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ABSTRACT

Spectrum management in cellular networks is a challenging task

that will only increase in di�culty as complexity grows in hard-

ware, con�gurations, and new access technology (e.g. LTE for IoT

devices). Wireless providers need robust and �exible tools to mon-

itor and detect faults and misbehavior in physical spectrum usage,

and to deploy them at scale. In this paper, we explore the design

of such a system by building deep neural network (DNN) models1

to capture spectrum usage patterns and use them as baselines to

detect spectrum usage anomalies resulting from faults and misuse.

Using detailed LTE spectrummeasurements, we show that the key

challenge facing this design is model scalability, i.e. how to train

and deploy DNN models at a large number of static and mobile ob-

servers located throughout the network. We address this challenge

by building context-agnostic models for spectrumusage and apply-

ing transfer learning to minimize training time and dataset con-

straints. The end result is a practical DNN model that can be easily

deployed on both mobile and static observers, enabling timely de-

tection of spectrum anomalies across LTE networks.
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1 INTRODUCTION

Cellular providers spend billions of dollars acquiring radio spec-

trum for network capacity and coverage. Yet spectrum manage-

ment, speci�cally detection of faults from spectrum interference,

remains a costly and ad hoc process, often involving manual diag-

nosis following customer complaints and operational failure logs.

What makes detection hard is that interference can come from a

variety of complex sources at any physical location, ranging from

intentional spectrummisuse and miscon�gured transmitters to RF

1Our proposed spectrum model, code, and test dataset are available at
https://github.com/0x10cxR1/spectrum_anomaly_detection/.
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Figure 1: Spectrum anomaly detection by multiple observers.

leakage from cable plants and connectors. For example, interfer-

ence from a miscon�gured ampli�er led to persistent quality-of-

service issues for a tier 1 service provider [39].

These problems will grow in severity and scale in the near fu-

ture. Advances in both recon�gurable hardware and spectrum us-

age policies make it easy to misuse spectrum without authoriza-

tion. There is already evidence of these misuse attacks in China,

where growth in unauthorized transmissions has prompted new

initiatives to outlaw spectrum misuse [21]. Furthermore, cellular

interfaces for IoT are coming, optimized for the network and en-

ergy needs of IoT devices. Adoption of these interfaces has the side

e�ect of increasing security risks for LTE and nearby spectrum

bands. A compromised device working on behalf of an attacker can

perform jamming or denial of service attacks on cellular bands.

Clearly, cellular networks need robust and �exible tools to de-

tect faults and misbehavior in spectrum usage, which we hereby

refer to as spectrum anomalies. Despite open calls for automated

management tools by the 3GPP standards body, current proposals

are still limited to simplistic fail-stop fault models, and only on

faults within the LTE infrastructure [1, 32]. Cellular carriers often

evaluate physical spectrum usage by wardriving with specialized

devices, and these activities are severely limited by high human

and equipment costs [14].

Instead, we believe that cellular networks require general solu-

tions capable of detecting a range of radio spectrum anomalies,

from transmissions at unexpected power levels, to interference from

miscon�gured devices and unauthorized transmitters. Anomalies can

appear anywhere in the physical network, and their detection re-

quires a large-scale, distributed spectrum monitoring system.

In this paper, we explore the design of a general, scalable sys-

tem for detecting spectrum anomalies in wide-area LTE networks.

As shown in Figure 1, the system consists of two components: (1)

a scalable, distributed spectrum monitoring system that measures

physical spectrum usage using both static and mobile observers2

distributed across the network, and (2) a general anomaly detec-

tion system that builds deep neural network (DNN) models using

these measurements, and runs them at each observer as baselines

2Spectrum monitoring requires both static and mobile observers to enforce coverage
and scale. We assume that these observers are recruited by the carriers to perform
spectrum monitoring and anomaly detection, and are well-behaved. This simpli�ca-
tion allows us to focus on the problem of scaling DNN models for anomaly detection.
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to detect spectrum usage anomalies. Our work builds on multiple

prior e�orts: some of which examined the feasibility of distributed

spectrum monitoring using commodity devices [7, 30], while oth-

ers validated the bene�ts of DNN-based spectrum anomaly detec-

tion using a single static observer [15, 33].

Why DNNs? Wide-area spectrum measurements collected by

observers are highly complex, thanks to unpredictable signal prop-

agation, frequent link adaptation, and tra�c dynamics. Traditional

models are unable to capture such complexity. DNN models, on

the other hand, are known for automatically capturing complex

patterns in the target data. Recent works have demonstrated the

advantages of using DNNs to model spectrum usage [15, 33].

Despite signi�cant progress, a large gap remains between cur-

rent proposals and a feasible system for cellular networks. Since

spectrummeasurements generally depend on the context of the ob-

server, i.e. time, location, and mobility status, each observer should

ideally run amodel tailored to the current context. But this renders

our system impractical, given the amount of training overhead and

run-time complexity it requires, i.e. it is impractical to assume that

the system must build models for each physical location, and that

each observer must change its model whenever it moves. A prac-

tical alternative is to explore a context-agnostic model for all ob-

servers, and whether such models can be trained, deployed and

validated. But will the elimination of “context-awareness” from DNN

model designs degrade the accuracy of spectrum anomaly detection?

We answer these questions through an empirical study on LTE

networks, using detailed spectrum measurements across multiple

LTE bands and cells. Our e�orts lead to three key �ndings:

• Within each LTE cell, it is feasible to build a single, context-agnostic

DNN model that accurately models normal spectrum usage pat-

tern for the task of anomaly detection. Our DNN model does not

use supervised learning to classify an event as normal or anoma-

lous. Instead, we train a long-short term memory (LSTM) model

on sequences of spectrum measurements. It recognizes events as

anomalies when they deviate signi�cantly from events expected

or predicted by the model. Our model runs on both mobile and

static observers to detect spectrum anomalies on the �y without

any modi�cation, putting a hard limit on the training overhead

and run-time complexity. Deep autoencoder, another DNNmodel,

can be designed to o�er the same properties.

• Across LTE cells, the DNN model trained for a given LTE cell is

not directly reusable at the other cells, but can be used to quickly

train their models through transfer learning. Only a small amount

of local spectrummeasurements at the target cell is required. Our

results show using transfer learning instead of training from scratch

reduces required training data by a factor of 288.

