times based upon the number of terms
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in the query. However, because the dataset has too few terms, we did not get statistically

signi�cant results.

6 XBench

Having taken a look at the XSet performance results, we would like to put the

numbers in perspective with those of other XML databases. This calls for a suite of tests

that provide a realistic evaluation of XML query performance with respect to a variety of

workloads. In addition, the tests should focus in on the types of query operations that

applications will most likely utilize.

6.1 Functionality Space

In order to design a benchmark indicative of real application performance, we need

to �rst analyze the functionality provided by these query engines, and how they are utilized

in current XML applications. Their highly variable structure means that query performance

on di�erent types of XML documents can vary greatly, making the task of identifying XML

querying patterns even more important.

Because of the immaturity of the research area, the use of XML in various applica-

tion spaces is still being explored. Currently, the use of XML is focused in two main areas,

metadata encoding, and as an access method to large scale databases. These two modes of

operation focus on di�erent aspects of XML access, and would result in drastically di�erent

performance.

XML Metadata

XML's exibility, low overhead, and readability make it ideal for encoding meta-

data. In applications such as resource discovery, searchable E-mail clients, and meta-indices

for �lesystems, XML provides a valuable way to �nd and access metadata quickly.
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Due to the dearth of deployed XML applications in the real world, establishing the

nature of a typical XML search workload is not a simple task. From initial experiences with

XSet and its applications, we have some knowledge about some common access patterns on

XML metadata. In our applications, we found that almost all of the queries involve simple

searches across a large number of small XML �les, with the target being a single XML

�le or speci�c tag values selected from the target XML �les. Queries are generally short,

with string matching being the norm. Documents are generally modi�ed by replacement,

so updates are uncommon. Overall, queries dominated updates and index operations in our

applications.

Bulk Data Manipulation

At the other end of the scale, a di�erent set of applications use XML to encode

relatively large documents with size on the order of databases. In this case, the majority

of manipulation and searching occurs inside a single document, on the granularity of tags

and subtrees.

One class of these applications deals primarily with data extraction and presenta-

tion. XML documents can be used as the canonical data format for persistent documents,

which are modi�ed in XML, and can be presented, transformed, or searched for in a variety

of ways. The key operations involved are searching for tags and subtrees, relationships

between

Another application class uses XML as an intermediate schema type for trans-

forming between and querying across heterogeneous databases. Commercial products such

as ObjectDesign Inc.'s Excelon support queries against an XML cache generated from het-

erogeneous database backends. Research e�orts such as XML-QL [10] seek to use XML to

extract large volumes of data from legacy databases for inclusion into new ones.

In general, operations on large-scale XML documents vary dramatically from those
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Document Set MaxDepth MaxBreadth DocSize NumDocs

Bulk-data

Shakespeare Major Plays 5 20 200K 37

Heart of Darkness Chapters 3 140 40K 4

Metadata

Printer Descr. 3 11 1K 20

Book Catalog Entries 3 8 1K 4080

Web Log Entries 4 8 1K 154,500,000

Table 1: XBench Dataset

of XML metadata applications. Because of the inherent relational nature of the data, queries

on these large documents are very similar to SQL queries [10]. Queries may include multiple

joins, selection, and aggregation operations. In addition to complex queries, operations on

these bulk XML documents will include incremental updates to the data. As a result, these

XML datastores have high consistency and transactional requirements.

6.2 Experimental Datasets

Given the two XML application classes we outlined above, we want to design

a benchmark that includes performance evaluation in both modes of operation. We have

created a selection of XML documents to support both metadata and bulk XML workloads.

The bulk document portion of the dataset includes XML versions of large literary

works, including the complete works of William Shakespeare and chapter by chapter XML

representations of Joseph Conrad's Heart of Darkness. The metadata portion of the dataset

includes metadata from network services (printers), bookstore catalog entries, and web

access log entries. Table 1 summarizes the general properties of the dataset.

In addition to these metadata �les, an XML data generator has been developed.

It takes in arguments on multiple characteristics of the XML tree, such as number of �les,

breadth, and enumerated values versus random values inside tags. We believe this tool

will be helpful in generating customized workloads to predict query performance in new
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applications.

6.3 Workloads

There are two workloads in XBench, simulating sample operations on bulk XML

documents and metadata documents. There are seven performance tests in each workload.

In the bulk data workload, the performance tests focus on SQL style queries and

a combination of selection, join, and aggregation operators. A sample query on the Shake-

spearean play dataset is: Find all scenes of each play, where the last line is spoken by the

character who has the most lines in the play.

