
The Ninja Architecture for Robust Internet-Scale Systems and Services

Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler, N. Borisov,
S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, B. Zhao

The University of California at Berkeley
http://ninja.cs.berkeley.edu

Abstract

The Ninja project seeks to enable the broad innovation of
robust, scalable, distributed Internet services, and to permit the
emerging class of extremely heterogeneous devices to seamlessly
access these services. Our architecture consists of four basic
elements: bases, which are powerful workstation cluster environ-
ments with a software platform that simpli�es scalable service
construction; units, which are the devices by which users access
the services; active proxies, which are transformational elements
that are used for unit- or service-speci�c adaptation; and paths,
which are an abstraction through which units, services, and
active proxies are composed.

Keywords: distributed systems, scalable services, perva-
sive computing, thin clients, Ninja architecture

1 Introduction

The emerging Internet landscape is populated by rich
services of immense scale that are o�ered to a diverse spec-
trum of clients. This presents exciting opportunities for
innovation in the kinds of services that can be created, but
also presents tremendous design and engineering challenges.
The traditional suite of information stores, commerce sites,
network services, and search engines are being combined in
novel ways to provide new services that aggregate and trans-
form many sources of information. In addition, services are
presenting themselves in a multitude of forms to match the
particular capabilities of PCs, PDAs, webphones, and other
devices; this adaptation to diversity raises new notions of
service composition and content transformation. Moreover,
these new services may be utilized by millions of users.

In this opportunity for innovation and vast delivery lies
a deep engineering challenge: a successful service may need
to scale to huge levels of load over a short period and it
must be continuously available. The Ninja project seeks to
address these two goals | enabling broad innovation of ser-
vice design and easily constructing scalable, robust services
| through a distributed service architecture that deals with

This work is supported, in part, by the Defense Advanced Research
Project Agency (grant DABT 63-98-C-0038) and the National Science
Foundation (grant RI EIA-9802069). Support is provided as well by
Intel Corporation, Ericsson, Philips, Sun Microsystems, IBM, Nortel
Networks, and Compaq.

huge throughput demands and availability requirements in
a generic fashion, while facilitating service composition.

The distributed service architecture tackles the problem
of ease of authoring scalable, robust services at several lev-
els. At the network architecture level, structure is imposed
on the Internet by a partitioning into three tiers (scalable
service platforms, transformational intermediaries between
devices and services, and the devices themselves) to facili-
tate state management and consistency while operating in
the presence of failures. Deep processing power and persis-
tent storage is provided within the service platform through
the use of well-engineered clusters on fast, dedicated net-
works, while soft state and functional transformations are
provided close to the devices. A service is rendered along a
path crossing all the tiers. These paths are the natural unit
of adaptation, optimization and management.

At the language level, services are written in a type-safe
language (Java) to reduce errors and to facilitate composi-
tion at well de�ned interfaces. Code mobility is harnessed to
dynamically upload services into the platform. At the sys-
tem level, a platform provides a set of interfaces and dictates
a programming discipline that yields eÆciently pipelined
services that are robust to excessive load, are replicated to
achieve high absolute throughput, and are tolerant of node
failures. Services describe themselves to a service discov-
ery service, which itself must scale, so that they can be
composed programmatically to yield new services. It is the
structure and careful design of the overall platform that sim-
pli�es the task of authoring services, because they inherit
the approach to scalability, availability, fault-tolerance, data
consistency, and persistence from the platform.

We begin in Section 2 with an overview of the entire
Ninja platform architecture and an introduction of its ba-
sic terms and concepts. Section 3 develops the core service
platform, called a base, including the programming model
for services, the execution vehicle, and the approach to scal-
able, persistent state. Section 4 describes the characteris-
tics of emerging devices, called units, which fundamentally
rely upon the infrastructure. Section 5 describes the role
and function of the transformational intermediaries, called
Active Proxies. Section 6 lays the foundation for service
composition, showing how services describe themselves and
locate other services in the wide area. Section 7 illustrates
how services are composed across the platform tiers through
the path concept. Section 8 puts these concepts together in
four distinct services. The remaining sections discuss re-
lated work and future directions.

Internet

Active
Proxy

Active
Proxy

Bases

Active
Proxies

Units

Path

Figure 1: The Ninja Platform Architecture: The architec-
ture consists of bases (services running on clusters of worksta-
tions), active proxies (stateless or soft-state intermediaries be-
tween units and services), units (heterogeneous devices and sen-
sors), and paths (a composition chain across units, proxies, and
services in bases).

2 Overview of the Ninja Architecture

In Figure 1, we provide a high-level illustration of the
Ninja architecture, decomposing it into four basic elements:
bases, which are the rich environments that are engineered
to support scalable and robust services, units, which are the
numerous, heterogeneous devices that we wish to support,
active proxies, which are transformational elements used
for device- or service-speci�c adaptation, and paths, an ab-
straction used to compose the other elements. We motivate
and explore each of these in turn.

2.1 Building Robust Services in Bases

We de�ne a service as software embedded in the Internet
infrastructure that exports a network-accessible, typed, pro-
grammatic interface, and that provides strong operational
guarantees (such as high availability). The task of building
and maintaining services is extremely challenging, since if
they are to be depended upon, they must have the essen-
tial properties of scalability, availability, fault-tolerance, and
data consistency and persistence, all in the face of voluminu-
ous and potentially growing traÆc demands. Unfortunately,
there is currently a lack of suitable reusable building blocks
and design methodologies for service construction.

We address this challenge in part by constraining the exe-
cution environment of services: we mandate that the core of
the service must run in a well-engineered cluster of worksta-
tions, which we call a base. Clusters [3] are a natural plat-
form for building Internet services: each cluster node rep-
resents an independent failure boundary, which means that

replication of computation and data can be used to provide
fault-tolerance. A cluster permits incremental scalability, as
nodes can be added to increase capacity. Coupled with high
performance system area networks, clusters can deliver ex-
cellent performance for relatively low cost. Modern cluster
networks can achieve greater than 1 Gb/s throughput with
10 to 100 �s latency.

Designing software to run on clusters of workstations is
known to be diÆcult [15]. To simplify the task of authoring
new services, we have constructed a cluster-based software
platform (called vSpace) that allows service authors to con-
centrate on application-speci�c functionality, rather than on
details related to scalability, fault-tolerance, and compos-
ability. Services authored to run on the vSpace platform
inherit the essential service properties from the platform,
greatly reducing the size and complexity of service code.

vSpace supports the dynamic uploading of new services
by trusted or untrusted third parties; we believe this open
infrastructure is an important property necessary to sustain
the distributed innovation that has lead to the current suc-
cess of the Internet. Authors can construct their services
locally, but then upload their services into bases that are
externally maintained.

2.2 Device Diversity

The spectrum of network-attached client devices is grow-
ing in diversity and scale. In addition to PCs, laptops, and
the now familiar class of PDAs and mobile devices, net-
works of even more resource-constrained tiny devices such
as sensors and actuators are being attached to the Inter-
net. This large family of client devices, which we call units,
may have limited connectivity and low or intermittent band-
width, poor computational abilities, and may be able to
handle only a small set of data formats and network proto-
cols. We believe that there will be a very large number of
units attached to the network, reaching scales of hundreds
of millions, and eventually, billions of devices.

Units, by nature, are typically not useful without sup-
porting infrastructure. We assume that units can be easily
lost or broken, implying that any state that they manage
must be replicated in a durable environment, such as a ser-
vice running in a base, which can provide vast amounts of
highly available, durable storage. Inexpensive or small units
may not have enough computational ability to handle the
rich set of data types and the growing set of protocols de-
ployed in the Internet, implying that such units must rely on
surrogates that adapt content and protocols on their behalf.

Because some units are mobile, they may experience reg-
ular periods of disconnected operation. Bases can assist
such weakly connected units with the consistency manage-
ment of data shared across units. Similarly, while a unit
is disconnected, a service running on a base can act as the
unit's surrogate by responding to requests based on the most
recent information in the service's persistent data store.

2.3 Adaptation

The growing number of devices with Internet access ca-
pabilities presents a unique set of problems to the designers
of Internet-based services. As the demand for continuous
access to content is increasing, access to services is being
demanded in new environments such as automobiles [26]
and kiosks in airplane seats [25], and through new devices
such as web-phones. Constructing a service that can be
easily and securely used from this diversity of contexts and
devices is daunting, because of the huge variation in compu-
tational power, network connectivity, and interface capabil-
ities of the devices. Additionally, the weak computational
ability of small devices such as pagers and PDAs prevents
them from using cryptographic protocols such as SSL to ac-
cess secure services. In today's Internet, this diversity in
client capabilities simply means that most services are in-
accessible to clients other than standard home PCs or oÆce
workstations.

Rather than forcing services to adapt their content and
access protocols to the abilities of all current and future de-
vices, we place transformational intermediaries, called ac-
tive proxies, between devices and services to shield them
from each other. An active proxy can transform data
types through a process called distillation, adapt protocols
(e.g., by converting an SSL connection into a less expensive
shared-key encrypted channel for CPU constrained devices),
or even adapt the value of content by removing sensitive in-
formation before content is displayed on an untrusted access
point. Examples of active proxies include wireless bases-
tations, network gateways, �rewalls, caching proxies, and
transformational proxies. Devices may migrate to a new ge-
ographic or administrative domain, and in the process may
need to begin using a new active proxy.

2.4 The Composition of Services

Instead of constructing a set of isolated, vertical services
that can handle a �xed set of devices, our architecture sup-
ports the dynamic composition of horizontal services into a
path, as well as adaptation along that path. A path is a
ow of typed data through multiple services across the wide
area, including the interposition of transformational opera-
tors to adapt the data into the form expected by the next
service or device along the path. An essential feature of ser-
vices that enables path composition is programmatic access;
services must export typed, programmatically-accessible in-
terfaces, as opposed to the untyped, unstructured user in-
terfaces common to services today.

Because paths can be established dynamically, the path
creation infrastructure can perform dataow optimization
by examining many di�erent potential paths before decid-
ing on a particular one to use. During the course of this ex-
amination, it can weigh the costs of the various paths, and
choose a path that optimizes for quality of service, resource
consumption, or some other metric. By allowing the opti-
mization process to continue through the lifetime of a given
path, the infrastructure adapts the path to the changing
characteristics of the execution environment. For example,

if a network link becomes overloaded while data is owing
through the path, this ow may be redirected through a
di�erent channel to improve the quality of service.

