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Maintenance-Free
Global Data Storage

OceanStore, a global storage infrastructure, automatically

recovers from server and network failures, incorporates new

resources, and adjusts to usage patterns.

The computing world is experienc-
ing a transition from desktop PCs
to connected information appli-

ances, which — like the earlier transition
from mainframes to PCs — will profound-
ly change the way information is used.
The variety of devices capable of con-
necting to the Internet is astounding. Per-
sonal Data Assistants (PDAs), cellular
phones, and even cars have Internet con-
nectivity. Given the proliferation of con-
nected devices, it’s natural to address their
common need for persistent storage by
means of an Internet-based, distributed
storage system. Such a system would let
devices transparently share data and pre-
serve information even when devices are
lost or damaged (for a discussion of appli-
cations that will benefit from such a stor-
age infrastructure, see the “Applications
for Global Storage Systems” sidebar on p.
44). To handle all of the world’s client
devices, such a storage system must even-
tually consist of thousands or millions of
Internet-connected servers. Consequently,
the greatest obstacle to building and
deploying such a system is manageabili-
ty. Already, single-site data storage sys-

tems require carefully orchestrated server
configurations, an art understood only by
highly paid experts. In a global-scale, dis-
tributed storage system, the difficulties
increase by many orders of magnitude.

Two distinct types of management are
readily identified. Storage-level manage-
ment is the set of operations required to
maintain the integrity and access perfor-
mance of raw data, without reference to
the semantics of the information that data
represents. Proper storage-level manage-
ment yields a stable set of bits (or stable
store) that can be utilized by applications
in a variety of ways. Information-level
management, on the other hand, is the set
of operations involved in sorting, classi-
fying, and organizing raw data. Conse-
quently, error correction codes are an
aspect of storage-level management,
while sophisticated indexing is an aspect
of information-level management.

This article explores mechanisms for
storage-level management in OceanStore,1

a global-scale utility infrastructure, de-
signed to scale to billions of users and
exabytes of data. A prototype of the
OceanStore system is currently under con-
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struction at the University of California at Berkeley.
OceanStore combines erasure codes for data dura-
bility with a Byzantine agreement protocol for con-
sistent update serialization, even when malicious
servers are present. Its routing layer effectively
divorces information from location, and includes
an integrated set of tools for introspective adapta-
tion. Each component is sufficiently fault-tolerant
to survive a severe network partition, and each
component can repair itself following unexpected
or malicious failures. Such mechanisms support the
automatic integration and removal of servers, per-
haps the greatest advance over conventional dis-
tributed storage systems.

System Overview
As Figure 1 shows, OceanStore consists of millions
of individual servers, each cooperating to provide
service. A group of such servers is a pool. Data
flows freely between these pools, allowing repli-
cas of a data object to exist anywhere, at any time.
Because OceanStore is composed of untrusted
servers, it utilizes redundancy and client-side
cryptographic techniques to protect data. Although
many servers may be corrupted or compromised
at a given time, the complete system’s aggregate
behavior assures users of stable storage. Moreover,

because client data is encrypted, servers are never
able to read it. Users are assumed to pay for ser-
vice from one of many possible OceanStore ser-
vice providers (OSPs), each of which own some of
the OceanStore servers.

OceanStore attacks the problem of storage-level
maintenance with four mechanisms: 

� a self-organizing routing infrastructure, 
� m-of-n data coding with repair,
� Byzantine update commitment, and 
� introspective replica management. 

Together, these elements form a highly available,
maintenance-free data storage substrate. This sub-
strate recovers from server and network failures,
efficiently incorporates new resources, and adjusts
to changing usage patterns, all without manual
intervention.

