
On the Embeddability of Random Walk Distances

†Xiaohan Zhao, †Adelbert Chang, ‡Atish Das Sarma, †Haitao Zheng, †Ben Y. Zhao
†Department of Computer Science, U. C. Santa Barbara ‡eBay Inc.

{xiaohanzhao, adelbert chang, htzheng, ravenben}@cs.ucsb.edu, atish.dassarma@gmail.com

ABSTRACT
Analysis of large graphs is critical to the ongoing growth of search
engines and social networks. One class of queries centers around
node affinity, often quantified by random-walk distances between
node pairs, including hitting time, commute time, and personalized
PageRank (PPR). Despite the potential of these “metrics,” they are
rarely, if ever, used in practice, largely due to extremely high com-
putational costs.
In this paper, we investigate methods to scalably and efficiently

compute random-walk distances, by “embedding” graphs and dis-
tances into points and distances in geometric coordinate spaces.
We show that while existing graph coordinate systems (GCS) can
accurately estimate shortest path distances, they produce signifi-
cant errors when embedding random-walk distances. Based on our
observations, we propose a new graph embedding system that ex-
plicitly accounts for per-node graph properties that affect random
walk. Extensive experiments on a range of graphs show that our
new approach can accurately estimate both symmetric and asym-
metric random-walk distances. Once a graph is embedded, our sys-
tem can answer queries between any two nodes in 8 microseconds,
orders of magnitude faster than existing methods. Finally, we show
that our system produces estimates that can replace ground truth in
applications with minimal impact on application output.

1. INTRODUCTION
Analysis of large graphs is critical to the ongoing growth of

search engines and social networks. One important measure in such
analysis is a measure of proximity between pages on a web graph,
or between people in a social network. Such measures can be quan-
tified either by simple node distance metrics, i.e. shortest path, or
by a more complete property of affinity, which is often quantified
by random-walk distances such as commute time, hitting time and
personalized PageRank.
There are numerous potential applications for these distances.

For example, social networks like LinkedIn often provide a mea-
sure of similarity between a user and the owner of a profile she is
reading. Pure graph distance is not truly reflective of the strength
of ties between two users. An alternative uses the number of paths

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

connecting them, e.g. counting the number of common neighbors.
But this does not capture the impact of a user’s node degree, i.e. m
mutual friends betweenA and B is more significant whenA and B
each have few friends. Similar examples exist in the web, i.e. deter-
mining the similarity of a web search result with an ad-result pro-
duced by the same query. Finally, when performing semantic text
analysis, determining contextual meaning often requires computing
the relationship between specific keywords. By locating words in a
wordnet graph, we can apply a robust measure of graph affinity to
find the answer.
The immense power of random walks arises from the fact that it

combines two very well studied simple notions of affinity between
graph nodes, namely the graph distance, and the number of paths.
Intuitively, two nodes are similar if they are close by in terms of
distance. Independently, two nodes are more similar if they con-
tain several paths between them. Random walk measures such as
hitting time, commute time, or personalized PageRank beautifully
capture both of these notions through the simple iterative random
walk process.
Note, however, that computing any of these quantities is a very

computationally expensive process. For example, hitting time is the
expected number of hops in a random walk from a source node be-
fore it reaches a destination node. Given its inherent randomness,
obtaining an expected hitting time fromA toB requires computing
hundreds or thousands of random walks, depending on the density
of the underlying graph. Such costs are obviously intractable for
today’s massive graphs that have millions of nodes and billions of
edges. Assuming the availability of sufficient memory resources,
it takes on the order of minutes to compute shortest path via a
single breadth-first-search (BFS). Computing a single hitting time
on a massive graph can take anywhere from minutes to an hour
or longer. Thus it is unsurprising that random-walk distances are
rarely used in practice.
One approach to addressing the cost of these random-walk dis-

tances is approximation. These provide an attractive cost-benefit
tradeoff for random walk distances, since the ground truth itself is
highly variable. A number of approaches have been proposed to
estimate personalized PageRank (PPR), including methods that use
linear algebraic optimization [18, 8, 38] or Monte Carlo approxi-
mations [13, 3]. Another approach is to estimate the expected val-
ues using matrix computations [40, 6], but those methods can range
from O(n3) to O(log n), and are limited to symmetric metrics, i.e.
commute time, but not hitting time or personalized PageRank.
More recently, researchers have proposed the use of embedding