A necessary step to forming a path is being able to lo-
cate services to place in that path. The Ninja architec-
ture includes a service discovery service (SDS) that
allows both human users and programs to locate appropri-
ate services across the wide area based on service attribute
queries. All services publish descriptions of themselves to
SDS instances running in their local base. These instances
are organized in a hierarchical structure, matching the ad-
ministrative structure of the network. Summary informa-
tion about known services is exchanged through this hier-
archy; searches similarly propagate through the hierarchy
until matching information is found.

3 Bases: Scalable Platforms for Internet
Services

We have constructed a software platform that runs on
cluster-of-workstation bases to help alleviate the challenges
of scalable, high performance service construction. The
platform consists of a programming model and I/O sub-
strate geared towards obtaining high concurrency, and a
cluster-based execution environment (vSpace) that pro-
vides facilities for service component replication, load-
balancing, and fault tolerance. In addition, we provide ser-
vices with a cluster-based, scalable storage platform (dis-
tributed data structures, or DDSs) that exposes a coherent
image of persistent data across the physical nodes of a clus-
ter. We describe each of these three elements in turn.

3.1 A Programming Model and I/O Substrate
for High Concurrency Services

Popular Internet services must be able to handle a very
high throughput, perhaps even reaching tens of thousands
of requests per second in the extreme case. A service must
remain robust under this extreme load, and it must also
gracefully handle temporary bursts during which the o�ered
load exceeds the capacity of the service. We call the process
of achieving this robustness conditioning the service. A
necessary (but not suÆcient) step in conditioning is select-
ing an appropriate programming model and concurrency
strategy that allows the service author and the service's
execution environment to observe and manage constrained
resources such as threads and client tasks.

Our programming model imposes a particular abstrac-
tion on services, illustrated in Figure 2. Given a request
from a wide-area client, the service processes that request
through a sequence of logically distinct stages, each of which
is separated by a high- or variable-latency operation. For
example, a web server might have three stages: reading and
parsing an HTTP request from a browser, retrieving the
requested �le from the �le system, and returning a format-
ted response to the browser. We impose the constraint that

(a) Wrap (b) Pipeline (d) Replicate(c) Combine

Before

After

Figure 3: The Four Design Patterns: The four design patterns, wrap, pipeline, combine, and replicate, can be applied to
stages of a service to condition it against load, failures, and limited or bottleneck resources.

Figure 2: Splitting a Service into Stages: Our programming
model views a service as a sequence of stages, separated by high-
or variable-latency operations. Stages only share data using pass-
by-value semantics, for example, by exchanging messages.

all data sharing between these stages is done using pass-
by-value semantics, for example through the exchange of
messages containing the data to be shared. This constraint
acts to decouple the stages, allowing them to be isolated
from each other, and perhaps be physically separated across
address spaces or physical machine boundaries.

Given these separated stages, our programming model
o�ers four design patterns that authors and the service
infrastructure can apply to compose and condition these
stages (Figure 3):
Wrap: The wrap pattern places a queue in front of a

stage, and assigns some number of threads to the stage in
order to process tasks that arrive on the queue. The queue
conditions the stage to load; excess work that cannot be
absorbed by the stage's threads is bu�ered in the queue.
This queue also serves to expose scheduling and admission
control mechanisms to the stage: because the queue is ap-
parent, the code in the stage can decide the order in which
to process tasks, and it can also choose to drop tasks in the
case of excessive or long-lasting overload. Because threads
are dedicated to the stage, applying the wrap pattern allows
the stage to execute independently of other stages.
Pipeline: The pipeline pattern takes a wrapped stage,

and splits it into two pipelined, wrapped stages. Pipelining
further decouples a stage, and allows for functional paral-
lelism across processors or cluster nodes. Pipelining permits
optimizations such as having a single thread repeatedly ex-

ecute the same code while processing many tasks from a
queue, thereby increasing instruction locality.
Combine: The combine pattern is the logical inverse

of the pipeline pattern. Given two previously independent,
wrapped stages, the combine operator fuses the code of the
two stages into a single, wrapped stage. Combine permits
resource sharing and fate sharing between these previously
independent stages.
Replicate: Given a wrapped stage, the replicate pattern

duplicates that stage on a number of independent proces-
sors or cluster nodes. Replication is used to eliminate bot-
tlenecks; by replicating a stage, the resources that can be
applied to its bottleneck are augmented, hopefully increas-
ing the throughput of the stage. Replication also duplicates
the stage's functionality across multiple failure boundaries,
introducing the potential for fault tolerance.

We have implemented a programming library that makes
it simple for both service authors and the service's execu-
tion environment to apply these patterns to pieces of code.
All network communication and disk I/O provided by this
library is built using a non-blocking, asynchronous event-
driven style of programming. This event-driven style nicely
matches the task-driven composition of stages, and also per-
mits each note to scale to the point where it can handle
many thousands of concurrent tasks, network connections,
and disk interactions.

3.1.1 Java-Based I/O Substrate Implementation

The Ninja base architecture makes extensive use of the
Java [19] programming language, which provides strong
typing, platform independence, code mobility, and auto-
matic memory management. These language properties are
greatly bene�cial for engineering robust Internet services,
eliminating many common sources of bugs. Java also pro-
vides exibility in terms of service deployment across multi-
ple architectures. We make use of optimizing Java compilers
including OpenJIT [30] and the IBM JIT compiler [27].

Implementing the base platform in Java presented two
important challenges. The �rst was the lack of nonblock-
ing I/O mechanisms in the Java core libraries. We over-
came this by implementing our own nonblocking I/O li-
brary using native code wrappers to existing system calls,
for example nonblocking sockets and select. The second
was providing eÆcient access to specialized interfaces, such

inter-worker
load monitor

vSpace

service
workers

in
co

m
in

g
re

qu
es

t
ba

la
nc

in
g

sw
itc

h

DDS
Brick

DDS
Brick

SAN Internet
clients

vSpace

service
workers

vSpace

service
workers

Figure 4: Software Architecture of a Base: A base consists
of a cluster, the nodes of which run the vSpace execution envi-
ronment. Services are implemented as a graph of workers which
communicate through a typed task dispatch mechanism. vSpace
load balances tasks across workers based on information from a
cluster load monitor. Workers are replicated across nodes for
scalability and availability, and share global state through a con-
sistent, scalable storage platform (distributed data structures, or
DDS).

as user-level network interfaces to the cluster's system area
network. The native code interface provided by Java is ill-
suited for these interfaces, as they require fast access to
hardware resources and pinned I/O bu�ers outside of the
Java heap. We have developed an extension to the Java
environment, Jaguar [46], which performs a compile-time
specialization of Java bytecode to perform low-level opera-
tions directly, while maintaining type safety and portability.
We have used Jaguar to implement a Java interface to the
VIA [7, 41] cluster network interface, which obtains 80 �s
round-trip latency and over 488 Mbit/s bandwidth over the
Myrinet [32] system area network. This is equivalent to the
performance of VIA as accessed from C and is more than
an order of magnitude greater than that possible when us-
ing Java's native code interface. Jaguar has also been used
to implement fast object serialization and memory-mapped
�le access.

3.2 The vSpace Execution Platform

vSpace is an execution environment for scalable Internet
services which operates on a cluster of workstations. vSpace
services are constructed using the programming model de-
scribed in the previous section; services are constructed as
a graph of workers, each of which consists of a �xed-size
thread pool, an incoming event queue, and a set of meth-
ods that implement the worker's logic. A vSpace service is
described by a formal service de�nition, which precisely
speci�es the set of workers in the service, their code, and
resource requirements. The act of service publication
resolves intra-service dependencies and e�ectively \freezes"
the code used by this particular version of the service. This

allows the entire service to be treated as a versioned, im-
mutable entity which is ready for deployment and composi-
tion with other services. Further modi�cations to the service
code result in a new version of the service, and do not a�ect
previously published versions.

Workers correspond directly to stages, as described in the
previous section. Workers communicate by asynchronously
pushing typed messages onto other workers' queues. Worker
instances and workers of di�erent types are pipelined, exe-
cuting in parallel on the multiple CPUs and physical nodes
in the cluster. vSpace uses the replicate design pattern to
instantiate copies of workers across multiple cluster nodes;
each worker instance, called a clone, uses the same code
base and shares global persistent state through a distributed
data structure (described below). A set of worker clones of
the same type are called a clone group. vSpace automat-
ically spawns and destroys clones in response to observed
system load; workers' queue lengths and worker execution
times are both used determine the current load. Scalability
and fault-tolerance are obtained by replicating clones across
multiple physical resources (such as the nodes of the clus-
ter), and by providing a mechanism for failure detection and
clone restart.

A worker may send one or more outgoing tasks to a
named clone group, in which case the outgoing tasks are
load-balanced across the clones in that group. Optionally,
the sender may specify a particular clone as the destination
for a task. This is used as a locality optimization, to al-
low the result of a previous task dispatch to return to the
original sender.

3.3 Distributed Data Structures

A distributed data structure (DDS) [20] is a self-
managing storage layer designed to run on a cluster of work-
stations at the scale required by Internet service workloads.
A DDS has all of the previously mentioned service prop-
erties: high throughput, high concurrency, availability, in-
crementally scalability, and strict consistency of its data,
but provides a narrow data structure interface. Service au-
thors see the DDS as a conventional data structure, such
as a hash table, a tree, or a log. Behind this interface, the
DDS platform hides all of the mechanisms used to access,
partition, replicate, scale, and recover the data in the DDS
(illustrated in Figure 5). The DDS greatly simpli�es service
construction by hiding the complexity of robustly managing
scalable persistent state that is partitioned and replicated
across the cluster.

We have implemented a distributed hash table as an
example DDS. All operations on elements inside this dis-
tributed hash table are atomic, in that any operation com-
pletes entirely, or not at all. The hash table has one-copy
equivalence, so although data elements in the hash table
are replicated across multiple hash table nodes (or bricks),
workers that use the hash table see a single, logical data
item. Two-phase commit is used to keep all replicas coher-
ent. We have not yet implemented transactions across mul-
tiple elements or operations, but we believe that the atomic
consistency provided by our current distributed hash table

������

�

�

�

������	

�

�

�

Figure 5: High-level view of a DDS: A DDS is a self-
managing data repository running on a cluster of workstations.
All service instances (S) in the cluster see the same consistent
image of the DDS; as a result, any WAN client (C) can commu-
nicate with any service instance.

100

1000

10000

100000

1 10 100 1000

of DDS bricks

m
a

x
 t

h
ro

u
g

h
p

u
t

(o
p

s/
s)

reads

writes

(128,13582)

(128,61432)

Figure 6: Throughput scalability: This benchmark shows
the linear scaling of throughput as a function of the number
of bricks serving in a distributed hash table; note that both axis
have logarithmic scales. As we added more bricks to the DDS, we
increased the number of workers using the DDS until throughput
saturated.

is already strong enough to support a large class of interest-
ing services.