OceanStore is designed to support 1010 users, each
having approximately 104 data files of 104 bytes
each. Thus, the system must store approximately one
exabyte (1018 bytes) of data, a size that is consistent
with recent data growth projections.2

At the lowest level, OceanStore uses erasure codes
for data durability.3 Erasure coding transforms a
block of input data into fragments, which are spread
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Figure 1. The OceanStore system.The core is composed of potentially thousands or millions of highly
connected “pools” or storage domains, among which data freely flows. Clients connect to one or more
pools, perhaps intermittently.



over many servers; only a fraction of the fragments
are needed to reconstruct the original block. This
coding technique introduces several concerns. One
such issue is data integrity: The system must ensure
that a reconstructed object is an exact copy of the
original, despite failures or malicious corruption of
fragments. OceanStore addresses this issue by nam-
ing each object and its associated fragments by the
result of a secure hash function over the object’s
contents. This value is the object’s globally unique
identifier (GUID). The security of the hash justifies

this terminology — our prototype
uses a 160-bit SHA-1 hash for
which the probability that two out
of 1014 different objects hash to the
same value is approximately 1 in
1020. Because changing an object’s
content changes its hash value and
name, objects named by GUIDs are
read-only. OceanStore’s archival
subsystem manages these read-only
objects, as we discuss later. Because
the servers can regenerate and check
hashes at any time, fragments are

unforgeable and self-verifying.
Another issue introduced by erasure coding is

location: When reconstructing an object, the sys-
tem must locate enough servers storing fragments
for that object. OceanStore addresses this problem
with Tapestry, an overlay routing and location layer
on top of TCP/IP that maps GUIDs to individual
servers. A server can advertise many GUIDs, and
any GUID can be advertised by multiple servers.
Utilizing Tapestry, OceanStore can easily locate the
servers containing fragments for a given GUID.

As specified above, durable elements of
OceanStore are read-only. OceanStore overcomes
this deficiency through versioning,4 the concept
that every update creates a new version of a data
object. To support versioning, each OceanStore
object has a special name called an active GUID.
The system then provides a fault-tolerant mapping
from an object’s active GUID to the GUID of the
most recent read-only version of that object. This
mapping is accomplished by the inner ring, a
group of servers working on behalf of that object.
Each object has its own inner ring, although phys-
ical servers may participate in many different
inner rings. The system builds a mapping from
human-readable names to active GUIDs with a
hierarchy of OceanStore objects, similar to the
SDSI framework.5 Clients locate servers of an inner
ring through Tapestry.

An inner ring’s servers are kept consistent

through a Byzantine agreement protocol that lets a
group of 3f + 1 servers reach agreement whenever
no more than f of them are faulty. Consequently,
the mapping from active GUID to most recent
read-only GUID tolerates server failure and cor-
ruption. The system ensures that no more than f of
those servers are faulty via the responsible party,
a group of servers owned by a user’s OSP, that pro-
vide a crucial, but low-bandwidth, level of over-
sight to the system. 

The inner ring also verifies a data object’s
legitimate writers, orders updates, and maintains
an update history. This history allows for time
travel as in the original Postgres database.4 Time
travel facilitates information management by
providing a universal undo mechanism. Further,
storing old versions of objects allows true refer-
ential integrity. These are information-level man-
agement properties, however, which are outside
the scope of this article.

Finally, because reconstructing an object from
archival fragments is computationally intensive, it
should be performed only when necessary.
OceanStore servers that have already reconstruct-
ed objects from the archive can advertise them
through Tapestry. These objects are secondary
replicas of the data, distinct from the primary
replicas stored on the inner ring. An OceanStore
client can retrieve an object either by locating a
replica from a nearby server or reconstructing it
from the archive.

To make object retrieval less costly and minimize
total work, an introspective replica management sub-
system automatically creates, replaces, and removes
replicas in response to object usage patterns.

Mechanisms for Self-Maintenance
A self-maintaining system requires two funda-
mental properties: fault tolerance and automatic
repair. When a system begins to fail or misbehave,
the most important system property is its capabil-
ity to continue operating correctly, though possi-
bly at reduced performance. Such fault tolerance,
however, is not sufficient for self-maintenance,
because further failures might render correct oper-
ation impossible. Instead, a system must, with high
probability, detect and repair a failure before fur-
ther failures cause a catastrophic error or disrupt
service. This section describes self-maintenance in
four pieces of the OceanStore architecture. 

Routing Infrastructure
OceanStore’s Tapestry, a self-organizing routing
and object location subsystem, provides object
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location and node-to-node communication under
failure conditions, while transparently handling
the automatic insertion and removal of nodes.6

Basic routing and location. Tapestry functions as
an overlay on top of IP, using a distributed, fault-
tolerant data structure to explicitly track the loca-
tion of all objects. This data structure resembles the
hashed-suffix routing structure presented by Plax-
ton, Rajaraman, and Richa.7 Each network node
can act as a server that stores objects, a client that
initiates requests, or a router that forwards mes-
sages, or as all of these. Like objects, nodes are
assigned unique identifiers called NodeIDs that are
location- and semantics-independent. 