In the metadata workload, performance tests are geared towards �nding a subset

of the documents which match a set of given criteria. For example, a search on the book

catalog dataset is: Find all books written by R. Allen Wyke in 1997. Because the aggregate

nature of metadata XML �les, several of the tests in this workload focus on scalability of

performance to large numbers of XML �les.

6.4 Benchmark Results

Because XSet supports XML querying focused on the metadata model, we only

ran the metadata portion of XBench on XSet. The results are summarized below in Table 2.

All tests were run on an Intel Pentium II 350 Mhz machine with 128 MB of memory, running

Linux 2.0.36 with JDK1.1.7B and the Tya JIT compiler.

The tests in the metadata workload focus on scalability tests in indexing and

queries, as well as multiple constraint queries. Indexing times indicate the full time taken

to index a dataset. While these results lack a basis for comparison, they are useful as a

baseline performance measure for future versions of XSet, as well as future XML query

engines.

We had hoped to perform the XBench tests on additional XML databases such as
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Test Time in ms

LargeDBIndex 79950

SmallDBIndex 5780

LargeDBSimpleQ 6.88

MediumDBSimpleQ 5.6

SmallDBSimpleQ 1.24

MultConstQA 41.22

MultConstQB 146.3

Table 2: XBench on XSet

LORE [23] or ODI's Excelon [19]. LORE is a XML query engine which handles metadata

queries similarly to XSet, but provides a much richer set of funcitonality. Unfortunately,

the current release of LORE is not optimized for XML data, and the optimized version was

not ready in time for the benchmark to be performed and included in this paper.

7 Applications

In this section, we discuss several XML-enabled applications that are based upon

XSet. Some of these applications use XSet to simplify existing implementations, while

others are new applications that are made possible by XSet.

7.1 Service Discovery Service

The Service Discovery Service (SDS) [9] provided the original motivation for the

design of XSet. The SDS is a wide-area soft-state-based directory service that responds to

client queries about distributed services. Service descriptions are completely independent, so

no notion of transactions is necessary. Clients use XSet's exible query model to formulate

powerful service description queries.

The SDS currently incorporates XSet as a component and performance analysis of

the SDS system shows that XML queries are only a small component in the overall service

discovery latency. Because of the soft-state nature of the data, XSet's cleaner component
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is used to prune outdated service descriptions from the dataset.

7.2 Personal Activity Coordinator

Another example of an XSet application is the Personal Activity Coordinator

(PAC), an application written as part of the ICEBERG [30] application architecture which

acts as an intelligent cache of the current location and activities of ICEBERG users.

Other ICEBERG applications query the PAC in order to determine the ideal contact point

for incoming communication. The current implementation of the PAC uses an internal

XSet server to store location- and application-speci�c information and services application

queries.

7.3 Automatic Path Creator

One of the key components of the Ninja [29] service infrastructure is the Automatic

Path Creator (APC), a component that constructs a dataow path between multiple Ninja

services to compose a larger service. Inside the APC, an XSet server stores information

on known subpaths and known services, and queries against it as part of a graph search

algorithm to genereate the logical path composition. Here, data stores are short-lived, and

the fast query times of XSet are crucial to constructing paths within a reasonable response

time.

7.4 FS-ML: secondary �le index

By focusing on performance, XSet is able to integrate XML searching functionality

into low-level applications, where performance is paramount. A meta-index on an existing

�le system is yet another example of such an application. By encapsulating a �le inode with

its metadata, a user can �nd a �le eÆciently by searching on any property associated with

it, while the disk layout can still be optimized by the underlying �le system. By making
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FS-ML a part of the operating system, �le uniqueness can be detached from a directory

hierarchy, and instead linked to a distinctive subset of XML tagged �le properties.

The FS-ML �le meta-index would use a soft-state model to cache the most fre-

quently accessed �les, so that user queries could be ful�lled immediately while the rest of

the index is paged in. Furthermore, XML Linking [22] functionality can express relation-

ships between individual �les, and the extensibility of XML allows �le searching to naturally

extend across the network with the use of additional quali�er tags, e.g.

<FILESERVER>PLEIAIDES</FILESERVER>.

Recent work on the HAC �le system [14] discusses a system that closely resembles

FS-ML in design and functionality. Burra Gopal and Udi Manber suggest user queries to

a semantic directory system as an alternative �le access model. This is directly analogous

to a exible XSet query on an index of XML-based �le metadata. Furthermore, they also

mention the notion of mapping remote �les into the semantic directory using the notion of

\name spaces." The FS-ML �leserver/network tag references o�er an extensible superset of

this functionality. While the FS-ML idea is untested and untried, it has potentially several

advantages over HAC, including modularity, ease of implementation, code reuse, and �le

linking. The Semantic File System [13] also o�ers similar functionality to FS-ML.