To demonstrate the scalability and fault-tolerance of the
distributed hash table, we have run a number of perfor-
mance analyses on a large cluster of workstations (the UC
Berkeley Millennium cluster [13], consisting of two hundred
and twelve 500MHz Pentium CPUs across 67 SMPs, each
with either 500MB or 1GB of physical memory, two 15 GB
hard drives, and all connected by a Gigabit switched Eth-
ernet). Figure 6 demonstrates linear scaling in through-
put of the distributed hash table as the number of brick
nodes serving data is increased; note that for this experi-
ment, most data was resident in a physical memory cache
on brick nodes, rather than forcing a read from disk per
request.

In Figure 7, we show the read throughput of a 3-node
distributed hash table as a fault is deliberately induced in
one node, and as that failed node undergoes recovery. This
�gure shows that the read throughput of this hash table de-
grades to 2/3rds of its initial throughput as one of the three

0

100

200

300

400

500

600

0 50000 100000 150000 200000 250000 300000

time (ms)

th
ro

u
g

h
p

u
t

(r
e

a
d

s/
s)

Figure 7: Availability and Recovery: This benchmark shows
the read throughput of a 3 node hash table as a deliberate single-
node fault is induced, and afterwards as recovery is performed.

nodes crashes, but quickly resumes to its full throughput as
the crashed node completes its recovery.

We have also experimented with scaling the capacity of
a distributed hash table by creating and populating a sin-
gle hash table with over 1 terabyte of data spread over 128
CPUs and 128 disks. This 1 TB hash table took 1.5 hours
to populate, achieving a write throughput of 256 MB/s (2
MB/s per disk). The disk write performance was seek lim-
ited, as random keys were inserted into the hash table for
this experiment.

Our DDS implementation makes use of the exposed
queues and events (as described in Section 3.1) to imple-
ment eÆcient internal task scheduling. Exposing the queues
to the DDS code makes it is possible for each DDS brick
to \peek" into its queue of incoming requests and schedule
them based on resource availability. For example, incom-
ing read requests for which data is present in the bu�er
cache can be scheduled before those requiring disk access.
This technique leads to higher throughput, as head-of-line
blocking is reduced. The use of event queues also makes it
possible to reorder disk accesses for greater locality and to
perform prefetching, similar to optimizations used in �lesys-
tems and database storage managers.

4 Units

The space of units is extremely diverse with large varia-
tions in CPU, memory, and storage capabilities, communi-
cation bandwidths and latencies, and user interfaces. In this
section, we briey circumscribe this space by describing a
representative set of units. We then focus on a particularly
interesting new class of units, networked sensors, that are
the most constrained in terms of capabilities and resources.

PCs and laptops are examples of extremely capable units,
in that they have liberal amounts of CPU and memory re-
sources, persistent storage, and sophisticated display capa-
bilities. However, laptops still must be capable of dealing
with mobility, disconnected operation, and low bandwidth
or unreliable communication over wireless networks.

F
ig
u
re

8
:
A

T
in
y
O
S
-b
a
s
e
d
M
o
te
:
T
h
is
\
m
o
te"

in
clu

d
es

a
4
M
H
z
m
icro

co
n
tro

ller,
a
so
ftw

a
re-d

riv
en

ra
d
io
,
a
n
d
a
n
a
p
p
li-

ca
tio

n
th
a
t
co
o
rd
in
a
tes

w
ith

n
eig

h
b
o
rin

g
m
o
tes

to
d
iscov

er
a
n

a
d
-h
o
c
sen

so
r
n
etw

o
rk

ro
u
tin

g
to
p
o
lo
g
y.

P
D
A
s
rep

resen
t
a
cla

ss
o
f
d
ev
ice

w
ith

lim
ited

co
m
p
u
ta
-

tio
n
,
d
isp

lay
s,
u
ser

in
terfa

ces,
a
n
d
p
ersisten

t
sto

ra
g
e.

C
ell

p
h
o
n
es

a
re

cu
rren

tly
d
istin

ct
fro

m
P
D
A
s
in

th
a
t
th
ey

h
av
e

m
u
ch

m
o
re

lim
ited

co
m
p
u
ta
tio

n
a
l
a
b
ilities

a
n
d
th
ey

a
re

es-
sen

tia
lly

co
n
tin

u
o
u
sly

co
n
n
ected

to
th
e
n
etw

o
rk
.
T
h
ere

is,
h
ow

ev
er,

a
stro

n
g
tren

d
tow

a
rd
s
th
e
co
n
v
erg

en
ce

o
f
P
D
A

a
n
d
cell

p
h
o
n
e
ca
p
a
b
ilities,

y
ield

in
g
a
cla

ss
o
f
u
n
its

th
a
t

h
a
s
th
e
m
in
im
a
l
g
ra
p
h
ica

l
u
ser

in
terfa

ce,
sto

ra
g
e,
a
n
d
p
ro
-

g
ra
m
m
a
b
ility

o
f
a
P
D
A
,
b
u
t
w
ith

th
e
co
n
tin

u
o
u
s
co
n
n
ectiv

-
ity

o
f
a
cell

p
h
o
n
e.

T
h
e
m
o
st
lim

ited
fo
rm

o
f
u
n
its

th
a
t
w
e
co
n
sid

er
a
re

n
et-

w
o
rk
ed

sen
so
rs
a
n
d
a
ctu

a
to
rs.

T
h
ese

d
ev
ices

h
av
e
ex
trem

ely
lim

ited
co
m
p
u
ta
tio

n
a
l
reso

u
rces,

a
lm
o
st
n
o
sto

ra
g
e
ca
p
a
b
il-

ities
a
n
d
n
o
h
u
m
a
n
in
terfa

ce.
In

a
d
d
itio

n
to

lim
ited

co
m
m
u
-

n
ica

tio
n
b
a
n
d
w
id
th
,
co
m
m
u
n
ica

tio
n
is
ex
trem

ely
ex
p
en
siv

e
fo
r
th
ese

d
ev
ices,

sin
ce

p
ow

er
is
th
eir

m
o
st
critica

l
reso

u
rces

a
n
d
co
m
m
u
n
ica

tio
n
co
n
su
m
es

sig
n
i�
ca
n
t
p
ow

er.
A
s
a
n
ex
-

a
m
p
le

o
f
n
etw

o
rk
ed

sen
so
rs,

w
e
h
av
e
d
ev
elo

p
ed

a
d
ev
ice,

ca
lled

a
m
o
te
,
th
a
t
co
n
ta
in
s
a
m
icro

co
n
tro

ller,
a
ra
d
io
,
a
n
d

p
h
o
to

a
n
d
lig
h
t
sen

so
rs.

T
h
is
d
ev
ice

(w
h
ich

is
slig

h
tly

la
rg
er

th
a
n
a
q
u
a
rter)

ca
n
b
e
p
la
ced

in
th
e
en
v
iro

n
m
en
t
o
r
ca
rried

b
y
a
n
in
d
iv
id
u
a
l,
a
n
d
rep

o
rts

in
fo
rm

a
tio

n
co
llected

fro
m

its
sen

so
rs

to
serv

ices
fo
r
a
n
a
ly
sis.

W
e
rep

o
rt

fu
rth

er
o
n
o
u
r

ex
p
erien

ces
w
ith

th
is
d
ev
ice

b
elow

.

4
.1

C
h
a
ra
c
te
ristic

s
o
f
N
e
tw
o
rk
e
d
S
e
n
so
rs

T
h
e
ch
a
ra
cteristics

o
f
n
etw

o
rk
ed

sen
so
rs
req

u
ire

a
d
esig

n
m
eth

o
d
o
lo
g
y
fo
cu
sed

o
n
ex
trem

e
eÆ

cien
cy,

b
o
th

in
term

s
o
f

co
m
p
u
ta
tio

n
a
n
d
p
ow

er.
A
s
a
n
ex
a
m
p
le
n
etw

o
rk
ed

sen
so
r,

w
e
h
av
e
a
ssem

b
led

a
\
m
o
te"

th
a
t
in
clu

d
es

a
n
A
T
M
E
L
8
5
3
5

4
M
H
z
m
icro

co
n
tro

ller
w
ith

5
1
2
B
o
f
S
R
A
M

a
n
d
8
K
B
o
f

a
sh

m
em

o
ry,

a
n
R
F
ra
d
io
w
ith

1
0
k
b
p
s
th
ro
u
g
h
p
u
t,
a
lig
h
t
a
n
d

tem
p
era

tu
re

sen
so
r,
a
n
d
th
ree

L
E
D
s
fo
r
v
isu

a
l
feed

b
a
ck

o
f

in
fo
rm

a
tio

n
(F
ig
u
re

8
).

S
o
m
ew

h
a
t
su
rp
risin

g
ly,

th
e
p
ro
g
ra
m
m
in
g
m
o
d
el
th
a
t
w
e

h
av
e
d
esig

n
ed

fo
r
th
ese

tin
y
d
ev
ices

is
v
ery

sim
ila
r
to

th
a
t

o
f
h
ig
h
th
ro
u
g
h
p
u
t
serv

ices
in

v
S
p
a
ce,

a
lth

o
u
g
h
w
e
u
se

th
is

m
o
d
el

fo
r
th
e
sa
k
e
o
f
p
ow

er
a
n
d
co
m
p
u
ta
tio

n
a
l
eÆ

cien
cy,

ra
th
er

th
a
n
th
ro
u
g
h
p
u
t
a
n
d
lo
a
d
co
n
d
itio

n
in
g
.

P
ow

er
is

th
e
m
o
st

p
recio

u
s
reso

u
rce

o
n
th
ese

d
ev
ices,

a
n
d
co
m
m
u
-

n
ica

tio
n
is
th
e
m
o
st

ex
p
en
siv

e
o
p
era

tio
n
in

term
s
o
f
p
ow

er
co
n
su
m
p
tio

n
.
G
iv
en

th
is,

th
e
a
b
ility

to
p
u
t
h
a
rd
w
a
re

co
m
-

C
om

ponent

init

Power(mode)

TX_packet(buf)

TX_packet_done
(success)

RX_packet_done
(buffer)

Internal S
tate

init

power(mode)

send_msg(addr,
type, data)

msg_rec(type, data)

msg_send_done
(success)

send_m
sg_thread

F
ig
u
re

9
:
A
T
in
y
O
S
S
o
ftw

a
r
e
C
o
m
p
o
n
e
n
t:

E
a
ch

T
in
y
O
S

so
ftw

a
re

co
m
p
o
n
en
t
a
ccep

ts
a
n
d
em

its
co
m
m
a
n
d
s
a
n
d
ev
en
ts.