Tapestry uses local-neighbor maps to incremen-
tally route messages to their destination NodeID,
digit by digit. Figure 2 shows an example of such
routing. Because the only routing constraint is that
each hop match some growing suffix, each routing
step in any path can often be satisfied by several
destinations. Tapestry keeps pointers to the three
closest candidates (in network latency) for each
routing entry and, where possible, routes to the
neighbor with lowest latency. Nodes early in a
path, in particular, generally have many candi-
dates, making early routing hops very fast.

Location through Tapestry works as follows:
When an OceanStore server inserts a replica into
the system, Tapestry publishes its location by
depositing a pointer to the replica’s location at
each hop between the new replica and the object’s

root node, whose name (NodeID) is a deterministic
function of the object’s GUID. To locate an object,
a client routes a request to the object’s root until
it encounters a replica pointer, at which point it
routes directly to that replica.

Fault tolerance. Tapestry uses its redundant neigh-
bor pointers when it detects a primary route failure
while routing a message. Figure 3, which shows
the effectiveness of these alternate routing paths,
derives from a simulation of a 5,000-node TIERS
artificial topology,8 of which 4,096 nodes partici-
pate in the Tapestry protocols. In this simulation,
we repeatedly routed packets from randomly cho-
sen nodes in the Tapestry network to 256 destina-
tion nodes, while increasing the number of failed
links in the physical network. Because IP routing
via border gateway protocol (BGP) tables cannot
detect failures and find alternate routes in time to
redirect packets, we consider packets sent along
failed links dropped. Tapestry, on the other hand,
uses periodic user datagram protocol (UDP) probes
to gauge link conditions, and can immediately
deploy backup routes when a failure is detected.

The most striking result in Figure 3 is that
Regions B and D are almost invisible, meaning only
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Figure 2. Tapestry routing example. A potential path
for a message originating at node 0325 destined for
node 4598.Tapestry routes the message through
nodes **** → ***8 → **98 → *598 → 4598,where
asterisks represent wildcards.The role each hop
plays in the path is marked with a level number.
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Figure 3. Fault-tolerant routing in Tapestry.This figure shows the 
benefits of fault-tolerant routing by plotting a reachability measure
(fraction of routes available) against the fraction of failed physical
links. Regions A through D: physical route exists; Region E: no physical
route exists. Region A: both IP and Tapestry successfully route to 
destination. Region B (barely visible between A and C): IP succeeds,
Tapestry fails. Region C: IP fails,Tapestry succeeds. Region D (barely
visible between C and E): both protocols fail.



in rare circumstances does Tapestry fail to route to
a physically reachable node. As failures increase in
frequency, Tapestry greatly increases the probabili-
ty of successful routing. Even when half the physi-
cal links are broken, Tapestry has a 10 percent
chance of reaching any destination node.

Besides storing multiple destinations per hop,
Tapestry deterministically chooses multiple inde-
pendent root nodes for each object to provide
additional redundancy in the location protocol.
The result trades off reliability and bandwidth,
because location queries are sent to each root in
parallel. In a network with s roots, and assuming
a large-scale network partition that divides the
network fairly evenly, it is likely (P ≈ 1 – (1/2)s)
that the data is available via one of the roots.

Automatic repair. Tapestry provides distributed
algorithms to adapt to node insertions and
removals, fluctuating network conditions and
changing user access patterns. To join an existing
network, a node chooses a random NodeID by

which to identify itself. It then chooses a Tapestry
node close in network distance to itself. These
nearby Tapestry nodes can be specified by a sys-
tem administrator or publicized by an external
index such as a lightweight, directory access pro-
tocol (LDAP) server. Routing to the newly chosen
NodeID through this existing node lets the new
node find other existing nodes that share incre-
mentally longer suffixes. By copying and optimiz-
ing their routing tables at each level, the new node
can generate a full routing table. The new node
then notifies nearby nodes of its existence so that
they can consider it as a more optimal neighbor. 