7.5 Context-based E-Mail Searching

XML searching can lend new functionality to E-mail clients. If E-mail messages are

stored with XML tagged metadata, then E-mail clients could use XSet's exible interface

to search E-mail messages.

A scalable, modular E-mail client is now under development using the Ninja dis-

tributed services infrastructure. Discussions are underway to integrate XSet inside to pro-

vide fast E-mail searching functionality, as well as forming virtual \folders" on the y

through XML searches. Furthermore, E-mail messages can be described as XML docu-
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ments, so that enhanced E-mail clients can embed and search for speci�c XML tags using

XSet.

8 Related Work

In this section, we discuss several XML storage and query e�orts in industry and

academia, including: object-oriented XML databases, several proposed XML query lan-

guages, and the LORE DBMS. The discussions highlight some of the key tradeo�s between

features and performance: XSet lies on the end of less functionality (and thus less complex-

ity) and more speed, while database systems and other XML repositories tend to choose a

fuller feature set (with the added burden of more complexity and thus lower performance

on smaller, simple workloads).

8.1 Object-Oriented XML Databases

Most of the industry-based implementations of XML-stores are object-oriented

database systems that support XML as a native datatype. Two OODB systems that ex-

emplify the industry XML e�ort are eXcelon from Object Design Inc. [19] and Poet XML

Repository from Poet Software [28]. While they diverge slightly in their goals (eXcelon for

translation of heterogeneous database backends and Poet for Electronic Data Interchange),

both of them provide ACID semantics, which imposes additional overhead on performance

and concurrency.

8.2 Relaxed Semantics in Databases

Past work in the database community has recognized the changing semantic re-

quirements of database applications [5]. Several approaches have been taken in the context

of full ACID database systems to maximize concurrency by taking advantage of these weaker

semantic needs.
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Some of these e�orts have focused on how semantic information on datatypes can

be exploited to safely trade serializability or consistency for increased concurrency. Farrag

and Ozsu analyze in [11] a proposal to utilize semantic information to allow selected nonseri-

alizable schedules, and also propose the notion of \relatively consistent" (RC) schedules, and

concurrency mechanisms to produce RC schedules. Similarly, Badrinath and Ramamritham

de�ned a \recoverability" predicate which is checked using a conict table of prede�ned con-

icts between well-de�ned operations [4]. Since utilizing the semantic information incurs a

high overhead, Agrawal et. al propose that users intervene to make consistency assertions

on abstract data types, which are then used to de�ne new correctness criterion [2]. In

[31], Wong and Agrawal de�ne the notion of bounded inconsistency, where users can accept

datatype-speci�c ranges of inconsistency in order to increase commutavity of operations for

increased concurrency.

Additionally, there have been e�orts such as [20] which o�er increased concurrency

without breaking the bounds of traditionally serializability.

In contrast, our approach in XSet can be viewed as an extreme version of those pro-

posed by [2], [4] and [11]. Because these e�orts are generalized for di�erent datatypes, they

require semantic information on new datatypes in order to maintain levels of serializabil-

ity. XSet, on the other hand, targets XML as its datatype, and can exploit its well-known

structure for further optimization. Furthermore, the simplifying assumption of independent

operations removes the need for transactions along with any associated overhead.

8.3 Proposed XML Query Languages

Whereas XSet chooses an extremely simple query model with a small set of core

query functionality, several XML query language development e�orts are underway to pro-

vide much more robust and powerful query models.

XML-QL from AT&T research labs [10] is an e�ort to standardize an XML query
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mechanism for large volume data extraction and transformation. As a query language,

XML-QL tries to stay true to the SQL syntax, making choice extensions for XML function-

ality. Unlike XSet's focus on single query latency, the XML-QL design focuses on features

and very complex queries. As a result, an XML-QL implementation is geared towards

supporting extremely large transactions across large portions of the dataset, but its high

complexity level and high overhead would make it too complex for our needs.

XML Query Language (XQL) [25] is a similar query language e�ort fromMicrosoft.

It's similar to XSet in that it abandons the SQL syntax in favor of a natural XML approach

composed of paths constructed from tag hierarchies. Unlike XSet, however, it supports a

very complex syntax, accepting complexity in query construction and processing for greater

functionality. As with XML-QL, we believe XQL is far more complex than is necessary for

XSet's target applications.