C
o
m
m
a
n
d
s

ow

fro
m

h
ig
h
er

lev
el

lay
ers

to
low

er
lev

els,
a
n
d

ev
en
ts

ow

fro
m

low
er

lev
el
lay

ers
to

h
ig
h
er

lev
els.

p
o
n
en
ts

in
to

a
sta

n
d
b
y
sta

te
ca
n
sav

e
sig

n
i�
ca
n
t
a
m
o
u
n
ts

o
f
p
ow

er.
T
o
m
a
x
im
ize

th
e
o
p
p
o
rtu

n
ity

fo
r
p
u
ttin

g
th
e
d
e-

v
ice's

C
P
U
in
to

sta
n
d
b
y,
w
e
h
av
e
d
ev
elo

p
ed

a
n
ev
en
t-d

riv
en

so
ftw

a
re

a
rch

itectu
re

fo
r
o
u
r
o
p
era

tin
g
sy
stem

s
a
n
d
a
p
p
li-

ca
tio

n
s.
T
h
e
p
resen

ce
o
f
b
lo
ck
in
g
o
p
era

tio
n
s
co
u
ld
lim

it
th
e

sy
stem

's
a
b
ility

to
sw

itch
in
to

a
low

p
ow

er
m
o
d
e,
esp

ecia
lly

if
h
a
rd
w
a
re

p
o
llin

g
is
u
sed

to
co
m
p
lete

a
b
lo
ck
in
g
o
p
era

-
tio

n
.
In

co
n
tra

st,
w
ith

a
n
ev
en
t
d
riv

en
sy
stem

,
a
ll
p
ro
cess-

in
g
o
ccu

rs
in

resp
o
n
se

to
h
a
rd
w
a
re

ev
en
ts.

T
h
is
a
llow

s
th
e

p
ro
cesso

r
to

en
ter

sta
n
d
b
y
m
o
d
e
b
etw

een
ev
en
ts,

a
s
th
ere

n
o
co
m
p
u
ta
tio

n
n
eed

s
to

b
e
d
o
n
e
u
n
til

th
e
n
ex
t
h
a
rd
w
a
re

ev
en
t
o
ccu

rs.
W
e
h
av
e
a
lso

o
b
serv

ed
th
a
t
o
u
r
n
etw

o
rk

sen
so
rs
m
u
st
b
e

a
b
le
to

h
a
n
d
le
sig

n
i�
ca
n
t
a
m
o
u
n
ts

o
f
co
n
cu
rren

cy.
S
en
so
rs

a
re
ty
p
ica

lly
I/
O
cen

tric,
a
n
d
m
u
st
b
e
ca
p
a
b
le
o
f
su
p
p
o
rtin

g
m
u
ltip

le,
sim

u
lta

n
eo
u
s

ow

s
o
f
in
fo
rm

a
tio

n
.
F
low

s
ca
n
b
e

lo
ca
l
to

a
sen

so
r
(e.g

.,
th
e
in
tera

ctio
n
b
etw

een
a
C
P
U
a
n
d

th
e
p
h
y
sica

l
sen

so
r
d
ev
ices

o
r
th
e
ra
d
io
u
sed

fo
r
co
m
m
u
n
ica

-
tio

n
),
o
r
th
ey

m
ay

sp
a
n
a
cro

ss
m
u
ltip

le
sen

so
rs

in
a
sen

so
r

n
etw

o
rk
.
F
o
r
ex
a
m
p
le,

n
etw

o
rk
ed

sen
so
rs

m
ay

co
o
p
era

te
to

p
ro
p
a
g
a
te

ea
ch

o
th
er's

d
a
ta

tow
a
rd
s
a
cen

tra
l
co
llectio

n
p
o
in
t.
In

th
is
ca
se,

th
e
m
icro

co
n
tro

ller's
in
tera

ctio
n
w
ith

its
sen

so
rs

m
u
st

b
e
ov
erla

p
p
ed

w
ith

its
o
p
era

tio
n
o
f
th
e
ra
d
io

a
n
d
ex
ecu

tio
n
o
f
n
etw

o
rk
in
g
p
ro
to
co
ls.

T
o
ex
a
cerb

a
te

th
e

situ
a
tio

n
,
o
n
m
a
n
y
m
icro

co
n
tro

llers
th
e
C
P
U
m
u
st
d
irectly

in
tera

ct
w
ith

th
e
ra
d
io
(co

m
p
a
red

w
ith

P
C
s
w
h
ich

ty
p
ica

lly
h
av
e
d
ed
ica

ted
N
IC
s
to

serv
ice

th
e
co
m
m
u
n
ica

tio
n
s
d
ev
ice),

in
tro

d
u
cin

g
rea

l-tim
e
co
n
stra

in
ts.

T
o

a
d
d
ress

th
ese

ch
a
llen

g
es,

w
e
h
av
e
d
ev
elo

p
ed

th
e

T
in
y
O
S

o
p
era

tin
g

en
v
iro

n
m
en
t

fo
r

n
etw

o
rk
ed

sen
so
rs.

T
in
y
O
S
h
a
s
a
co
m
p
o
n
en
t-b

a
sed

a
rch

itectu
re

in
w
h
ich

ea
ch

h
a
rd
w
a
re
a
n
d
so
ftw

a
re
co
m
p
o
n
en
t
ex
p
o
rts

a
n
in
terfa

ce
th
a
t

co
n
ta
in
s
th
e
set

o
f
co
m
m
a
n
d
s
th
a
t
it
a
ccep

ts
a
s
w
ell

th
e
set

of events that it �res (Figure 9). Internally, a software com-
ponent is given a statically allocated storage frame. While
handling a command, a component can emit tasks that
TinyOS's scheduler must execute. Tasks are similar to vS-
pace workers, but they share the state of the component that
created them rather than sharing state through the pass-
ing of typed Java objects. Unlike general purpose threads,
TinyOS tasks execute to completion and are atomic with
respect to each other. TinyOS includes a two-level schedul-
ing mechanism that allows high priority events to preempt
low priority tasks. Real-time constraints (e.g., servicing the
radio) are met by using high priority events, while less crit-
ical operations (such as gathering data from a temperature
sensor) are serviced with the remaining low priority CPU
time.

The use of the TinyOS component model and scheduler
greatly simpli�es the composition of multiple components
on a sensor. To demonstrate this, we have build an applica-
tion in which our motes self-assemble in an ad-hoc network,
and communicate their routing information to a statically
con�gured active proxy node. This routing discovery appli-
cation, as well as the particular operating system tuned for
this hardware, are composed of several TinyOS components.
The components are composed together using a CAD tool
(which represents commands and events with CAD sym-
bols), and structural VHDL is exported by the CAD tool.
This VHDL is used at compile time to assemble the system
image that is downloaded into the device's ash memory. A
particularly interesting feature of these devices is the abil-
ity to wirelessly reprogram them by sending system images
over the sensor network.

5 Active Proxies

Active proxies in the Ninja architecture serve the purpose
of performing \impedance matching" between client devices
and services by adapting data and access protocols to the
devices' and services' needs. Because active proxies can ex-
ecute in an environment local to devices, active proxies can
perform context-aware optimizations and transformations
on behalf of devices. We believe that active proxies bring
three essential properties to the Ninja architecture: dynamic
service adaptation, secure access to information, and the fu-
sion of multiple devices. We describe each of these in turn.

5.1 Dynamic Service Adaptation

In the Ninja architecture, active proxies assume the re-
sponsibility for mitigating the heterogeneity of units by
translating both network protocols and data formats be-
tween clients and services. At the network protocol level,
active proxies can communicate with clients through proto-
cols specially designed for low computation, low power, or
poorly connected devices. This is important since common
service communication protocols such as Java RMI, Ninja
RPC, and Jini assume that clients are well connected and
computationally powerful. Similarly, active proxies can be

used to help establish connections between clients and ser-
vices by performing more complicated tasks associated with
cryptographic handshakes [16].

Additionally, active proxies can distill service content into
a format more suitable for small devices [17]. Content pre-
sentation can be tailored for small screen layouts, and image
resolution and bit-depth reduced both for limited display
and network capabilities of these devices [15, 17]. For exam-
ple, a HTML representation of the content can be rendered
as WML for a WAP [44] enable phone, a custom application
format, or even as voice. Active proxies may perform this
�ltering at the application level (e.g., by selectively dropping
MPEG frames in a video stream), or at the protocol level
(e.g., by delaying or compressing data to increase actual or
perceived throughput, based on knowledge of the network
conditions that the device is currently experiencing).

5.2 Secure Service Access from Diverse
Clients

Current security models of infrastructure services assume
that both the user's access device and the software running
on it can be trusted not to intercept or send private informa-
tion elsewhere. Unfortunately, this is not the case for many
access points, including public kiosks. A subverted kiosk
is able to record all keystrokes (such as typed passwords),
monitor network traÆc to extract personal information such
as account numbers or mailing addresses, or perform ac-
tive attacks by hijacking connections, even if the network
transmission is encrypted. To avoid such attacks, trusted
active proxies can perform context-aware transformations
on data before it arrives at a kiosk to reduce the content
value. Proxies can also introduce alternative authentication
mechanisms (such as one-time passwords) so that users will
not need to divulge passwords or other personal information
to untrusted infrastructure. In Section 8.2, we describe in
detail an example framework that has this functionality.

PDAs are problematic because they are generally power-
constrained, computationally-limited devices with little
memory and poor networking capabilities. To perform the
industry-standard SSL handshake phase on one such device
(a Palm Pilot) requires 5-10 seconds. This latency imposes
an intolerable delay for connection setup, which is partic-
ularly undesirable if network connectivity is intermittent.
An SSL implementation that uses elliptic curve cryptog-
raphy [8] is feasible on a Palm Pilot V, but few Internet
services support that option. Active proxies can be used
to adapt the security requirements of services to the capa-
bilities of the device. Trusted active proxies can present
units with power and computation eÆcient security proto-
cols, while communicating with end services through stan-
dard protocols.

5.3 Multiple Device Fusion

In addition to enabling basic access, active proxies can be
used to combine the capabilities of several devices. This is
useful for both content and security adaptation. For exam-
ple, the limited GUI of a PDA can be supplemented by the

richer, larger display of a public kiosk, by placing most of
the application on the kiosk while displaying and entering
sensitive personal information on the PDA. Entering form
data using a pen-based interface is tedious at best and even
more cumbersome using number pads on devices such as cel-
lular telephones. Active proxies can split the trust between
the PDA and the public terminal by fusing the devices to-
gether to provide one logical channel with secure access to
the end service. This device fusion can only be done be-
cause the active proxy is aware of the context in which the
devices are being used, and thus serves as another example
of context-aware adaptation.