• Since di�erent LTE bands (frequency carrier, downlink or uplink)

display di�erent spectrum patterns, they require di�erent DNN

models customized for that band. The same transfer learningmethod

can be applied to quickly train the model for a frequency band us-

ing existing models for other bands as a starting point.

Together, these �ndings demonstrate the feasibility of deploy-

ing a practical model for LTE spectrum anomaly detection on top

of the distributed spectrum monitoring system. Speci�cally, the

system �rst trains a general DNN model for normal spectrum us-

age, i.e. the teachermodel, using past spectrummeasurements from

trusted observers. It then distributes this teacher model to each

individual LTE cell’s basestation, who uses a small amount of lo-

cal spectrum measurements (contributed by trusted observers in

the cell) to quickly calibrate the model, and distributes a uni�ed,

context-agnostic model to all the observers in the cell.

The above design has two key features. First, the spectrumDNN

model is context-agnostic and can be easily deployed on a wide

range of spectrum observers, static and mobile, and adapted using

a minimal amount of local spectrummeasurements. Each observer

does not need to store a large number ofmodels for each context, or

switch to a newmodelwhenever it moves. Instead, it runs the same

DNNmodel regardless of its context, and only needs to switch to a

newmodel whenmoving into a di�erent cell. Second, the anomaly

detection is general in that it avoids cellular-speci�c knowledge

and can detect any events that a�ect spectrum usage.

2 PRELIMINARIES

To provide context for our later discussions, we present in this

section the spectrum measurement dataset used in our empirical

study, and our initial analysis on patterns in today’s LTE spectrum

usage. We also present existing models for spectrum anomaly de-

tection, and evaluate their performance using our spectrum mea-

surements in the presence of spectrum anomalies.

2.1 Analysis of LTE Spectrum Usage

Our Dataset. We performed signal measurements on three ma-

jor LTE carriers in the US, including three downlink (DL) bands of

AT&T (880MHz), T-Mobile (729MHz), and Verizon (749MHz), and

one uplink (UL) band of AT&T (830 MHz). We used USRP N210

devices to capture 5 MHz spectrum within each LTE band.

While prior works on spectrum misuse detection [9, 20, 24, 33]

only considered static observers, we performed measurements on

LTE spectrum usage using both static and mobile observers (walk-

ing, driving). Our measurements were performed at two areas: a

large university campus and an urban downtown area, separated

by a distance of 8 miles. For each area, we veri�ed that the ob-

servers were in the same LTE cell during the measurement period

and the measurement range is within 1 mile.

Ourmeasurements were performedbetween January andMarch

2018, and repeated in June 2018 to examine potential temporal

variations. Speci�cally, we set up three static observers (well sep-

arated) in the university campus and collected measurements con-

tinuously for 7 days, and two static, well-separated observers in

the downtown area for 3 days of continuous measurements. Walk-

ing and driving experiments were done for 45 min per day for 8

days. In total, the dataset contains more than 20 TB of signal data,

where 32% of the data were collected at night.

Spectrum Usage , RSS. Many prior works [9, 10, 20, 24, 42]

have used measured received signal strength (RSS) as the base for

spectrum anomaly detection, where an anomaly occurs if the cur-

rent RSS deviates from a pre-de�ned range. Ourmeasurement shows

that RSS is not a viable base for mobile observers since it changes

signi�cantly and unpredictably over time. Figure 2 shows a ran-

dom segment of RSS collected by a mobile observer over 10 min-

utes. Here the sudden rise of RSS values can be the result of mul-

tipath fading or interference from an unauthorized transmitter in

proximity, which are indistinguishable using RSS data.
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Figure 2: RSS varies largely over a 10-minute

monitoring window, for a mobile observer.

0

5

Static

0

5

Walking

0 10 20 30 40 50

0

5

Driving

−55

−45

−35

−25

FF
T
 A
m
p
. 
(d
B
m
)

Time (m )

Fr
e
q
u
e
n
cy

 (
M
H
z)

(a) Initial spectrograms.
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(b) Spectrograms after 10 minutes.

Figure 3: Spectrograms captured by spectrum observers under di�erent contexts, based

on the measurements on the 880MHz downlink band.

Time-Frequency Patterns of Spectrum Usage. Instead, we

chose to analyze spectrum usage using the time-frequency spec-

trogram of the received signal. Spectrograms capture �ne-grained

signal amplitude over time at sub-frequencies, and are widely used

for spectrum analysis. In absence of any anomaly, Figure 3 plots a

spectrogram segment of 50ms at three observers (static, walking,

driving) and another 50ms segment at each of the same observers

about 10 minutes later. Despite the large di�erence in signal am-

plitude across users and time, we can observe visible temporal pat-

terns from all six segments, in the form of bursts of high-power

transmission along the time dimension.

We studied these patterns in detail and arrived at two key ob-

servation. First, the pattern is complex, especially in the temporal

domain. Periodicity analysis shows that signal �uctuation peaks

reside at 1200Hz, 160Hz and 60Hz, indicating that the key peri-

odic pattern occurs every 0.21ms , 1.6ms , and 6ms . More frequen-

cies of transmission bursts exist in addition to these main peaks, in-

dicating more �ne-grained temporal patterns beneath the obvious

bursty patterns we observed. Second, the short-term patterns of the

spectrum usage share some general shape. Carefully formed, they

could serve as reliable “�ngerprints” of normal spectrum usage.

Spectrum Patterns across Time, Cells and Bands. We also

visually compared the spectrum usage patterns observed across

time, LTE cells, and LTE bands. The short-term usage patterns are

fairly consistent over time (by comparing observations in January-

March, and June), di�er slightly across cells (campus vs. down-

town), but show more visible di�erences across LTE bands. We

also performed periodicity analysis to con�rm these observations.

2.2 Models for Spectrum Anomaly Detection

The above analysis suggests that it is feasible to build general spec-

trum anomaly detection by modeling the time-frequency patterns

of normal LTE spectrumusage. The hypothesis is that the presence

of a spectrum anomaly will produce visible changes to the patterns

extracted from themeasured signals, which trigger the detection of

the anomaly. This type of anomaly detection prioritizes generality:

training/building the model using normal spectrum usage without

requiring any knowledge or labeling on anomaly instances.