8.4 LORE

LORE [23] is a database management system for semistructured data developed

at Stanford University. While LORE and XSet are similar in basic functionality, LORE

supports a much greater feature set, as well as support for full database semantics, with

multiple indexing methods, cost-based query optimization, concurrent user support, and

logging and recovery. LORE supports LOREL [1], a query language for XML with simi-

lar descriptive power as XML-QL. Compared to XSet, LORE's much richer functionality

set makes it too complex for the low latency, soft consistency information management

applications XSet targets.

9 Future Work

Because of XSet's widespread applicability, there are several avenues for future

expansion. The main limitation to XSet's scalability is the dependence on main memory,
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and that can be solved by building a clustered version of XSet, where single XSet servers

communicate to dynamically partition incoming data. In addition, signi�cant improvements

can be made on the XBench suite, to provide a more complete benchmark more indicative

of real application performance.

9.1 Clustered XSet

Despite the increasing availability and capacity of memory chips, main memory

still remains the only obstacle between XSet and large scale datasets. Our solution is to

build an interserver communication layer which allows servers to join a XSet server group,

and dynamically repartition the data as necessary to provide scalability. For an overloaded

server handling queries on heterogeneous datatypes, the naive solution is to partition data

by its document type or DTD. This will likely not solve the real problem, however, since

large uniform datasets will still present scalability problems for single XSet servers.

The data partitioning of homogeneous data can be done in two ways:

� Broadcast Query Model. One of the solutions to data partitioning is to decouple the

data partitioning from the query processing. Queries are forwarded to all available

servers and responses are gathered before aggregation and return to the client. Incom-

ing documents are hashed to a set size unique string using a good one-way algorithm

such as SHA-1. A global mapping which partitions the hashed space evenly among

servers can be used to distribute data.

In this model where queries are sent to all servers, there may be several disadvantages.

First, due to the random clustering, queries that want to search the entire dataset

need to block until all nodes in the cluster respond, increasing the response time to

that of the slowest node. Second, node failures pose a serious problem, and must

be recognized promptly to minimize impact on query latency. Finally, broadcasting

queries to each node in a cluster will not scale well as the number of nodes increases.
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This issue might be solved by the increasing bandwidth available on System Area

Networks, or the use of broadcast and snooping protocols.

� Introspective Partitioning. To solve the issues in the broadcast query model, we want

to examine how data can be intelligently partitioned, and queries selectively routed

to nodes with plausible return values. Any such design would have to deal with the

fact that incoming queries can query on any tag, meaning that no single tag can be

used as the server partition index.

To facilitate a solution, we propose this hypothesis:

For XML or other data queried by name-value pairs, when used in a speci�c appli-

cation, the frequency distribution of queries is not uniform across its tags or named

attributes; Furthermore, in specialized applications, the majority of queries will be on

a small minority of the tags, which we can call \key tags."

To test this hypothesis, we can design an introspective data partitioning algorithm.

We can �rst initialize the server using the Broadcast Query Model, and process queries

for some period of time. During the initial runs, an introspective daemon can monitor

all incoming queries, and get a \rough" estimation of the most commonly used query

tags, which can be then used as a \primary key" for data partitioning. After the

�rst data partitions are created, queries are continuously monitored, and data can be

repartitioned at di�erent granularity levels according to changes in query patterns,

data size, and server load. During repartitioning phases, the cluster can either revert

back to the broadcast model, or move data in incremental stages, keeping partition

maps consistent to maintain query routing.

9.2 XBench Improvements

As the realm of XML applications solidi�es, it will become more clear how XML

data will be accessed. With some trace data and usage characteristics from real world
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applications, XBench workloads can be tuned to better predict application performance.

It would also be useful to better understand XSet's relative performance advantages, by

running XBench on the major XML databases as they mature.

10 Conclusion

In this paper, we have shown how using XML as a data storage language, com-

bined with a main memory database and search engine, provides the class of Internet-scale

applications with easily extensible, yet validatable data schemes. We simplify the query

language, which enables applications to perform simpler and faster queries.

We also avoid the problems associated with duplicate code development by pro-

viding a common data management platform. The key to this �nal goal is XSet's exibility

in how data is structured, queried, and managed.

The performance results clearly show the bene�ts of relaxing consistency require-

ments and using data structures that are better tailored to the datasets' inherent structure

| query time scales logarithmically with dataset size.

Finally, we o�er XBench, a rudimentary benchmark for measuring XML query

performance. XBench o�ers workloads for testing both bulk documents and small XML

metadata documents.

A portable version XSet is available publicly and XSet is being used by several

large-scale distributed applications. We are continuing to re�ne the architecture based upon

our experiences and others. Future versions of XSet will address incremental scalability and

dynamic data partitioning
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