6 Service Location across the Wide Area

The service discovery service (SDS) [10] serves two im-
portant, and complementary roles: it provides a mechanism
by which services can announce their presence to the infras-
tructure, and it provides a mechanism by which both hu-
man users and programs can locate these announced services
across the wide area. While designing the SDS, we focused
on providing a fully secure, semantically rich service loca-
tion system that would successfully scale to the wide area.
The SDS is a scalable, fault-tolerant, and secure informa-
tion repository, providing clients with directory-style access
to all available services. Services describe themselves to local
SDS instances; these descriptions are published and aggre-
gated across a wide-area hierarchy, and clients can query
this hierarchy of SDS instances in order to locate services.

In addition to serving as a location mechanism, the SDS
also plays an important role in helping clients determine
the trustworthiness of services, and vice versa. This role
is critical in an open environment, where there are many
opportunities for misuse, both from fraudulent services and
misbehaving clients. To address security concerns, the SDS
controls the set of agents that have the ability to discover
services, allowing capability-based access control, i.e., to
hide the existence of services rather than (or in addition
to) disallowing access to a located service.

As a globally distributed, wide-area service, the SDS
must surmount challenges that are not faced by services
that operate solely inside a base. The global SDS service
must be robust against network partitions and component
failures, it must address the potential bandwidth limita-
tions between remote SDS entities, and it must arrange its
individual SDS instances components into a hierarchy to
distribute the query workload (implying queries must be
routed across this hierarchy).

6.1 Design

The SDS system is composed of three main components:
clients, services, and SDS servers. Clients want to discover
the services that are running in the network. SDS servers
solicit information from the services and then uses it to ful-
�ll client queries. To provide scalability in both number of
services and volume of client requests, SDS servers are or-
ganized into a hierarchical structure. Services and requests

(Note: Not all connections are shown)

SDS Server
"4th Floor"

SDS Server
"Room 443"

Service
"MP3"

Service
"Stock Info"

Certificate

Authority

Manager

Capability

(4)

SDS Server
"Systems"

(1) Authenticated
Server Connection

(3) Secure One-Way
Service Broadcasts

(2) (4)

(1)

(1)

SDS Server

Client
"johndoe@cs"

"CS Hall"

(4) AuthenticatedAuthenticated
Client Connection Server Broadcasts

Figure 10: Components of the Berkeley SDS: Dashed lines
correspond to periodic multicast communication between com-
ponents, while solid lines correspond to one-time transport con-
nections.

are associated with SDS servers according to each server's
domain, the network extent that it covers.

To propagate information across potentially heteroge-
neous service architectures, we use an \announce/listen"
model of data propagation. Servers cache data contained
in periodic multicast messages. Component failures are tol-
erated through the course of normal operation, removing the
need for a separate recovery procedure: recovery is enabled
simply by listening to channel announcements [2].

To provide both exibility and simplicity in the service
query mechanism, the SDS uses XML to encode both ser-
vice descriptions and queries. XML allows the encoding
of arbitrary structures of hierarchical named values, and
supports validating service descriptions against well-de�ned
schemas (Document Type De�nitions). This mechanism
gives SDS servers functionality to validate select service de-
scriptions while allowing evolution of existing service de-
scription schemas.

SDS servers are responsible for sending authenticated
messages to the well-known global SDS multicast channel,
including announcing multicast addresses to be used for
service announcements, the rate at which announcements
should be repeated, and contact information for the Cer-
ti�cate Authority and the Capability Manager. On each
channel, a measurement-based periodicity estimation algo-
rithm determines the optimal send rate for messages that
produces the desired tradeo� between update latency and
bandwidth utilization. Each server can spawn a child server
in order to hand o� a portion of its load. Parents monitor
child servers through heartbeat packets, and will restart a
crashed child server. Because servers keep a cache of an-
nouncement service descriptions, a restarted server restores
its data by listening to the channel.

To provide authentication, privacy, and access control,
SDS servers work with a Certi�cate Authority (CA) and a
Capability Manager (CM) using secure communication pro-
tocols. The CA is a trusted source which provides proof of
the binding between a principal and its public and encryp-

tion keys, in the form of a certi�cate. The CMmanages indi-
vidual access control lists (ACLs) on behalf of each authen-
ticated service. Communication between SDS components
utilize appropriate security measures while minimizing the
performance penalty. SDS server announcements need au-
thentication, and are therefore signed, including an embed-
ded timestamp. Service providers encrypt their description
broadcasts with a symmetric key, which accompanies the
message as a data block encrypted by the server's public
key. This allows caching of the symmetric key in the com-
mon case, and simple recovery of the symmetric key during
failure recovery. Communication among servers and clients
relies on a separate authenticated transport channel.

A client queries its SDS server over an authenticated
channel to pass in a XML service template and its access
rights in the form of capabilities. The server uses an internal
XML database (called XSet [51]), to �nd services accessible
to the client which satisfy the query, and returns them to
the client.

In order to make their services known, service providers
listen on the global multicast channel to routinely determine
their current responsible SDS server. Providers periodically
broadcast service descriptions to a multicast channel, us-
ing the address and broadcast rate de�ned by the server
announcement messages. Providers are also responsible for
contacting a capability manager and de�ning access control
information for its services.

6.2 Wide-area Operation

The SDS wide-area hierarchy is designed to scale up in
both query volume and number of available services, while
adapting to changes in the underlying entities. The primary
goal is to allow queries from all clients to reach services
on all SDS servers. In our approach, servers dynamically
arrange themselves into a multi-level hierarchy, summary
information is propagated up to parent servers, and queries
are partitioned among and forwarded to the relevant servers.

The actual organization of the hierarchy can be depen-
dent on many criteria, such as administrative domains or
network topology. We believe that the mechanism should
support the existence of multiple hierarchies, and actual us-
age should be based on policy. Individual servers can choose
to participate in more than one hierarchy by keeping multi-
ple routing tables, one for each hierarchy.

To prevent upper-level servers in the hierarchy from be-
ing overwhelmed by update or query traÆc, the SDS archi-
tecture �lters information while it propagates upward. In
particular, the information is summarized in a way that al-
lows queries to determine which, if any, branches contain
potential matches.

To accomplish this lossy aggregation, we use hash sum-
marization, where information is summarized using a unique
N-to-M mapping of data values. Complicating this pro-
cedure is the SDS' use of the subset query model, where
matching documents can be identi�ed by a partial list of
service characteristics. Our solution is to hash a limited
number of tag subsets, each subset containing a single tag

Description Latency
Query Encryption (client-side) 5.3 ms
Query Decryption (server-side) 5.2 ms
Authenticated Transport Overhead 18.3 ms
Query XML Processing 9.8 ms
Capability Checking 18.0 ms
Query Result Encryption (server-side) 5.6 ms
Query Result Decryption (client-side) 5.4 ms
Query Unaccounted Overhead 14.4 ms

Total (Secure XML Query) 82.0 ms

Table 1: Secure Query Latency Breakdown

or a cross-product of two tags. This limits computation re-
quired for summarization. To address the issue of storage
space for summarizations, we use Bloom �lters [5]. Bloom
�lters collapse hashed summarizations into a �xed-size ta-
ble, accepting greater possibility of false positives in return
for less storage requirements.

In summary, SDS servers dynamically organize them-
selves into potentially multiple hierarchies for data parti-
tioning and query routing. Each servers uses multiple hash
functions on various subsets of tags in service announce-
ments, and uses the results to set bits in a bit vector. Servers
which are internal nodes in the hierarchy combine bit vec-
tors from itself and its children servers, and associates the
result with this branch at its parent node. After receiving a
query, each server checks its own bit vector for a match, and
failing that checks its children vectors to determine which
branch to forward the query to. A server resolves a query
against the vector by multiply hashing it and checking if all
the matching bits are set in the bit-vector. A missing bit
guarantees a true miss, while a match could signal either a
false positive or a true hit.

The distribution of data across the wide area exposes a
trade-o� between consistency and performance. Strict con-
sistency is diÆcult to achieve in the face of frequent updates,
given the wide area's constraints on network bandwidth,
transmission latency, and the greater possibility of network
partitions. Therefore, the SDS system provides loose consis-
tency guarantees about service location information across
the wide area.

6.3 Performance

We have measured the performance of a single SDS server
on an Intel Pentium II 350Mhz with 128MB RAM, running
on Linux 2.0.36 using the Blackdown JDK 1.1.7 and the
TYA JIT compiler. The results are presented in Table 1.
This table shows that the primary sources of latency are the
authenticated transport connections and capability check-
ing using the Cryptix Java security library. We expect both
of these components will decrease signi�cantly as a result
of ongoing research. Furthermore, the XML query process-
ing is shown to scale logarithmically with the size of the
data set [51]. Finally, using these performance numbers, we
estimate that a single SDS server (using o�-the-shelf compo-
nents) can handle a user community of about �ve hundred

clients sending queries at a rate of of one query per minute
per client.

7 Paths: Composition of Services Across
the Wide-Area

The primary goal of paths is to facilitate the composition
of services. To be most useful, the infrastructure should
attempt to automate as many parts of the path creation
process as possible. In our design, an automatic path cre-
ation (APC) facility automates the task of �nding paths
between system components, creating the network connec-
tions between components, �ne tuning the performance of
the data ow, and handling error conditions. Whenever
possible, the APC facility protects users from the failure of
individual path components or communication links. The
ideal situation would be to provide the illusion that the
user is accessing a single robust service providing the com-
posed functionality. Because the APC facility handles large
numbers of concurrent users, we designed its path construc-
tion algorithms to scale well as the number of components
increases, even though the number of possible paths may
grow exponentially as components are added.

A path is comprised of a sequence of operators that
perform computations on data and connectors that pro-
vide protocol translations between operators. A connector
is a channel through which operators can pass application
data units (ADUs). The connector hides potential di�er-
ences in network protocols from the operators, and allows
them to communicate as long as the output data type of
the downstream operator matches the input data type of
the upstream operator. Each connector is characterized by
a speci�c transport protocol.

Operators perform computation on data owing along
the path. Operators are strongly-typed: they have a clear
de�nition of the input they accept and the outputs they pro-
duce. Operators have various attributes such as supported
communication protocols, computational requirements, or
required external data (e.g. a remote database). In addi-
tion, operators have associated cost metrics, which describe
the run-time performance of the operator and are used for
optimization during path creation. The type and attributes
for each operator are combined to form an XML description
of the operator. These descriptions are used to determine
which combinations of operators could make a valid path.