graphs into geometric spaces as an alternative approach to captur-
ing and estimating graph distances in near-constant time [47, 48].
These “graph coordinate systems” can accurately estimate node
distances in large undirected graphs, with per-query latency (after

initial pre-processing phase) 5 to 6 orders of magnitude lower than
deterministic alternatives. As an alternative to graphs, geometric
embeddings have the potential to capture and resolve queries for a
variety of distance metrics in large graphs [14, 46].
In this paper, we explore the possibility of using a geometric

space embedding to provide an efficient way to answer queries on
random-walk distances, including commute time, hitting time and
personalized PageRank. We begin by embedding these distances
on a basic graph coordinate system and evaluating its accuracy.
Not surprisingly, a traditional embedding system produces signif-
icant errors when estimating asymmetric distances. Based on our
observations, we design a new graph coordinate system that ex-
plicitly accounts for asymmetry in random walks by capturing an
intuition of graph density on a per-node basis. Extensive experi-
ments on a variety of social graphs show that our embedding can
not only embed asymmetric distance with very high accuracy, but
also significantly improve the accuracy of symmetric metrics. In
addition, we study the extremely high cost of computing the small
sample of ground truth necessary for the embedding, and propose
and evaluate simple techniques that generate ground truth samples
with low computation cost. Finally, we use a small sample of appli-
cation level tests to show that our embeddings enable (previously
intractable) applications based on random walks, and these applica-
tions produce results with very small deviations from results using
ground truth.
To the best of our knowledge, we provide the first general so-

lution to enable the fast computation of graph distance functions
based on random walks. We believe that our results are impact-
ful for two reasons. First, our work makes a number of previously
computationally intractable applications feasible. Second, by re-
turning results to these queries in near real-time, we encourage
researchers to further unlock their potential, by discovering new
applications relying on them as basic primitives.

2. BACKGROUND AND CONTEXT
The goal of our work is to design a scalable system that quickly

computes random-walk distances between any two nodes in undi-
rected unweighted graphs. As a relatively new application of em-
bedding to graphs, graph coordinate systems (GCS) have shown
promise in estimating node distances and shortest paths in near-
constant time, while demonstrating relatively high accuracy in em-
pirical tests. Our hope is to expand on the general approach of
embedding to geometric coordinates, but to do so in the context of
both symmetric and asymmetric random-walk distances.
In this section, we first define in detail random-walk distances

in undirected unweighted graphs, including hitting time, commute
time and personalized PageRank. We then give background on the
concept of graph coordinate systems, and identify the challenges
that arise when this approach is applied to random-walk distances.

2.1 Random-Walk Based Distances
In undirected unweighted graphs, a random walk is a sequence

of random steps. Consider an undirected unweighted graphG, with
vertices V and edgesE. Starting from node v0, a random walk inG
chooses its next destination: if we are at node vk at the kth step, we
randomly select a neighbor vk+1 of vk with probability 1/d(vk) as
the destination of the (k + 1)th step, where d(vk) is the degree of
node vk . Thus, the sequence of random nodes vk(k = 0, 1, 2, · · ·)
is a random walk from node v0 in Graph G.
There are a number of distance measures based on randomwalks.

Our work focuses on the three most popular random-walk distances,
Hitting Time, Commute Time and Personalized PageRank (PPR).

Hitting Time. Hitting time from node i to node j is the ex-
pected number of hops in a random walk starting from node i be-
fore it reaches node j for the first time. Since graph density and
local structure around nodes i and j are different, hitting time from
node i to node j is likely different from the hitting time from node
j to node i. In other words, hitting time is asymmetric.
Commute Time. Commute time between two nodes i and j
is the expected number of random walk hops from node i to j and
then back to node i. Thus commute time is the sum of two hitting
time distances, one from i to j and one from j to i. Thus, commute
time is symmetric.
Personalized PageRank. Personalized PageRank (PPR) [21,
18] from node i to node j is the likelihood that a random walk
starting from node i ends at node j with the reset probability α. In
a random walk with reset, the reset probability α is the probability
that at each hop, a node v can choose to selects itself as its next
random walk step (i.e. resets its walk). In each step at node vk,
the random walk selects the current node vk as the next step with
reset probability α, and uniformly selects one of its neighbors with
probability 1− α. By startingm such random walks originating at
node i, we count the number of random walks ending at node j on
the T th step (mj), where T is a parameter chosen to capture the
number of hops before the random walk probability converges for
any given destination. PPR from node i to j is the ratiomj/m.
All three distance measures have been used extensively in differ-