There are multiple existing approaches of modeling spectrum

usage patterns from the spectrogram, ranging from the classical

methods of Kalman �lter, one-class SVM [24, 28] to the recent

proposal of neural network models (LSTM [33] and deep autoen-

coder [15]). Yet existing works only considered static observers.

We implemented and evaluated these approaches using our LTE

measurements. A small portion of our measurements were con-

ducted when anomalies were present. More details on these anom-

alies are described later in §6.1. For all the experiments, the ob-

servers were placed within 50m of the misuse transmitter.

Evaluationat StaticObservers. For all the approaches (Kalman

�lter, one-class SVM, LSTM, deep autoencoder), we used as the

model input the signal spectrogram over 256ms (we have tested

other segment lengths between 32ms and 256ms and found that

they do not change the conclusion). We trained the models us-

ing past spectrum measurements in absence of anomalies at each

static observer. We also included a RSS-based method that uses a

threshold to detect the presence of anomaly (Rule-based). The per-

formance of the LSTM and deep autoencoder models are similar

so we only included the LSTM result for brevity.

Figure 4 plots the results in terms of anomaly detection rate vs.

false alarm rate. The results are similar across the four LTE bands

so we only show the result in the 880MHz DL band for brevity. We

see that the DNN model (LSTM in this case) largely outperforms

the three non-DNN alternatives. This �nding aligns with that of

recent works [15, 33].

The reason behind the above result is that LTE spectrum pat-

terns are complex due to the compound e�ect of tra�c dynam-

ics, RF propagation, and link adaptation. Additional complexity

comes from possible correlations between feature dimensions. All

of these make it di�cult for traditional methods (e.g., one-class

SVM) to model the spectrum usage. Manual identi�cation of good

features that capture key spectrum patterns requires deep under-

standing of the data and much heavier e�orts on feature engineer-

ing. And the complexity exacerbates when building the models for

mobile observers.

3 SCALING SPECTRUM DNN MODELS

Our empirical analysis validates the observation of prior works [15,

33], where each static observer individually trains DNN models to

detect spectrum anomalies. But can such a context-speci�c model

be deployed on a large-scale distributed monitoring system, where

the spectrum observers are distributed across a wide area, and can be

mobile or static? Next, we answer this question empirically, testing

whether models trained by a given static observer can be “reused”

by another static observer at a di�erent location and another mo-

bile observer. Again we observe a consistent trend across all four

LTE bands, and show the result for the 880MHz band for brevity.

3
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Figure 4: Anomaly detection performance

of non-DNN (one-class SVM, Kalman �lter,

Rule-based) and DNN (LSTM) models, based

on measurements at the DL 880MHz band.
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Figure 5: Anomaly detection performance when (re)using a LSTMmodel customized for a

static observer at location 1. (a) running the model at location 1 and location 2. (b) running

the model at location 1 and a mobile observer near location 1 (all based on measurements

at the DL 880MHz band).

Test I: ReusingModels across Locations. Using our LTE mea-

surements at three static observers (in the same LTE cell), we apply

the same approach of [15, 33] to train, for each observer, the cor-

responding DNN models (LSTM and deep autoencoder). We then

run the models customized for one observer at the other two ob-

servers bothwith and without the presence of spectrumanomalies.

We considered a range of spectrum anomalies in the form of unau-

thorized transmissions used in §2.2.

Our results show that when reusing a spectrum LSTM model at

a di�erent location, the model is less accurate in capturing normal

spectrum patterns. Thus the anomaly detection rate drops consid-

erably (Figure 5(a)). The same applies to the autoencoder model.

Test II: Reusing Models at Mobile Observers. We also exper-

imented with “reusing” models trained for a static observer at a

mobile observer (walking at 3mph). Both observers were in close

proximity (to reduce the impact of location change). Results in Fig-

ure 5(b) show a similar trend of performance degradation.

Our Focus: Scaling the DNN Models. Together, these exper-

iments suggest that since wireless measurements depend on the

context of the observer, i.e. time, location, and mobility status, ide-

ally each observer should run a DNN model tailored to the cur-

rent context. Unfortunately, this is impractical under our targeted

scenario because the system must build models for each physical

location in the network and user context, and each observer must

change its DNNmodel whenever it moves. Such requirement leads

to signi�cant training overhead and run-time complexity.

This motivates us to explore a practical alternative: building

a uni�ed model for all the observers, with the goal of prioritiz-

ing scale and ease of deployment, minimizing training overhead,

and maintaining reasonable accuracy. In the following sections,

we tackle this new problem in two steps: �rst designing a single

context-agnostic DNNmodel for anomaly detection in a single LTE

cell (§4), then extending the single cell model to train models for

many other LTE cells and bands using transfer learning (§5).

4 A SINGLE MODEL PER LTE CELL

In this section, we focus on designing a single DNN model for

a single LTE cell, which will be deployed on all observers in the

cell without any modi�cation. Our hypothesis is that within a cell,

the normal downlink spectrum usage seen by each observer comes

from the same basestation, thus we could train the DNN model to

capture a uni�ed form of spectrum pattern that is context-agnostic,

i.e. does not depend onmobility pattern and precise locationwithin

the cell. For uplink, each observer sees aggregated transmissions

from many LTE users, and the normal spectrum usage could also

display context-agnostic patterns. Thus our goal is to design mod-

els to automatically discover these context-agnostic patterns, and

to validate whether they are su�cient for anomaly detection.

Our study considers two DNN models, LSTM and deep autoen-

coder. Both are known for capturing complex, temporal patterns

in the target data that can be di�cult to detect with simpler mod-

els [15, 18, 33]. In the following, we start with a brief introduction

of the two models, and then describe the steps taken to build and

train a context-agnostic version of these models using our spec-

trum data. We evaluate the models at both static and mobile ob-

servers, in terms of how they predict future spectrum usage. Later

in §6 we evaluate the corresponding anomaly detection systems.