The Ninja architecture provides two classes of operators:
long-lived and dynamically created. Long-lived operators
are standard Ninja services, and hence support both the
data persistence and fault-tolerance properties previously
discussed for services. These are registered with and lo-
cated through the service discovery service (SDS). Dynam-
ically created operators are light-weight, short-lived trans-
formation elements created by the APC facility as required.
These operators, which run in active proxies, have only soft-
state and hence can be simply restarted if the active proxy
fails.

While the reliability of both long-lived and dynamic op-

erators helps to guarantee that a path can be reconstructed
when a failure occurs, this does not safeguard against the
loss of data that was already in the path when the failure
occurred. Hence, applications that use paths must provide
their own mechanisms for guaranteed or in-order data de-
livery if this is required.

7.1 An Example of a Path

As a motivating example, consider a map service that
provides driving directions in response to a user-speci�ed
address. This example illustrates the composition of two
operators with a service, and shows how active proxies that
are selected by the path creation process are used to per-
form protocol and data format translations between clients
and services. To allow access to the overall audio driving
direction service from a cell phone, the APC facility might
create a path as follows:

1. The user initiates a call from a cellular phone. The user
speaks the address to which she wishes to get driving
directions. An RTP-based audio connector is used to
send this audio to the �rst operator in the path.

2. A speech-to-text operator, running in an active proxy,
is used to convert the spoken audio into structured
text using a grammar speci�cally chosen for this con-
text (address input). The structured text emitted from
this operator is passed along a TCP-based reliable
bytestream connector to a map service.

3. A map service, running in a base, receives the address,
and returns structured text representing driving direc-
tions to the speci�ed address. These directions are
passed along a TCP-based reliable bytestream connec-
tor to the next operator in the path.

4. A text-to-speech translator, running in the same active
proxy as the speech-to-text operator, transforms the
textual driving directions into audio. An RTP-based
audio connector is used to send this audio to the user's
cell phone.

5. The user hears the driving directions being spoken to
her over her phone.

7.2 Path Construction

To create a Ninja path, a user provides the APC facility
a speci�cation of the endpoints of the required path, a par-
tially ordered list of operators that must be included in the
path, and an acceptable range of costs for the path in terms
of latency, computation or memory requirements. This in-
formation is used to construct an optimal path for the user's
speci�c requirements. The path construction process con-
sists of four steps. As shown in Figure 11, path construction
is a process of continuous feedback and optimization. The
details of each step are described below.
Step 1: Logical Path Creation: A logical path con-

sists of an ordered sequence of operators that are joined with

Path Instantiation and Execution

Path Tear-Down

Physical Path Creation

Logical Path Creation

Figure 11: Path construction process: Path execution is
an iterative process of optimization. The Ninja APC facility
guarantees the availability and fault-tolerance of a constructed
path by rebuilding its physical or logical path.

connectors. During logical path creation, the APC facility
searches through the XML descriptions of the operators, to
�nd valid sequences that could perform the computation re-
quested by the user. The result of logical path creation is
a list of possible operator sequences. Note that since some
operators may be commutative (image format transcoders,
for example), the space of all possible logical paths is large.
Hence, only a small number of logical paths are considered
initially.

Step 2: Physical Path Creation: A physical path is
a mapping of a particular logical path onto physical nodes
which execute the operators. Nodes for long-lived operators
are chosen from the known services that provide the desired
functionality, as located using the SDS. Nodes for short-
lived operators are chosen according to the computational
capabilities of the node, and the cost of using that node in
the path. The APC facility constructs a physical path from
a logical path by �nding the lowest cost nodes that meet
the user's requirements.

Step 3: Path Instantiation, and Execution: Once
the nodes of the path have been selected, the APC facility
starts any required dynamic operators, and sets up appro-
priate connectors between the various operators. Once all
nodes in the path are set up, data ow is started. In addi-
tion, a control channel (used for reporting of error conditions
and performance information) is established between the op-
erator nodes and the APC facility. During the lifetime of the
path, the APC facility actively monitors the operator nodes
to make sure that they are functional. Operator nodes re-
port problems to the APC facility about their neighboring
nodes in the path, so that the path is repaired when nec-
essary. The APC facility monitors the performance of the
path, and re-routes the data ow if new conditions make
the original path suboptimal. The control path is used for
exception handling, controlling parameters of path compo-
nents, monitoring and analyzing path performance; thus, it
needs to be independent of data paths and be highly robust.

Step 4: Path Tear-Down: When a path is no longer
needed, the user informs the APC facility that it should
be removed. The APC facility then stops the data ow,
removes connectors, and shuts down any dynamic operators.
As a performance optimization, the APC facility may cache
commonly used logical and physical paths for re-use at a
later time.

7.3 APC Implementation and Evaluation

We have developed an initial prototype of the APC facil-
ity that supports both long-lived and dynamic operators. In
addition, we have a special class of dynamic operators that
can be used to wrap existing services. This allows the APC
system to make use of older services that can't communicate
directly with our connectors.

Each operator has a reference to an output and input con-
nector that speaks a speci�c transport protocol. All connec-
tors implement a common Java interface. To interact with
previous and subsequent operators in the operator chain,
each operator invokes read and write methods of this in-
terface to receive its input data and send its output data.
TCP, UDP, and RTP connectors are supported in the cur-
rent prototype.

Our current implementation encompasses the full range
of path creation described previously. Logical paths are
created by searching the XML descriptions of the available
operators to �nd the smallest number of operators that can
perform the desired data ow. A physical path is then se-
lected by placing operators on the least loaded nodes of the
network.

Machine failures are automatically detected by the APC
service, and running operators are restarted on other nodes.
Fault detection is achieved by either time-out of a heartbeat
beacon or by catching an I/O exception when reading or
writing data from or to the failed machine. Our prototype
does not presently exploit the possibilities for performance
tuning through dynamic reconstruction of paths.

8 Example Services

Having completed the description of the Ninja architec-
ture, in this section of the paper we describe a number of in-
teresting applications that we have built on top of it. These
applications demonstrate the capability of the Ninja archi-
tecture to facilitate the simple construction of robust, scal-
able services that are accessible by a diversity of devices.
This illustrates the opportunity that our architecture pro-
vides for the widespread innovation of both services and
devices.

8.1 The Ninja Jukebox

The Ninja Jukebox [18] was an early application built us-
ing our architecture, and it demonstrates some of our plat-
form's key features. The Jukebox allows a community of
users to build a distributed repository of digital music, and

provides a collaborative �ltering mechanism based on users'
music preferences. Cluster nodes are harnessed to rip MP3
�les from their local CD-ROM drives, and to act as servers
for streaming MP3 to clients. One node acts as the music
directory, and maintains a soft-state index of the songs pub-
lished by each cluster node; the Jukebox client application
contacts the directory to obtain a list of songs, and streams
MP3 directly from the appropriate node using HTTP.

The Ninja Jukebox is based on MultiSpace [21], an early
design prototype of the base service platform. MultiSpace
nodes, each running a JVM, communicate through the use
of NinjaRMI, an extensible variant of Java Remote Method
Invocation [38]. Each component in the Jukebox applica-
tion exports a NinjaRMI interface which is invoked either
internally to the cluster or externally by the Jukebox client
application (which also makes use of NinjaRMI). NinjaRMI
provides support for strong authentication and encryption,
which is used to control access to the Jukebox service. Each
song in the Jukebox can have an associated ACL authorizing
a particular set of users to listen to it.

Constructing this application as a set of strongly-typed,
distributed components greatly simpli�ed service construc-
tion and facilitated evolution, as new components could be
added to the service as needed. An example of service evo-
lution was our addition of the Jukebox Query Engine [45],
which allows users to search for music in the Jukebox based
on musical similarity between songs. The user provides a
query song and a set of parameters to use for the search, as
well as the number of results to return; the Query Engine
returns the songs in the Jukebox which sound the most sim-
ilar to the query song. The search is based on a k-nearest-
neighbor search in a multidimensional space of features pre-
viously extracted from each song. The Query Engine runs
on the same MultiSpace platform as the Jukebox itself, and
its user interface is integrated into the Jukebox client.

8.2 An Active Proxy Framework for Accessing
Services through Untrusted Devices

A more general service that we have implemented is an
active proxy framework that provides secure multi-modal
access to Internet services from units [23]. Consider the
case of users accessing their stock trading accounts from
public access terminals. Instead of relying on the termi-
nal to protect their secure information, the users can direct
private or sensitive information such as portfolio values or
account numbers to their personal PDA, while using the rich
GUI capabilities of the public terminal to initiate requests
and display generic stock information (e.g., stock price uc-
tuations and historical graphs). Users initiate trading op-
erations through the untrusted public terminals, but then
con�rm them using their trusted portable devices. Network
connections to the users' PDAs are provided either by the
environment, such as with kiosks with infrared network con-
nections, or by the devices themselves , for example by di-
rectly initiating a connection from a wireless data enabled
PDA.

The proxy is implemented as a collection of vSpace work-
ers that abstract the functionality of security adaptation,

Figure 12: WML for PDA: WML holdings page customized
for PDA display.

service adaptation, and device fusion. By combining generic
content and security transformation functions with service-
speci�c rules, the proxy architecture decouples device ca-
pabilities from service requirements and simpli�es the addi-
tion of new devices and services. The service uses XML as a
standard data representation; one vSpace worker transforms
requests from the untrusted access device into an XML rep-
resentation. Another worker provides access control �ltering
on these requests, possibly injecting secure information into
the request: for example, this worker may convert a one-
time password provided by the user through the untrusted
terminal into a password that must be supplied to the ser-
vice being accessed.

A third worker transforms the request from its generic
XML representation into whatever protocol is necessary to
access the service. For example, if the service is web-based,
this worker will convert the XML into an HTML form to
be submitted to the service's web server. This worker re-
ceives the content returned from the service, and trans-
forms it back into XML. A fourth worker performs a se-
quence of �ltering operations on the data in order to re-
move any sensitive information that should not be revealed
to the untrusted device. A �nal worker is used to trans-
form this �ltered XML into whatever protocol and data
format is needed to render the content on the untrusted
terminal. This �nal XML transformation is driven using
device-speci�c XSL style sheets.

The framework currently allows access to both the Datek
Online [12] and YahooContest [48] stock trading services,
and we are currently adding access to a HTML based mail
service. Adding support for a new service merely requires
authoring a script to convert the service's content into an
XML representation. For example, the YahooContest ser-
vice consists of half a dozen scripts each of which are ap-
proximately 250 lines or less. Rendering content for dif-
ferent client formats is requires authoring the appropriate
XSL style sheets. Our example stock services consist of half
a dozen style sheets for each device format, each ranging
from 50{300 lines in length. Figure 12 shows the output
of the YahooContest service rendered as WML for a WAP
browser running on a trusted Palm Pilot. In this example,

Figure 13: Security Filtered HTML: Stock holdings �ltered for display on a public kiosk.

because the device is trusted, sensitive information such as
the number of owned shares has not been removed by the
proxy. In Figure 13, we show the output of the Datek trad-
ing service rendered as HTML on an untrusted web browsing
kiosk; note in particular that sensitive information such as
account numbers and the number of purchased shares have
been removed.