ent contexts. Despite the simplicity, these measures are very pow-
erful because they are able to incorporate two fundamental proper-
ties behind the affinity of pairs of nodes in graphs - specifically the
graph distance, as well as the number of paths. In particular, the
similarity between two nodes based on any of the three aforemen-
tioned random walk measures is likely to be higher if the two nodes
are closer in the graph distance sense. Alternatively, given the same
graph distance between two nodes, at a very high level, the random-
walk based similarities are likely to be higher when multiple paths
exist between these nodes. From an application standpoint, no-
tice that any path between two nodes is a weak signal of similarity,
and with multiple paths, any such reasonable notion of similarity
should be reinforced. Similarly, a short path means the two nodes
are close/similar.

2.2 Graph Coordinate Systems
Graph coordinate systems (GCS) [47, 48] are designed to accu-

rately and efficiently estimate shortest path distances between node
pairs in large graphs. They capture complex graph structure by
embedding node distance relationships into a geometric space, e.g.
Euclidean space in Orion [47] and Hyperbolic space in Rigel [48].
Each node is represented by a set of coordinates such that geomet-
ric distances between any nodes can preserve their real shortest path
lengths in the actual graph. For example in Figure 1, the shortest
path between node A and E is 3 in the graph and the Euclidean
distance calculated from their embedded coordinates is 2.9.
Before answering queries, graph coordinate systems must first

embed the graph into a geometric space. This is done via a central-
ized landmark approach, where a relatively small number (L("
n)) of landmark nodes are first embedded. Using a global opti-
mization algorithm, the system calculates coordinates of landmark
nodes in the geometric space by matching their geometric distances
to their real pair-wise shortest path distances. Once landmarks are
properly embedded, each graph node is embedded in the geomet-
ric space so that its geometric distances to a subset of landmarks,
k(< L) landmarks, are as close as possible to its real shortest path
to those landmarks in the graph. [47, 48] apply Simplex Down-
hill algorithm [30] to optimize node coordinates. After all nodes

Shortest
 path

Edge

Embedding

d’(A,E)=2.9d(A,E)=3

E F

D

y

x

BC

A

B
C

A

F E

D

Figure 1: An example to map graph into a Euclidean space.
The shortest path between node A and E is 3 hops in the left
graph and the estimated Euclidean distance between them is
2.9 hops in the right graph.

are embedded into the space, distances between any pair of nodes
can be approximated in constant time by computing their geometric
distances.
The landmark approach is ideal for graph coordinate systems be-

cause it minimizes the number of Breadth-first-search (BFS) oper-
ations necessary. A graph embedding using a pairwise or decen-
tralized scheme would require O(n2) computations, for a network
of n nodes. In contrast, a landmark scheme with L landmarks only
requires O(L) BFS operations to measure distances between all
nodes and landmarks. Landmark embedding can be further simpli-
fied by breaking the landmark nodes into two subsets, and using
one subset as anchors for a larger second subset.
The strength of graph coordinate system comes from that once

a graph is embedded, a GCS can resolve shortest path queries in
constant time using the embedded coordinates, i.e. O(1), inde-
pendent of the size of the graph. [47, 48] show, on average, their
system responses each query in microseconds (µs), which is orders
of magnitude smaller than basic BFS. This is highly attractive for
applications like network centrality computation or social-distance
based ranking, each of which relies on resolving a large number of
shortest path distance queries. Rigel [48] also shows that the initial
graph embedding process can scale by distributing the preprocess-
ing across distributed machines with near linear speedup.

2.3 Prior Art and Challenges
There are two classes of existing techniques to compute random-

walk based distances. The first class uses linear algebraic tech-
niques, such as computing pseudo-inverse of the Laplacian matrix
of the graph for commute time [36] and Power Iteration [21] for
PageRank. The second class of approaches is simulating random
walk via a Monte Carlo method [13, 3]. The basic idea is to di-
rectly emulate random walks on a graph and repeat random walks
for enough iterations to determine the expected distance.
However, both approaches are still quite time consuming. Take