To handle exiting nodes, Tapestry includes two
separate mechanisms. A node can simply disap-
pear from the network, in which case its neighbors
detect its absence and update routing tables
accordingly. Alternatively, a node can use back-
pointers to inform nodes that rely on it for rout-
ing to redirect pointers and to notify object servers
for which it stores location information.

The above mechanisms let us dynamically add
and remove nodes without manual configuration.
Similarly, background processes monitor network
conditions to detect suboptimal routes and update
routing maps where appropriate.6

M-of-N Encoding
Erasure codes and self-verifying fragments are the
cornerstones of the archival layer’s fault tolerance
and automatic repair. An erasure code treats input
data as a series of m fragments, which it trans-
forms into n fragments, where n > m. The result-
ing code’s essential property is that any m of the
coded fragments are sufficient to reconstruct the
original data. The rate of encoding is r = m/n. The
storage overhead is 1/r. The system can adjust the
durability of information by selecting the rate (and
hence overhead).

Fault tolerance. OceanStore divides objects into
blocks, producing an erasure-encoded form of
each block. An object’s inner ring encodes blocks
during the update process, sending encoded frag-
ments for each new block to a set of independent
storage servers. The inner ring chooses storage
servers in a way that minimizes the impact of cor-
related failures, such as can occur if the storage
servers have similar geographic locations or
administrative domains. To accomplish this, the
inner ring builds models of the independence of
storage servers based on historical measurement
and information exchanged with other inner rings.
Further, correlated failures pose less of a difficulty
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A distributed, fault-tolerant, secure storage infrastructure benefits both
very large and small datasets. For example, NASA’s Earth Observing Sys-
tem (http://eospso.gsfc.nasa.gov/) is organizing a collection of satellites
and data centers to manage scientific data about Earth’s climate.The sys-
tem daily produces more than one terabyte of data, used by more than
10,000 researchers worldwide.

Currently, the data is partitioned across many data centers, each
responsible for its own data administration and distribution. A global stor-
age infrastructure would better serve such an unwieldy management
scheme, relieving administration and distribution burdens.The infrastruc-
ture would ensure that data remain uncorrupted and widely available, and
the system would replicate the data, rendering manual backup unneces-
sary. If part of the infrastructure were compromised or retired, the sys-
tem would restore replication levels automatically.The system would find
requested data regardless of its physical location and create a copy near
the user.Researchers could check the data’s integrity to ensure that it was
not altered during storage or transmission. Furthermore, if users lost their
local copy due to administration or hardware failure, the infrastructure
could immediately supply a new copy.

At the other end of the spectrum,virtually all PC owners have lost per-
sonal data, despite the fact that many own suitable backup devices like tape
drives or large removable disks. But such devices must be used on a reg-
ular basis and do not protect data from threats such as fire and theft. As
the volume and value of data stored on PCs increases, so does the poten-
tial loss.This backup problem could be eliminated by a maintenance-free,
global-scale storage infrastructure. Data would be replicated and geo-
graphically distributed to protect it from hardware failure, configuration
errors, and natural catastrophe. Moreover, the data would be stored
securely to protect against theft or corruption.

Applications for Global Storage Systems



to an archival system using a lower rate of encod-
ing (higher overhead). For example, it is extreme-
ly unlikely that 24 of 32 randomly placed frag-
ments would all be placed on the West Coast.

Erasure codes allow several servers storing
fragments for a particular object to be unreach-
able at any given time without making the object
itself unavailable. With good fragment placement,
an encoded block becomes unavailable only in the
event of a network partition near the user or a
complete partition of the Internet. The archival
layer’s high tolerance for fragment failures must
be supplemented, however, by a good repair
mechanism.

Automatic repair. Once fragments have been
stored, they must be maintained despite failure.
OceanStore offers four maintenance techniques:
predicting disk failure, local server sweeps, distrib-
uted detection and repair, and global sweep. The
first two techniques increase local storage durabil-
ity; the latter two ensure archive durability.

First, since disks begin to show signs of
impending failure before they actually fail,9 a serv-
er can improve the durability of local information
by copying it to a new disk before it is lost. Sec-
ond, a server can periodically verify the fragments
it stores. Each fragment contains sufficient addi-
tional information such that its contents can by
verified by re-hashing the data and comparing the
result to the fragment’s name. If an error is detect-
ed, the server can request the failed fragment’s
block from the archive, reconstruct the block, and
fragment it to recreate the lost fragment.