8.3 NinjaMail

Electronic mail was one of the \killer apps" of the early
Internet, and even today, the number of users with e-mail
access is growing exponentially. At the same time, these
users are expecting more complex functionality such as em-
bedded multimedia and anytime/anywhere access. These
two trends have implications on the requirements of mod-
ern e-mail servers. Hotmail alone has over 61 million active
users [33], and if they o�ered just 50 MB worth of stor-
age to each user, their servers would have to handle over 3
petabytes of data.

The goal of the NinjaMail [42] project is to build a scal-
able and feature-rich e-mail service on top of Ninja. Nin-
jaMail was built to act as a general e-mail infrastructure
which other applications and services could use to provide
more speci�c functionality, as depicted in Figure 14. This
loose coupling of the separate components allows for more
exibility and extensibility than traditional email servers.

At NinjaMail's core, the MailStore module handles stor-
age operations such as saving and retrieving messages, push-
ing out noti�cation of email events, updating message meta-
data, and performing simple per-user message metadata
searches. A message's metadata represents its mutable at-
tributes which are used to record its ags and current folder.
Access modules support speci�c communication methods
between users and NinjaMail, including an SMTP mod-
ule for pushing messages into the MailStore and POP and
HTML modules for user message access.

Each of the above modules is a separate worker running
in the cluster, with scalability being achieved by running
multiple clones of the worker. We found that decomposing
the NinjaMail system into a set of workers to be a natural
programming model and the typed task dispatching allowed

Indexing
Text Message

Filtering
Notification

Pager

Access
Modules

SMTP
HTML

IMAP
POP

MailStore

Extension
Modules

Event System

Figure 14: The NinjaMail architecture.

the components to be easily composed. We also created an
event mechanism that allowed extension modules to regis-
ter with the MailStore service to receive noti�cations when
particular events occur such as e-mail receipt. This allowed
for very diverse services to be built, such as an instant mes-
saging noti�er of new email.

8.4 Sanctio

Recently, there has been an ongoing controversy over ac-
cess rights to proprietary instant messaging networks, such
as AOL's AIM network [1]. Many companies have tried to
compose their own services with these existing networks,
however the owners of the proprietary networks have at-
tempted to prevent such composition, as it diminishes their
perceived market penetration.

We have built a service, called Sanctio, which is an in-
stant messaging gateway that provides protocol transla-
tion between popular instant messaging protocols (such as
Mirabilis' ICQ and AOL's AIM), conventional email, and
voice messaging over cellular telephones. Sanctio obviates
this controversy by bridging together these previously pro-
prietary networks into an instant messaging internetwork.
Sanctio runs on a vSpace base, and acts as a middleman
between all of these messaging protocols, routing and trans-

AOL client

ICQ client

profile
DDS

sanctio service on a base

��������	�
��������	�

AOL worker

english to
spanish worker

ICQ worker

Figure 15: Sanctio Messaging Proxy: the Sanctio messag-
ing proxy service is composed of language translation and instant
message protocol translation workers in a base. Sanctio allows
unmodi�ed instant messaging clients that speak di�erent proto-
cols to communicate with each other; Sanctio can also perform
natural language translation on the text of the messages.

lating messages between the networks (Figure 15). In addi-
tion to protocol translation, Sanctio also can transform the
content of messages. We have built a \web scraper" that al-
lows us to compose AltaVista's BabelFish natural language
translation service with Sanctio, and thus the service can
perform language translation (such as English to French) as
well as protocol translation. A Spanish speaking ICQ user
can send a message to an English speaking AIM user, with
Sanctio providing both language and protocol translation.

Users can take advantage of unmodi�ed commercial client
application software in order to use Sanctio, or they can use
software that we have constructed for mobile devices such
as Palm Pilots. This software interacts with the Sanctio
service through an active proxy. The proxy presents a very
simple text-based messaging protocol to the Palm Pilot, but
interacts with Sanctio using the more sophisticated AIM or
ICQ procotols.

Because a user of the service may be reached on a number
of di�erent addresses (potentially one for each of the net-
works that Sanctio can communicate with), Sanctio must
keep a large table of bindings between users and their cur-
rent transport addresses on these networks. We used a dis-
tributed hash table DDS for this purpose.

9 Related Work

A number of projects share aspects of the Ninja vision
of seamlessly interconnecting devices and Internet services.
Related work can generally be characterized as addressing
speci�c aspects of this problem space (such as supporting
scalable services or embedding intelligence in the network),
rather than taking Ninja's vertical approach to building a
general-purpose Internet services platform. As the number
of related projects in this domain is extremely large | span-
ning operating systems, programming languages, networks,
embedded systems, and distributed computing platforms |

we limit our discussion here to those projects which have
taken a particularly complementary approach to the Ninja
system design.

Flexible middleware systems, which support distributed
computing across heterogeneous resources, are directly re-
lated to Ninja's goal of tying together Internet services with
diverse small devices. CORBA [40] and DCOM [14] pro-
vide platform-independent, object-based network commu-
nication, although both systems are designed for tightly-
coupled distributed applications and do not directly support
composition and aggregation of components. Jini [39, 43]
takes a Java-centric view, exploiting bytecode mobility to
deliver stub code which implements a private communica-
tion protocol between client and service; stubs export a
programming model based on Remote Method Invocation
(RMI) [38]. Although Jini's literature describes a holistic
distributed computing model not unlike that of Ninja, the
system has been developed mainly for use within a work-
group, and does not provide security or scalability for the
wide area. eSpeak [22] is another Java-based middleware
system which intends to scale to the wide area, and to in-
tegrate PKI into its non-standard messaging layer. Neither
system addresses service scalability and fault-tolerance, or
access from impoverished devices which cannot run a Java-
based communication protocol.

The goals of the Ninja Base environment are reected by
various application servers, including IBM WebSphere [24]
and BEA Weblogic [4]. These systems strive to simplify
the construction of scalable, fault-tolerant Internet services,
generally requiring that applications be constructed as a set
of Java components using an interface such as Enterprise
Java Beans (EJB) [37]. EJB components are expected to
be stateless or to manage their own state persistence; EJB
components usually interact with a database to achieve the
latter. vSpace di�ers from these application servers mainly
by mandating an event-driven programming style (which
facilitates high concurrency) and through the use of the
DDS layer for persistence. The Ninja Base environment
was inspired by earlier work on TACC [15] and SNS [9],
both cluster-based Internet service platforms.

Harnessing intelligence in the network to transform and
aggregate data across services has been investigated by sev-
eral projects. Active networks [47] allow code to be injected
into network routers to deploy new network protocols, im-
plement traÆc shaping, and perform packet �ltering. An
important distinction between these projects and Ninja's
active proxies is the level at which data processing occurs;
active networks operate at the transport or packet level,
while active proxies operate using higher-level application
semantics. As such, active proxies are not solely intended
to implement protocols or perform packet-level operations;
rather, they are used to perform service composition and
aggregation, as well as soft-state transformations (such as
HTML �ltering, as demonstrated by the security proxy).
While much of the work on mobile agents [28] has focused
on supporting distributed arti�cial intelligence, active prox-
ies share many of the same systems-level concerns, such as
code mobility, naming, security, and coordination.

Many projects have used transcoding to adapt service

content to better suit small devices [6, 15, 29, 34, 35, 36,
49, 50]. Additionally, a number of projects have attempted
to develop universal interfaces for large classes of devices,
including the recent WAP protocol stack [44]. Instead of
assuming that a single standard will be adopted by all de-
vices, the Ninja architecture allows multiple standards to
be bridged by using active proxies as transformational in-
termediaries.

There are several additional technologies that we would
like to explore as interesting examples of units. For ex-
ample, Java Rings [11] and smart cards allow allow min-
imal computation, communication, and storage, but have
no user interfaces. DIMM PC devices (matchbox-sized PCs
on a single chip) could be used as mobile, computationally
powerful devices that lack a user interface. Additionally, we
believe that universal Plug and Play and Jini based devices
could be easily integrated into the Ninja architecture.

10 Discussion and Future Directions

If Ninja succeeds in enabling connectivity between Inter-
net services and diverse units, many new research directions
will arise. The goal of moving intelligence into the network
infrastructure, and opening up the infrastructure to allow
anyone to push new components into it, raises questions
about management, security, and service composition.

The �rst important concern is how to manage resources
in a highly dynamic, decentralized network of active prox-
ies. Operators should not be allowed to consume arbitrary
amounts of network bandwidth, CPU, or memory; however,
such restrictions cannot be made only on a per-site basis, as
a given Operator may consume many aggregate resources
across many active proxies. Otherwise, malicious operators
could be used to launch distributed denial of service attacks
against particular bases as well as the network itself. In
the same vein, the infrastructure should prevent abuses of
its content delivery mechanisms for unsolicited advertising
or \spam" | already there are reports of people receiving
unwanted advertisements via text paging to cellphones. If
Ninja makes this problem worse, rather than better, the
technology will not be adopted in the wide scale, or the
infrastructure will remain closed.

New business models emerge in the world of ubiquitous
network-based services. Today's model of funding web-
sites through advertising revenue is inappropriate when ser-
vices capture bits rather than eyeballs. Subscription and
micropayment-based models are possible alternatives. In
either case, retaining user privacy is an important concern
as data and payments ow across the infrastructure. We
envision a new \service marketplace" where both individual
operators as well as entire vertically-integrated services are
made available on a per-use or subscription basis. Another
interesting model is that of a computational economy [31],
where active proxies, services, and user agents participate
in an automated marketplace where the commodities are
CPU cycles, memory, and bandwidth. Service authors earn
revenue by making their service available to others, and ac-

tive proxies earn revenue by hosting services on behalf of
users. Apart from the business implications, computational
economies can be used to implement resource management,
load balancing, and quality-of-service contracts.

Accessing powerful Internet services from small devices
raises new challenges for user interface design. Ideally,
service-to-device integration will be seamless. When fail-
ures do occur, however, the user may need some way to in-
spect or control the path of network components producing
the fault. Exerting control over a network of active proxies
from a device as limited as a text pager is diÆcult at best.
Currently, networked devices are bound to a particular ser-
vice; for example, a cellphone is used primarily for making
phone calls. If the Ninja vision is realized, devices will be-
come more versatile and the choices for using them more
varied. Users will need some way to select between services
and perhaps control a user pro�le used by those services.