4.1 Background: LSTM and Deep Autoencoder

LSTM is a special type of Recurrent neural network (RNN), well-

known for its capability of capturing comprehensive and intricate

patterns embedded in sequential data. A LSTM model maintains

an internal state in each RNN unit, and often consists of multi-

ple stacked layers, forming an architecture similar to feed-forward

neural network. This allows learning of complex relationships in

sequential data. Normally another fully connected layer is attached

at the end of the model for classi�cation or prediction. Details on

LSTM can be found in [18].

A stacked (or deep) autoencoder (details in [15]) is a DNNmodel

designed to learn e�cient data representation (or encoding) in an

unsupervised way. It learns to compress the data from the input

layer into representations, and then reconstructs the original data

using the representations at the output layer. This process forces

the autoencoder to extract the most useful features of the data.

AnomalyDetection. The above predictivemodels enable anom-

aly detectionwithout prior knowledge of anomaly. The intuition is

that since each model is trained using normal spectrumdata, it can-

not accurately predict data that contains anomaly, leading to large

model prediction errors that trigger the anomaly detection. Fig-

ure 6 plots the anomaly detection process. We �rst train the model

using spectrum observations in absence of anomaly, where given

past values, the model predicts the next few values in the sequen-

tial data. Next, given a present spectrum observation, we use the

model (and past observations) to predict the present spectrogram,

4
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Figure 6:Anomaly detection usingDNNmodels of spectrum usage.

and compare it to the observed spectrogram. If the prediction error

is larger than a threshold (details in §6), an anomaly is present.

Finding Clean Training Data. Ideally the model should be

trained with measurements in absence of anomaly, which are hard

to verify in practice. Fortunately, several works have con�rmed

that RNN, particularlyLSTMcan tolerate limited presence of anom-

alies in the training data without a�ecting anomaly detection per-

formance [13, 16]. Under our target scenario, the system can choose

training data from trusted observers who did not observe notable

cellular service degradations at the time of data collection, thus the

mass majority of the training data are in absence of anomaly.

4.2 Uni�ed Models of Spectrum Usage

We now describe the unique steps we take to build and train a

per-cell, uni�ed predictive model on spectrum usage. While our

description below is for LSTM, we apply the same process to build

and train the deep autoencoder model.

Input to LSTM. We feed the raw spectrogram of the wireless

signal into the LSTM model. Our intuition is that su�ciently pow-

erful LSTMs operating on raw signals can extract meaningful pat-

terns, while an alternative LSTM operating on aggregate statistics

is vulnerable to poor choice of statistics, and could miss valuable

dimensions of the data.

Given our LTE measurements, we con�gure the LSTMmodel to

use x = 25.6ms of measured signal as input to predict the next y =

6.4ms. We chose these parameters because our spectrum analysis

in §2 shows that the longest periodic pattern occurs at 6ms, thus

a target frame of y = 6.4ms should be su�ciently large to include

all the key patterns. We also experimented with other x values and

found that 25.6ms o�ers the best performance under our target

scenarios. We leave the optimization of x and y to future work.

Making the Model Context-agnostic. Our predictive model

is context-agnostic, so that it can be deployed on all observers in

the current cell, regardless of their physical location and mobility

status. We take two steps to achieve that.

First, we apply linear transformation to expose the intrinsic spec-

trum usage patterns. As mentioned earlier, the input signal data

displays a large variance across observing locations, which is an

inherent property of radio propagation. Such high variance can

cause LSTM (and autoencoder) to miss detailed temporal patterns

and correlations among sub-frequencies, but focus solely on abso-

lute power values. To expose these intrinsic spectrum patterns, we

apply linear transformation, i.e., mean-centering and scaling, to the

input FFT amplitudes, and �lter out input sequences that only con-

tain noise (no signal at all). As a result, each input sequence to the

LTSM model now has a zero mean and a variance of 1. This trans-

formation is similar to the idea of contrast stretching, a common

0

5

Groundtruth

0 10 20 30 40 50

0

5

Prediction

−55

−45

−35

−25

FF
T
 A
m
p
. 
(d
B
m
)

Time (ms)

Fr
e
q
u
e
n
c 
 (
M
H
z)

Figure 7: Spectrograms of actual and LSTM predicted LTE signal.

pre-processing technique in computer vision that exposes patterns

by transforming pixel intensities to increase contrast [2].

Second, we use as training data a mixture of spectrummeasure-

ments collected by both static and mobile observers within the cell.

Compared to context-speci�c models, this certainly minimizes the

model training time and data requirements. One concern is that

mixing training data from many sources can potentially increase

the ambiguity between normal data and anomalies. For example,

the normal spectrum usage seen at observer A could be similar to

the anomalous spectrum usage seen by another observer B. When

the training data includes those measurements from A, the trained

model could misclassify B’s observation of an anomaly as normal.

We took a detailed look at our measurement data (with anom-

alies), but did not identify any of such events. While our anomaly

instances are limited in scale, this result suggests that the probabil-

ity of such events is low in practice. An advanced attacker could

form its misuse signals to imitate normal spectrum usage, but this

is challenging since the observers will observe the aggregated sig-

nals from the attacker and the legitimate LTE transmitters.

Model Training. To train these models, we divide our per-cell

LTE measurement data into two portions: one used for training,

and one for testing. Both datasets contain measurements collected

by static, walking and driving observers. The observers in the test-

ing dataset do not appear in the training dataset. Overall, for each

cell, the ratio of the training data volume and the test data volume

is 2.5:1. Each model is trained to minimize the Root Mean Square

Error (RMSE) between the predicted signal and the ground-truth

signal (after transformation) in the training dataset.

4.3 Evaluation: Model Prediction Error

We evaluate how well the DNNmodels predict the spectrum usage

of the immediate future, so that they can quickly detect anomalies

that disturb the spectrum usage pattern. As an illustrative exam-

ple, Figure 7 plots the actual spectrogram (on a randomly chosen

50ms segment) and the output of the LSTMpredictionmodel (after

reversing the linear transformation). To reconstruct the 50ms seg-

ment from the prediction result, we cascade 8 segments of 6.4ms

prediction results, each predicted from previously observed 25.6ms

measurements. We see that the LSTM model is able to recover the

key patterns in spectrum usage across sub-frequencies and time.