Third, OceanStore replaces lost information
with a distributed detection-and-repair scheme,
which is useful because we cannot fully trust
servers to maintain the integrity of their own data.
A given server could crash, losing all fragments
stored on its disk. Or, a server could maliciously
delete data. Tapestry contains the location of every
fragment; further, this information is self-repair-
ing. Consequently, it’s possible to notice — such as
at Tapestry root nodes — when the redundancy
level for a given object has dropped below a crit-
ical level and trigger the recreation and redissem-
ination of lost fragments.

Finally, as a last line of defense, the responsible
party periodically sweeps through data under its
control, attempting to reconstruct each block. It
then regenerates and redisseminates the block’s
fragments. This process restores lost redundancy
to the archive and compensates for malicious or
faulty servers.

Extreme durability. An effective detection and
repair scheme can yield data durability
unmatched by conventional archiving techniques.
A simplified model of OceanStore illustrates the
benefits of fragmentation and repair. First, we
assume that the archive is a collection of inde-
pendently failing disks and that failed disks are
immediately replaced by new, blank ones. During
dissemination, each archival fragment for a given
block is placed on a unique, randomly selected
disk. Finally, a global sweep-and-repair process
scans the system, attempting to restore redun-
dancy by reconstructing each block and redis-
tributing its fragments over a new set of disks.
The time period between sweeps of the same block
is an epoch.

Figure 4 shows a block’s resulting mean time to
failure (MTTF) for various epoch lengths and num-
bers of fragments. The probability that a fragment
will survive until the next epoch was computed
from the distribution of disk lifetimes,9 supple-
mented by the assumption that five-year-old disks
are at the end of their lifetime, using a method
similar to computing the residual average lifetime
of a randomly selected disk. The probability that a
block can be reconstructed is the sum of all cases
in which at least m fragments survive. The MTTF
is the mean of the geometric distribution produced
from the block survival probability.

The MTTF axis in Figure 4 is logarithmic, indi-
cating that the MTTF of objects scales superlin-
early with the inverse of the repair epoch.
Although perhaps less clear from the graph, the
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MTTF also scales exponentially with the number
of fragments. In our simple failure model, given 64
fragments and a repair time of six months, an
object has an MTTF of more than 1035 years. Sim-
ple replication, on the other hand, produces an
MTTF of less than 35 years with the same storage
cost and repair epoch.

This model analyzes only the sweep-and-repair
process and does not include the other mecha-
nisms, specifically the distributed detection and
repair mechanism. These more-efficient repair
techniques greatly increase the archive’s durabili-
ty and, further, reduce the required frequency of
global sweep and repair.

Byzantine Update Commitment
An object’s inner ring is responsible for generating
new versions of the object from client updates and

consistently mapping the object’s active GUID to the
GUID of its latest version. Each inner ring makes its
decisions through a Byzantine agreement protocol.

Fault tolerance. Byzantine agreement guarantees
fault tolerance even in the presence of malicious
replicas; specifically, f faulty machines can be tol-
erated by an inner ring of size n = 3f + 1. However,
Byzantine protocols require O(n2) messages to be
exchanged for every modification of data and were
previously believed to be too inefficient for practi-
cal use. This is no longer so for several reasons.

First, recent improvements in Byzantine proto-
cols have greatly reduced both the number and
size of messages sent during the agreement
process. Our protocol is derived from one present-
ed by Castro and Liskov.10 Their protocol com-
monly uses only a constant number of phases,
rather than a number of phases linear in the size
of the ring that characterized earlier protocols.
Moreover, for a reasonably large write — say,
exceeding four kilobytes — the total bandwidth
these messages consume is less than that con-
sumed by sending the write to the replicas. As a
result, these algorithms are within a factor of two
of the theoretical lower bound for bandwidth use
in a replicated system.1 In fact, Castro and Liskov
showed that their protocol was practical for file
system use by favorably comparing an imple-
mentation of their protocol to a commercial net-
work file system (NFS) server.