Perhaps the largest challenge to face is that of automat-
ically composing service components to meet the needs of
particular devices. Expressing the transformation, caching,
or aggregation properties of a Ninja operator in a type sys-
tem is simple and potentially allows operators to be auto-
matically chained into a path. However, the types must be
expressive enough to capture the relevant semantics of an
operator. For example, an English-to-French translation op-
erator may take type English text as input, and French
text as output; however, this alone does not imply trans-
lation between the two, as the operator might always out-
put \Je ne sais pas traduire cela texte." Apart from strict
type-matching, operator selection also depends upon con-
sideration of an operator's quality, performance, and cost.
Automatic path creation becomes a problem of balancing
user requirements with other system demands, such as re-
source availability. Performing this operation eÆciently and
in a decentralized manner suggests several avenues for fu-
ture research.

11 Conclusions

The Ninja architecture represents an important �rst step
towards opening up the intrastructure of scalable, robust,
adaptive Internet services. By opening the infrastructure,
Ninja hopes to reclaim the distributed innovation that was
responsible for the unprecedented success and widespread
adoption of the Internet in the form of the world-wide web.
Unlike the today's web, the service landscape envisioned by
Ninja is one of active services and extremely diverse, mobile
devices.

In this paper, we described the essential elements of this
open architecture: robust service environments on clusters
of workstations (bases), diverse devices (units), adaptive in-
termediaries to isolate services from units (active proxies),
and a abstraction for the composition of these three ele-
ments (paths). In addition to describing our design and
implementation of these components, we presented four in-
novative services that exploit the capabilities o�ered by this
open infrastructure.

References

[1] America Online, Inc. The AOL Instant Messaging (AIM)
Network. http://aim.aol.com/.

[2] Elan Amir, Steven McCanne, and Randy Katz. An Active
Service Framework and its Application to Real-Time Mul-
timedia Transcoding. In Proceedings of ACM SIGCOMM
'98, pages 178{189, October 1998.

[3] T. E. Anderson, D. E. Culler, and D. Patterson. A Case for
NOW (Networks of Workstations). IEEE Micro, 12(1):54{
64, February 1995.

[4] BEA Systems. BEA WebLogic Application Servers. http:
//www.bea.com/products/weblogic/.

[5] Burton Bloom. Space/Time Tradeo�s in Hash Coding with
Allowable Errors. Communications of the ACM, 13(7):422{
426, July 1970.

[6] Charles Brooks, Murray S. Mazer, Scott Meeks, and Jim
Miller. Application-Speci�c Proxy Servers as HTTP Stream
Transducers. In Proceedings of the Fourth International
World Wide Web Conference, Dec 1995.

[7] P. Buonadonna, A. Geweke, and D. Culler. An Implemen-
tation and Analysis of the Virtual Interface Architecture.
In Proceedings of SC'98, November 1998.

[8] Certicom. Elliptic Curve Cryptography for Palm
VII. http://www.certicom.com/press/98/dec0298.htm,
December 1998.

[9] Yatin Chawathe and Eric A. Brewer. System Support For
Scalable and Fault Tolerant Internet Services. In IFIP Inter-
national Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware '98), Lake Dis-
trict, UK, Sep 1998.

[10] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony
Joseph, and Randy Katz. An Architecture for a Secure
Service Discovery Service. In Proceedings of MobiCom '99,
Seattle, WA, August 1999. ACM.

[11] Dallas Semiconductor Designs. The Java Ring. http://
www.ibutton.com/store/jringfacts.html.

[12] Datek Corporation. Datek Online Trading Service. http:
//www.datek.com, January 2000.

[13] UC Berkeley CS Division. The Millennium Project (home
page), 1999. http://millennium.berkeley.edu.

[14] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft
Press, Redmond, WA, 1998.

[15] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles, St.-Malo, France, October 1997.

[16] Armando Fox and Steven D. Gribble. Security On the Move:
Indirect Authentication Using Kerberos. In Proc. Second In-
ternational Conference on Wireless Networking and Mobile
Computing (MobiCom '96), Rye, NY, November 1996.

[17] Armando Fox, Steven D. Gribble, Eric A. Brewer, and Elan
Amir. Adapting to Network and Client Variability via On-
Demand Dynamic Distillation. In Proceedings of the Sev-
enth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VII), Cambridge MA, October 1996.

[18] I. Goldberg, S. D. Gribble, D. Wagner, and E. A. Brewer.
The Ninja Jukebox. In The 2nd USENIX Symposium on In-
ternet Technologies and Systems, Boulder, Colorado, USA,
October 1999.

[19] J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
i�cation. Addison-Wesley, Reading, MA, 1996.

[20] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein,
and David Culler. Scalable, Distributed Data Structures
for Internet Service Construction. In Proceedings of the 4th
USENIX Symposium on Operating System Design and Im-
plementation (OSDI 2000), San Diego, California, USA, Oc-
tober 2000.

[21] Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David
Culler. The MultiSpace: an Evolutionary Platform for In-
frastructural Services. In Proceedings of the 1999 Usenix
Annual Technical Conference, Monterey, California, USA,
Jun 1999.

[22] Hewlett Packard Inc. eSpeak: The Universal Language of
E-Services. http://www.e-speak.net/.

[23] Jason Hill, Steven Ross, David Culler, and Anthony
Joseph. A Security Architecture for the Post-PC
World. Available at http://www.cs.berkeley.edu/
~jhill/papers/SecPaper.ps.

[24] IBM Corporation. IBM WebSphere Application Server.
http://www-4.ibm.com/software/webservers/.

[25] InfoWorld. Boeing to Put Net in the Air. http:
//www.infoworld.com/articles/hn/xml/00/04/27/
000427enboeing.xml, April 2000.

[26] InfoWorld. E-cars take to the streets; wireless connections
link road warriors to the Net. http://www.infoworld.com/
articles/hn/xml/00/03/13/000313hnauto.xml, March
2000.

[27] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue,
Mikio Takeuchi, Takeshi Ogasawara, Toshio Suganuma,
Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani.
Design, Implementation, and Evaluation of Optimizations
in a Just-In-Time Compiler. In Proceedings of the ACM
1999 Java Grande Conference, June 1999.

[28] N. Jennings, K. Sycara, and M. Wooldridge. A Roadmap
of Agent Research and Development. Autonomous Agents
and Multi-Agent Systems, 1(1):7{38, July 1998.

[29] Liljeberg, M., et al. Enhanced Services for World Wide Web
in Mobile WAN Environment. Technical Report C-1996-28,
University of Helsinki CS Department, April 1996.

[30] S. Matsuoka, H. Ogawa, K. Shimura, Y. Kimura, K. Hotta,
and H. Takagi. OpenJIT: A Reective Java JIT Compiler.
In Proc. of OOPSLA '98, Workshop on Reective Program-
ming in C++ and Java. http://openjit.is.titech.ac.
jp/.

[31] Mark S. Miller and K. Eric Drexler. Markets and Com-
putation: Agorics Open Systems. In Bernardo Huberman,
editor, The Ecology of Computation. Elsevier Science Pub-
lishers/North Holland, 1998.

[32] Myricom Corporation. Myrinet: A Gigabit Per Second Lo-
cal Area Network. In IEEE Micro, February 1995.

[33] PC World Communications, April 2000. http:
//www.pcworld.com/pcwtoday/article/0,1510,16045+1+
0,00.html.

[34] Y. Sato. DeleGate Server, March 1994. http://wall.etl.
go.jp/delegate/.

[35] M.A. Schickler, M.S. Mazer, and C. Brooks. Pan-Browser
Support for Annotations and Other Meta-Information on
the World Wide Web. In Fifth International World Wide
Web Conference (WWW-5), May 1996.

[36] B. Schilit and T. Bickmore. Digestor: Device-Independent
Access to the World Wide Web. In Proc. Sixth International
World Wide Web Conference (WWW-6), Santa Clara, CA,
April 1997.

[37] Sun Microsystems. Enterprise Java Beans Technology.
http://java.sun.com/products/ejb/.

[38] Sun Microsystems. Java Remote Method Invocation|
Distributed Computing for Java. http://java.sun.com/.

[39] Sun Microsystems. Jini Connection Technology. http://
www.sun.com/jini/.

[40] The Object Management Group (OMG). The Common Ob-
ject Request Broker Architecture. http://www.corba.org.

[41] Virtual Interface Architecture Organization. Virtual Inter-
face Architecture Speci�cation version 1.0, December 1997.
http://www.viarch.org.

[42] J.R. von Behren, S. Czerwinski, A.D. Joseph, E.A. Brewer,
and J. Kubiatowicz. NinjaMail: the Design of a High-
Performance Clustered, Distributed E-mail System. In Pro-
ceedings of the First International Workshop on Scalable
Web Services, Toronto, Canada, August 2000.

[43] Jim Waldo. Jini Architecture Overview. Available at http:
//java.sun.com/products/jini/whitepapers.

[44] WAP Forum. Wireless Application Protocol (WAP) Forum.
http://www.wapforum.org.

[45] Matt Welsh, Nikita Borisov, Jason Hill, Rob von Behren,
and Alec Woo. Querying Large Collections of Music for Sim-
ilarity. Technical Report UCB/CSD-00-1096, U.C. Berkeley
Computer Science Division, November 1999.

[46] Matt Welsh and David Culler. Jaguar: Enabling EÆcient
Communication and I/O in Java. Concurrency: Practice
and Experience, 2000. Special Issue on Java for High-
Performance Network Computing, To appear, http://www.
cs.berkeley.edu/~mdw/papers/jaguar-journal.ps.gz.

[47] David J. Wetherall, John Guttag, and David L. Tennen-
house. ANTS: A Toolkit for Building and Dynamically De-
ploying Network Protocols. In Proceedings of IEEE OPE-
NARCH'98, San Francisco, CA, April 1998.

[48] Yahoo Finance. Yahoo Finance Investment Challenge.
http://contest.finance.yahoo.com/t1?u/, 2000.

[49] Ka-Ping Yee. Shoduoka Mediator Service, 1995. http://
www.shoduoka.com.

[50] Bruce Zenel and Dan Duchamp. A General Purpose Proxy
Filtering Mechanism Applied to the Mobile Environment.
In Proceedings of the Third Annual ACM/IEEE Conference
on Mobile Computing and Networking (Mobicom '97), New
York, NY USA: ACM, 1997.

[51] Ben Y. Zhao and Anthony D. Joseph. XSet: A
Lightweight Database for Internet Applications. Sub-
mitted for publication: http://www.cs.berkeley.edu/
~ravenben/publications/saint.pdf, May 2000.