Evaluation Metric: Spectrogram Prediction Error (dB). We

evaluate each model by the di�erence between the true signal spec-

trogram and the model prediction. Speci�cally, we calculate the

RMSE between the true FFT amplitude (dBm) across sub-frequencies

of the LTE band and the LSTMmodel prediction values after being

inverse-transformed back to FFT amplitude (dBm). In a nutshell,

the RMSE value approximates the amplitude spectrogram error in
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(a) Across Location

Test

Train
Loc 1 Loc 2 Loc 3 Uni�ed

Loc 1 2.71 (0.38) 5.21 (12.74) 2.97 (0.56) 2.67 (0.32)

Loc 2 3.41 (0.64) 2.46 (0.76) 3.67 (1.09) 2.47 (0.24)

Loc 3 2.68 (0.46) 4.56 (7.03) 2.63 (0.26) 2.61 (0.29)

Mixed 3.70 (1.79) 4.86 (13.84) 4.07 (1.88) 2.59 (0.23)

(b) Across Time Periods

Test

Train
Day Night Uni�ed

Day time 2.59 (0.23) 2.74 (0.22) 2.53 (0.18)

Night 2.63 (0.23) 2.71 (0.27) 2.61 (0.22)

Mixed 2.59 (0.18) 2.74 (0.18) 2.55 (0.22)

(c) Across Mobility Context

Test

Train
Static Walking Driving Uni�ed

Static 2.52 (0.21) 2.47 (0.23) 2.57 (0.33) 2.43 (0.23)

Walking 2.47 (0.29) 2.62 (0.23) 2.67 (0.27) 2.56 (0.18)

Driving 2.64 (0.29) 2.58 (0.26) 2.59 (0.26) 2.57 (0.23)

Mixed 2.66 (0.30) 2.54 (0.27) 2.61 (0.23) 2.58 (0.19)

Table 1: Prediction error (dB) of LSTMmodels under di�erent train-

ing con�guration. Numbers in parenthesis show the standard devi-

ation of prediction error (dB). Here we show the result from the

880MHz band while the other bands lead to similar conclusions.

a single dB value. We refer to this metric as the prediction error

(dB). Because our test data has many observers, we will present

the mean and standard deviation of the prediction error across all

the observations in the test dataset.

The prediction error directly links to the accuracy of anomaly

detection. The smaller the prediction error is in absence of anom-

aly, the better the predictive model is and the higher accuracy the

model has during anomaly detection. We evaluate the anomaly de-

tection performance later in §6, which yields consistent results.

Uni�ed vs. CustomizedModels. We evaluate our uni�edmod-

els by comparing them tomodels customized to individual observer’s

context. The results of LSTM and autoencoder are similar to each

other: the prediction error of autoencoder is 3-8% higher than that

of LSTM. We only show the LSTM results for brevity.

Table 1(a) shows the mean and standard deviation of the predic-

tion error (dB) of our uni�ed model and those of the models cus-

tomized to three individual locations. The location-speci�cmodels,

when running on a di�erent location, produce large prediction er-

rors (5.21 dB rather than 2.5dB). But the uni�ed model is always

as good as or even better than all the location-speci�c models.

We repeat the experiment in the time domain. Table 1(b) con-

�rms that training data over day and night can also be mixed to-

gether when building the uni�ed model.We also use data collected

in June 2018 to further test ourmodel (trained using measurements

from January and March 2018), and the uni�ed model consistently

provides better prediction than those designed for speci�c time pe-

riods of the day. The di�erence between the models is less visible

compared to that in Table 1(a), indicating that physical location

has a much heavier impact on spectrum monitoring than time.

We also experiment with the mobility context. We group the

measurements by their mobility context: static (mixed locations),

walking, and driving (≤ 25 mph). In addition to the uni�ed model,

we also trained mobility-speci�c models for each of the three con-

texts. Table 1(c) shows that the uni�ed model and the mobility-

speci�c models perform similarly. For both, the average prediction

error is bounded by 2.62 dB with a very low variance (0.26).

Overall, the uni�ed model achieves the best prediction perfor-

mance, 2.58 dB (0.19), when tested at a diverse set of observers. This

can be attributed to two factors. First, the model’s timing con�gu-

ration (using 25.6ms data to predict next 6.4 ms data) allows LSTM

to capture critical spectrum usage patterns, and yet remains small

enough to make the model robust against context changes. Sec-

ond, the linear transformation allows LSTM to focus on intrinsic

patterns of signal spectrogram, which remains consistent across

di�erent mobility context, time periods, and locations.

It should be noted that a related challenge is whether and how

such uni�ed model per LTE cell can be used near cell boundaries,

where an observer can potentially pick up signals from multiple

basestations. When these basestations operate on the same fre-

quency band, the observer could see signal patterns that are dif-

ferent from those at in-cell locations. This must be treated with

care to minimize false alarms. As future work, we plan to address

this issue using dedicated measurements at cell boundaries.

Model Complexity. We implement our LSTM and autoencoder

models on a NVIDIA Titan X GPU, where it takes < 10ms for pre-

diction on each data segment. As future work, we plan to imple-

ment our design on commodity mobile platforms such as smart-

phones and NVIDIA Jetson platforms. Existing works have suc-

cessfully deployed e�cient LSTMmodels onmobile devices [6, 27].

The LSTM model in [27] has 5 layers, each with 500 LSTM units,

and runs e�ciently on Nexus 5 Android smartphones. In compari-

son, our LSTM has fewer parameters (2 LSTM layers, 64 units each)

and should also run e�ciently on common mobile devices.

4.4 Models for DL and UL Bands

We take a closer look at the uni�edmodels built for each of the four

LTE bands. Recall that our analysis in §2.1 shows that LTE bands

display di�erent spectrum usage patterns. The UL band (830 MHz)

is particularly di�erent from the DL bands.

Interestingly, the �nal model structure also di�ers between the

DL and UL bands. For LSTM, the three DL bands share the same

structure: 2 LSTM layers of 64 units plus 1 dense layer, while the

UL band requires an extra LSTM layer. The same applies to autoen-

coder: the DL models have 4 dense layers while the UL model has

6 dense layers. This is somewhat intuitive since LTE DL signals

originate from a single strong transmitter (basestation), while UL

signals are aggregates of many weak transmitters. The UL spec-

trum patterns are more complex, requiring more neurons to learn.