Second, the inner ring consists of a few replicas,
typically n < 10. Because secondary replicas are
merely data caches, they don’t participate in the
Byzantine protocol, but receive consistency infor-
mation through an application-level multicast tree
rooted at the inner ring. Their number does not
contribute to the Byzantine protocol’s communi-
cation costs. This two-tiered architecture is similar
to that first presented by Gray and colleagues.11

Castro and Liskov’s system did not include pro-
visions for caching data, so to ensure that cached
data is valid, we extend their system as follows:
Replicas in the inner ring use a threshold signature
scheme to collectively sign the results of their deci-
sions. Such a scheme allows a signature to be pro-
duced as long as f + 1 parties agree to cooperate,
while preventing any smaller group from generat-
ing a signature. Incorporating such a scheme
allows for any party in our system to verify that a
data object’s content was valid at some time, since
by assumption no more than f primary replicas are
faulty. Moreover, the inner ring members time
stamp each decision, allowing any party to verify
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Intermemory1 is a large-scale, distributed, fault-tolerant archival system
that encrypts and erasure-encodes data. It stores fragments on untrust-
ed machines and locates them via an enhanced-DNS lookup scheme. Far-
Site2 is an organization-scale distributed file system built from untrusted
components. Its goals include Byzantine fault tolerance and high availabil-
ity. PAST3 intends to produce a global-scale storage system of read-only
data using replication for durability. It includes Pastry, a location compo-
nent that shares many of Tapestry’s properties, described in the main text.
CAN4 and Chord5 are also examining wide-area location systems.

Other systems have more limited goals. Free Haven (http://www.
freehaven.net/) and Freenet (http://freenet.sourceforge.net/) are publish-
ing systems to support free expression; they focus on publisher anonymi-
ty and object authentication. Systems such as i-drive (http://www.idrive.
com/) and Xdrive (http://www.xdrive.com/) provide available Web-based
storage and file-sharing solutions. Finally, systems like Scale Eight
(http://www.s8.com/) and Mojo Nation (http://www.mojonation.net/) dis-
tribute proprietary content and consequently focus heavily on security,
authenticity of data, and access control.Mojo Nation uses Swarm, a peer-
to-peer distribution model,while Scale Eight relies on a proprietary glob-
al infrastructure for distribution.
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that a data object is both valid and current. Par-
ties can verify that an object is current only as pre-
cisely as the system clocks are synchronized.
Alternatively, they can determine an object’s
freshness with certainty by requesting the current
sequence number directly from the inner ring.

Automatic repair. Automatic repair of the inner
ring means maintaining the Byzantine assumption
by ensuring that less than a third of the servers in
a ring are compromised or faulty at any time.

A proactive threshold signature12 allows the par-
ties who participate in signing objects to be
changed over time without changing the key used
to verify a signature. This technique allows the
responsible party (mentioned earlier) to replace
faulty or corrupted replicas without changing the
inner ring’s public key, and only this key is neces-
sary to verify an object’s data. Because the rest of
OceanStore communicates with the inner ring
through Tapestry, changing the ring’s composition
like this will not affect other servers’ ability to
communicate with it. This information-hiding
makes it possible to change the set of servers con-
stituting the inner ring without affecting the rest
of the system. Because there could be many sec-
ondary replicas for a given object, this property is
essential for efficient automatic repair.

We maintain the Byzantine assumption by con-
tinuously altering the set of servers that participate
in an inner ring. We assume that the fraction of
faulty or corrupted servers in the world is much
less than one third. Given this assumption, replac-
ing any server in the inner ring with a random
server from the pool of all servers will likely reduce
the number of faulty servers in the inner ring. This
replacement can be initiated by the responsible
party discussed earlier, and so long as such replace-
ments occur slightly faster than the average rate at
which servers within the ring fail, the Byzantine
assumption remains valid. Further model exten-
sions, the subject of ongoing research, let the inner
ring safely manage its own membership with min-
imal outside assistance.

Introspective Replica Management
OceanStore allows data caching at any network
location. Clearly, the service time of user requests
depends on the network distance to the nearest
replica, as well as its load. More subtly, replica
locality affects service availability when network
connectivity is intermittent.

The cost and complexity of manually adminis-
tering 1014 objects to ensure locality and accept-

able levels of replication is prohibitive. Instead, we
delegate this task to the introspective replica man-
agement subsystem.