Table 2 lists the prediction errors of the four bands using LSTM.

The three DL bands perform similarly, while the UL band experi-

ences larger prediction errors. We also veri�ed the same model us-

ing spectrummeasurement data collected a fewmonths later (June

2018), and the results are consistent.

880 MHz 750 MHz 730 MHz 830 MHz (UL)

Testing: Early 2018 2.58 (0.19) 2.70 (0.25) 2.54 (0.26) 3.14 (0.78)

Testing: June 2018 2.61 (0.21) 2.72 (0.24) 2.52 (0.25) 3.11 (0.73)

Table 2: Model prediction error (dB) of our uni�ed LSTM model.

6



 0

 2

 4

 6

Cell A Cell B

P
re

d
ic

ti
o
n
 E

rr
o
r 

(d
B

)

Self Cross Transfer

Figure 8: Prediction error of LSTM models

transferred across di�erent LTE cells in the

880 MHz DL band.
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Figure 9: Prediction error of LSTM mod-

els with di�erent transfer options (transfer

model of DL 880 MHz to DL 730MHz).
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Figure 10: Prediction error of LSTM mod-

els with di�erent transfer options (transfer

model of DL 880MHz to UL 830MHz).

5 BEYOND THE PER-CELL MODEL

We now consider the problem of building spectrum models for

many LTE cells and multiple bands. One can simply train a model

for each LTE cell and band, but the training overhead and data col-

lection requirements are practically prohibitive. Like other DNN

models, LSTM and deep autoencoder require large amount of di-

verse training data and can take hours and even days to �nish

training. Currently, our models take 2 hours to �nish with 1 day

worth of training data and almost 24 hours with 8 days of training

data. Practical deployment will likely need much larger and more

diverse training data, and more frequent training to adapt the mod-

els. Thus it is critical to reduce the model training overhead across

all the LTE cells. In the followingwe discuss and compare potential

solutions to address the issue of training overhead.

5.1 Can Models be Reused?

Does reusing the model across cells and bands really work?

Test I: ReusingModels across LTE Cells. We apply the LSTM

model trained for one cell to another (same network carrier, same

frequency band, same technology, just a di�erent basestation), and

observe sizable performance degradation in both model prediction

and anomaly detection. For the 880 MHz DL band, the average pre-

diction error raises to 3.36 dB from the baseline of 2.58 dB and the

standard deviation jumps from 0.19 to 0.56. This is likely because

the two basestations are con�gured di�erently so their spectrum

usage patterns di�er.

Test II: Reusing Models across LTE Bands. We apply the

LSTM model trained on the 880 MHz DL band to the 730 MHz

DL band. The average prediction error and the standard deviation

grow to 3.54 dB (0.71) compared to 2.70 dB (0.25). This is because

the two bands show visible di�erences in spectrum usage patterns,

which are captured by LSTM to produce a precise model for each.

Autoencoder shows the same trend.

Together, these results show that models trained for a speci�c

LTE cell and a speci�c LTE band are in general not reusable across

cells and bands. This does not contradict with our conclusion in §4

where the per-cell model can be reused within the same cell. In a

given cell, the spectrum usage pattern is fairly consistent.

5.2 Fast Training via Transfer Learning

To speed up model training at many cells, we consider an alter-

native solution, transfer learning [34], which adapts a pre-trained

DNN model to a new scenario using limited training data. It lever-

ages the underlying similarity between tasks associated with two

models. By transferringmodel architecture and weights from a pre-

trained model (teacher) to the new model (student), one can boot-

strap and �ne-tune the student model with limited training data.

Transfer learning is suitable for our problem because LTE cells

share similar spectrum usage characteristics (§2), especially for DL

bands since only LTE base stations are transmitting. Next we show

that transfer learning can be used to quickly adapt a pre-trained

LSTMmodel to a new LTE cell and even to a new LTE band, reduc-

ing training data volume by a factor of 288.

We note that a similar concept of “knowledge transfer” has been

applied to wireless networking design, using knowledge collected

by one basestation to help con�gure another basestation (e.g., spec-

trumhando� [22], operatingmodes for energy saving [23] and con-

tent caching strategies [4]). Our solution is motivated by these ex-

isting works, but our contribution lies in the novel application of

transfer learning to the problem of spectrum anomaly detection,

and a detailed validation using real-world LTE measurements.

When applying transfer learning, we �rst build a student model

by copying the teacher model, then use local spectrum measure-

ment data to re�ne the model. Here the transfer process depends

on k , the number of model layers “allowed” to be updated [34].

The simplest form of transfer learning updates on the last (dense)

layer of themodel. This is commonly usedwhen the student model

targets very similar task or domain characteristics as the teacher

model. The more advanced ones allow more or all the layers to be

updated. The student models can better adapt to new scenarios but

require more local data to reach convergence.

Transfer across LTE Cells. To test the e�ectiveness of transfer

learning, we transfer the LSTM model trained on cell A (using 1

day of training data) to cell B (same carrier, band, technology), and

�ne-tune B’s model with 5 minutes of spectrum data collected in

cell B. Here we chose 5-min because the tuning process converges.

We consider the simplest transfer option of freezing all weights of

the two LSTM layers and only updating weights in the last dense

layer. For comparison, we train another LSTM model for B from

scratch using the same amount of training data as of A (1 day).

Figure 8 shows the prediction error of the model trained from

scratch (Self), the model of the other cell (Cross), and the trans-

ferredmodel (Transfer). The transferredmodel’s errormean (2.65 dB)

is extremely close to that of the model trained with the full data

(2.59 dB). Yet this model only requires �ne tuning the last dense

layer using 5-min local spectrumdata, comparingwith 1-dayworth

of data for Self (a factor of 288 reduction). The same conclusion

holds when we test the autoencoder model.
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Figure 13: Our uni�ed and transferred

models are on par with the oracle design

that uses location-speci�c models.

Transfer across LTE Bands. Since di�erent LTE bands display

di�erent spectrum patterns, we expect more e�orts to complete

the transfer learning. Since our LSTM model has three layers, we

experimented with three transfer approaches: 1L, 2L, All-L, respec-

tively, to re�ect the number of model layers it needs to �ne tune.

We also include the results of copying the teacher model (Teacher)

and training from scratch (Self).

Figure 9 shows the quantile distribution of the LSTMmodel pre-

diction error (in absence of anomaly) by transferring the model of

the DL 880MHz band to the DL 730MHz band, with di�erent trans-

fer options. Since the underlying temporal patterns di�er between

these two bands, only �ne-tuning the last dense layer is insu�cient

(the average prediction error is 3.13 dB compared to 2.70 dB of Self)

even after adding more training data. In the end, �ne tuning 2 lay-

ers with 1 hour of data achieves comparable performance of Self.

Interestingly, �ne-tuning all 3 layers with 1 day worth of training

data slightly outperforms training from scratch (Self). Again the

same trend applies to the autoencoder model.

We also seek to transfer the DL model (e.g., 880 MHz) to the UL

band (830 MHz). As mentioned in §4.4, when trained from scratch,

the 830 MHz band requires more dense layers for both LSTM and

autoencoder than the threeDL bands. Thus direct transfer between

the two types of bands might not be as e�ective as the above case.

Figure 10 con�rms that for LSTM, even after �ne-tuning all the lay-

ers (of the transferred 880 MHz model), the prediction error is still

not on par with that of Self (which needs an extra LSTM layer).

Therefore, while transfer learning can potentially be applied to

quickly customize LSTM (and autoencoder) models across bands,

choosing the right teacher model can be a critical requirement. We

leave this topic to future work.

Complexity. We implemented the transfer learning process on

the NVIDIA Titan X GPU server. Across cells, the re-training took

less than 5 minutes, and uses 5-minute of local data. Across bands,

the re-training took less than 2 hours, using 1-day worth of lo-

cal measurements. For both, training from scratch would take 24

hours, and use 8-day worth of spectrum measurements.

6 EVALUATION: ANOMALY DETECTION

In this section, we use real anomaly instances to evaluate our anom-

aly detection system built on the DNN models. Our evaluation

seeks to answer the following questions: (1) whether our uni�ed

model performs as good as the (impractical) oracle system that

builds context-speci�c model for each location, (2) how models

trained via transfer learning perform in anomaly detection com-

pared to those trained from scratch.

Choosing Anomaly Threshold. Our DNN models detect an

anomaly if the di�erence between themeasured data and themodel

predicted data exceeds a threshold. The threshold also determines

the false alarm rate. To determine this threshold, we partition the

model training data to two subsets: the training set and the valida-

tion set. After a model is trained, we use the validation data to cal-

culate the statistics of the model prediction error. For our dataset,

these errors can be modeled using a Gaussian distribution. From

this distribution we can calculate, for each false alarm rate, the cor-

responding threshold on the prediction error.

Next, we discuss our experiments using two types of anomalies:

unauthorized transmitters andmiscon�gured LTE basestations. For

all the experiments, the detection rate of autoencoder is similar to

that of LSTM (only 2-4% worse while keeping the same false alarm

rate). Thus we only show the LSTM result for brevity.

6.1 Detecting Unauthorized Transmissions

We generated anomalies in the form of unauthorized spectrum us-

age, where an “unlicensed” transmitter (USRP N210) broadcasts

various types of signals. Our anomaly instances include transmis-

sions using the entire 5MHz band and OFDM signals (like LTE),

using a portion of the 5MHz band (1, 2, 3MHz) with OFDM signals,

and a narrowband misuse with QPSK and BPSK signals. When the

anomaly is on, we set up a static observer and a walking observer

in proximity (within 50 meters) who collect LTE measurements

and perform anomaly detection. The walking observer follows a

pre-de�ned route for all the anomaly instances. We did not have

any driving observers since they quickly go out of range of our low

power transmitters. In total, we performed 100 experiments, each

of 5 minutes long.

Ethics. We are very aware of the potential impact of our exper-

iments on cellular users, and took extensive precautions to ensure

that these experiments had no impact on cellular users or basesta-

tions. First, we chose the second �oor of an older campus building

with heavy concrete walls and �oors as our setting. We �rst mea-

sured signal propagation properties in the building by setting the

transmitter frequency to 900MHz (closest unlicensed band), and us-

ing a spectrum analyzer to measure signal strength at numerous

locations inside and outside of the building. We con�rmed that the

thick concrete walls and �oors completely blocked signals beyond

the immediate open hallway and adjoining o�ces and no signals

were observed outside the building or on �oors above or below.
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Next, we scheduled experiments late at night and on weekends,

when the campus building is generally unoccupied. Between ex-

periments, one student walked the entire length of the hallway

and checked to make sure no one else is on the �oor. We did not

encounter any other occupants of the building during our experi-

ments.We also periodically used spectrumanalyzers to (re)con�rm

that our transmissions are strictly constrained to the second �oor.

Results: Anomaly Detection Accuracy. Figure 11 compares

the quantile distribution (5%, 25%, 50%, 75%, 95%) of the model pre-

diction error (dB) per spectrumobserver, i.e. the RMSE between the

measured and predicted spectrograms, across all the measurement

instances, with and without anomalies. The presence of anomalies

largely increases the prediction error. The two distributions are

reasonably separated for the three DL bands, but overlap slightly

for the UL band (830MHz). Next, Figure 12 plots the RoC result

(anomaly detection rate vs. false alarm rate) for the four LTE bands.

Here we average the detection result across all the measurement

instances collected by the static and mobile observers, producing

the average detection rate per spectrum observer. We see that for

the three DL bands, the anomaly detection results are on par with

each other, while the UL band is less e�ective. Yet these results are

still signi�cant better than non-DNN solutions (see Figure 4).

In our experiments, misdetection occurs when the anomaly’s

signal power is low and the observer is further away from the mis-

use. In practical deployment, one can improve the anomaly detec-

tion rate by deploying more observers for density and coverage,

further pushing the need for a context-agnostic model.

Results: Uni�ed vs. Customized Models. We compare our

uni�ed model (with linear transformation) and the basic version

(without linear transformation), to an context-speci�c system that

builds context-speci�c models for each location. We compute the

anomaly detection result for the context-speci�c system by train-

ing a model for each static observer using its own past observa-

tions, and testing the model using the anomaly instances in range

of the static observer. Note that our uni�ed model is tested on all

the anomaly instances and on both the static and mobile observers.