Introspection is an architectural paradigm that
mimics biological adaptation. The introspection
layer in OceanStore contains the tools for event
monitoring, event analysis, and self-adaptation. It
also provides tools for automatic collaboration
among introspective modules on different servers.

Introspective modules on servers observe net-
work traffic, measuring access traffic generated by
nodes within a few hops. When a server detects
heavy demand for an object, it creates a new local
replica to handle those accesses. Alternately,
clients can request replicas on
nearby servers if their perceived
quality of service drops below
acceptable levels. Additionally,
Tapestry root nodes can detect
requests that travel a great dis-
tance and suggest locations for
new replicas. When a replica
falls into disuse, a server can
remove it from the network and
reclaim its resources.

If a replica suddenly becomes
unavailable, the nearby clients will continue to
receive service from a more distant replica, due to
the fault-tolerant properties of the routing and
location mechanism. This failover produces addi-
tional load on distant replicas, which the intro-
spective mechanisms detect. OceanStore then cre-
ates new replicas to stabilize the system. These
activities satisfy the requirements for both fault tol-
erance and automatic repair.

Bringing It All Together
Against the backdrop of these mechanisms, we can
trace the life of a typical server from its integra-
tion into OceanStore to its eventual removal.

Integration. To place itself in OceanStore, a new
server needs only the address of at least one
known Tapestry node; it then weaves itself into the
routing and location layer. Next, the server begins
advertising its services and the roles it can assume
to the world. For example, a server with extra pro-
cessing cycles and spare storage could advertise
its willingness to become an inner ring member or
to store new archival fragments. These roles are
either specified by administrative parameters or
follow recommendations made by its introspective
component. For example, a node is unlikely to
accept new archival fragments when its available
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storage falls under acceptable limits. Additionally,
for a node to perform certain roles, it must estab-
lish a level of trust with the remainder of the sys-
tem. For example, to become a member of an inner
ring, a node must be recommended by some user’s
OceanStore service provider. This recommendation
would be based on the belief that the given node
would fail independently of the other members of
the given inner ring.

Removal. A server can be removed from OceanStore
if it becomes obsolete, needs scheduled mainte-
nance, or experiences component failures. When
possible, the server runs a shutdown script to
inform the system of its imminent removal. Even
in the absence of this announcement, OceanStore
will detect and correct for the server’s absence.
Tapestry nodes that depend on the server for rout-
ing will promote secondary routers and find new
backups. Servers in primary rings will elect replace-
ments from the global pool of available servers. The
roots for archived objects for which the server was
storing fragments will cause server pointers to time
out, notifying the objects’ responsible parties, and
introspective mechanisms will ensure regeneration
and redissemination of fragments if redundancy
falls under an acceptable level.

Prototype Architecture
Figure 5 depicts the event-driven server architec-

ture of the OceanStore prototype under construc-
tion at UC Berkeley. This prototype is layered on
SEDA (http://www.cs.berkeley.edu/~mdw/proj/
seda/) and implemented in Java. Although a com-
plete system is not yet operational, many compo-
nents are already functioning in isolation. The
Tapestry routing infrastructure is in small-scale
test, including a multicast facility. A prototype NFS
communicates with the Byzantine inner ring and
can run the Andrew file system benchmark. Fur-
ther, a stand-alone version of the archival system
is operational as a backup system. We are present-
ly integrating these components. Several clients
are currently under construction, including an
NTFS file system, a full-function backup manage-
ment facility, and an HTML gateway.

Conclusion
OceanStore provides a global-scale, distributed
storage platform through adaptation, fault toler-
ance, and repair. The only role of human admin-
istrators in our system is to physically attach or
remove server hardware. Of course, an open ques-
tion is how to scale a research prototype in such a
way to demonstrate the basic thesis of this article
— that OceanStore is self-maintaining. In the com-
ing months, we will demonstrate this premise in a
number of ways, including large-scale simulations
with fault injection and wide-area deployment of
functional OceanStore server components. The
allure of connecting millions or billions of com-
ponents together is a hope that aggregate systems
can provide scalability and predictable behavior
under a wide variety of failures. The OceanStore
architecture is a step toward this goal.
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