As shown in Figure 13, our uni�ed model (with linear transforma-

tion) performs as well as the context-speci�c model.

Results: Transferred vs. Self-trained Models. We compare

the anomaly detection performance of models transferred from

other cells with those of models trained from scratch. Figure 13

shows that the transferred model achieves almost identical perfor-

mance while greatly reducing the training overhead.

6.2 Detecting TX Miscon�gurations

We also study anomalies of basestation miscon�guration, imple-

mented by modifying our LTE measurement traces. This will not

produce any impact on cellular services. We consider two types

of miscon�guration: (1) the miscon�gured basestation stops trans-

mitting signals at some or all sub-frequencies; (2) the miscon�g-

ured basestation suddenly changes its transmit power level. We

produce both instances by modifying our LTE downlink measure-

ment traces, replacing themwith replays of measured noise signals

or increasing/decreasing the amplitude of the received signals.

We note that these anomalies could also be detected by other

methods, since (strong) static observers will likely detect changes

in the spectrogram. Instead, we use these to show that our uni�ed

model can detect general types of anomalies beyond unauthorized

transmissions. That is, the same model can detect both unautho-

rized transmissions and miscon�guration of basestations.

Detection Results. Table 3 lists the average detection rate per

spectrumobserver under 1% false alarm rate for di�erent categories

of miscon�guration. Here “x% F down” means transmissions on

x% of frequency is replaced as noise. “∆P =x dB” means transmit

power is modi�ed by x dB. Even at a very low 1% false alarm rate,

the same uni�ed model (as in §6.1) can e�ectively detect anomalies

caused by miscon�guration, and the detection rate correlates with

the severity of the anomaly. While linear transformation used to

build our model “suppresses” the impact of transmit power level,

our model can still detect sudden basestation power changes be-

cause it creates notable changes in the spectrum usage pattern.

∆P=3 dB ∆P=5 dB 33% F down 66% F down 100% F down

880 MHz 58% 78% 52% 87% 100%

750 MHz 60% 81% 57% 90% 100%

730 MHz 53% 78% 54% 88% 100%

Table 3: Anomaly detection rate at 1% false alarm rate.

7 RELATED WORK

AnomalyDetectionandDiagnosis inWirelessNetworks. Ex-

isting works can be divided into three categories, depending on

who runs anomaly detection and diagnosis. The �rst category in-

volves system administrators [5, 17, 19, 31], who use system logs

or Key Performance Indicators (KPIs) to detect network outages

and performance degradations. The second leverages diagnosis by

network clients [8]. The third category uses third-party devices

to monitor and detect physical layer anomalies such as spectrum

misuse, using metrics like signal strength variations [11, 37].

Ourwork falls into the third category. Our key contributions are

the novel application of DNN (LSTM and deep autoencoder) and

transfer learning to the problem of spectrum anomaly detection,

the design of a context-agnostic DNN model, and the empirical

study using measurements by both static and mobile sni�ers.

Misuse Detection for Opportunistic Spectrum Access. Ex-

isting works have studied the issue of spectrum usage violation

where a secondary user tries to transmit when a nearby primary

user is inactive. They consider individual features of signal trans-

missions, including RSS spatial distribution [3, 24, 25, 29], RSS vari-

ation [10, 42], physical channel properties [12, 41], amplitude dif-

ference between direct and re�ected paths [26] as well as airtime

utilization [38]. Most designs were based on abstract propagation

models, which do not capture real world settings.

Ourwork considers the issue of spectrumanomalies due to unau-

thorized transmitters and miscon�guration of LTE basestations.

Our work di�ers from existing works by taking an empirical, data-

driven approach. Instead of relying on a �xed set of features, we

build DNNs to automatically extract features required for accurate

anomaly detection, and develop context-agnostic DNN models.

Machine Learning for SignalClassi�cation andAnomalyDe-

tection. Early work focused on statistical hypothesis test [38]

and threshold-based methods [20, 37]. Recently, ML models have

been applied to the problem of signal classi�cation (e.g. [35, 36])

and spectrum misuse detection [15, 24, 33]. [33] used a small scale

study to show that LSTM outperforms Kalman sequence predic-

tor. [15] developed an autoencoder model for spectrum anomaly
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detection, based on a limited dataset (1000 samples) on the FM

band. [24] applied one-class SVM to detect spectrum anomaly (via

simulations) while [40] used supervised learning to train Hidden

Markov Models. These existing works focused on anomaly detec-

tion by a single static observer without considering the impact of

usermobility and location. They used either simulation or fewmea-

surement data for validation.

Our work has a much broader scope by developing robust, scal-

able anomaly detection capable of detecting previously unknown

anomalies, for both static and mobile observers. We also collected

detailed signal measurements on four LTE bands and under di�er-

ent user context to drive our empirical study.

8 CONCLUSION AND FUTURE WORK

We show that a scalable DNNmodel on LTE spectrumusage can be

built and deployed on awide range of observers (static nodes, walk-

ing users, buses), enabling real-time spectrum anomaly detection.

Its performance matches the “oracle” design that trains customized

models for each speci�c user context (location and mobility). The

model remains constant for any observer in a single cell, and can

be quickly trained and adapted using a small amount of local spec-

trum measurements. To the best of our knowledge, this is the �rst

to show the feasibility of building practical and general spectrum

anomaly detection systems for large-scale LTE networks.

Moving forward, we plan to explore several directions. First,

we plan to explore other DNN models, and validate them using

spectrum anomalies in the wild. Also, the frequency-temporal pat-

tern of the prediction error could be used to distinguish di�erent

anomaly types. This needs to be further validated using anomaly

instances in the wild. Second, spectrum measurements at individ-

ual observers can be noisy [30], or corrupted/modi�ed by well-

equipped adversaries. We plan to re�ne our system to be robust

against such artifacts. Finally, the spectrumusagemay change over

time, e.g., upon carrier upgrade. While our current measurements

did not observe such changes, how to update the model to the new

con�guration will be an interesting direction to explore.
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