commute time for example. In a graph of n nodes, standard inverse
matrix computation for commute time requires O(n3) time, which
falls far short of scaling to large graphs. The Monte Carlo method
is also intractable, and cannot scale with graph size. Our own ex-
periments show that it can take more than 15 minutes to compute
commute time between a single pair of nodes in a graph of 250K
nodes. While numerous optimizations have been proposed to im-
prove these techniques, it is clear that providing fast answers to
queries on million node graphs will require a dramatically different
approach.
Embedding Random-Walk Distances. Our goal is to test the
feasibility of using geometric space embeddings to capture random-

walk distances. Specifically, we look for a graph coordinate system
that maps nodes in a graph into a geometric space of fixed dimen-
sion, where distances between nodes represent estimated values of
expected random-walk distances. Using a node’s coordinate po-
sition in the space, we can accurately estimate the corresponding
random-walk distances between any two nodes in constant time.
A naive solution is to apply the design of current graph coordi-

nate systems, and substitute random-walk based distances for short-
est path distances. However, two key properties of random-walk
based distances pose real challenges and prevent us from using this
naive approach. We summarize these two issues below, and further
explore them in Section 3.
Asymmetry. The first and most critical difference between random-

walk distances and shortest path distances is symmetry. In undi-
rected graphs, shortest path length is symmetric by definition. In
contrast, hitting time and PPR are asymmetric [26, 18], i.e. distance
(either hitting time or PPR) from node A to B may not be the same
as the distance in the reverse direction. In addition, distances in
any geometric space, e.g. Euclidean space or Hyperbolic space, are
symmetric. This leads us to believe that embedding random-walk
distances on coordinate spaces will produce significant errors.
Cost of precomputation. Second, we note that it takes signifi-

cantly more time to obtain ground truth of random-walk based dis-
tances, especially for hitting time and commute time. Depending
on graph structure, arriving at a stable expected value for random
walks can require thousands of independent random walks. For
instance, using a commodity server with sufficient main-memory,
computing expected hitting time from one landmark node to all
nodes in a 250K-node social network graph takes 60 days. In con-
trast, it takes only 2 hours to compute the shortest path distance
(using BFS) between 100 landmarks and all nodes in the graph.
Therefore, to make any embedding system practical for random-
walk distances, we also need to address the issue of efficiently ob-
taining ground truth. We address this issue further in Section 4.3.

3. ANAIVERANDOMWALKEMBEDDING
We begin by examining whether we can simply apply existing

graph coordinate systems to embed random-walk based distances.
Using 10 real graphs and 1 synthetic planar graph, we have exam-
ined the embedding accuracy of two existing graph coordinate sys-
tems, Orion [47] and Rigel [48]. These results shed light on what
changes we need to make to build a more accurate system for esti-
mating random-walk distances. Our results show that Orion, a Eu-
clidean space coordinate system, consistently outperforms Rigel,
a Hyperbolic space coordinate system.1 Therefore, we limit our-
selves to tests on Orion in the rest of this paper.

3.1 Experiment Setup
We implemented Orion to embed random-walk based distances

into a Euclidean space. Like [47], we select L = 100 random
nodes as landmarks2, and randomly choose l = 16 of these land-
marks as the initial set. For each node, we use k = 16 landmarks
to compute their coordinates. By default, we use coordinates of
10 dimensions, because further increasing the dimension size of-
fers little improvement in embedding accuracy but introduces extra
computation overhead.
1The Hyperbolic space is good at capturing distance metrics with
small variance, e.g. shortest path, but loses accuracy when model-
ing high-variance metrics like hitting time and commute time.
2While Orion proposed three choices of landmark selection (de-
scending node degree, descending node degree with separation, and
random), our experiments show that randomly selecting landmarks
achieves the highest accuracy.

Ground Truth Computation. One challenging component
of the embedding process is computing ground truth values of the
random-walk distances between landmarks and regular nodes. Our
solution in these experiments is brute force search, where we simu-
late multi-round random walks on each social graph and derive the
mean values. Because computing ground truth for all node pairs is
extremely costly3, we randomly select 2000 nodes to embed (after
embedding all the landmark nodes).
Hitting time computation. The hitting time from node i to j,

H(i, j), is the expected number of random walk hops from i to j.
To compute H(i, j), we simulate a random walk starting from i
until it reaches j for the first time, repeat the process N times, and
compute the average of the hop count from each walk. We choose
N = 2000 because our experiments show that the average hop
count stabilizes at this value, for all graphs in Table 1.
Commute time computation. Once we measure the hitting time

from node i to node j and the hitting time in the other direction,
i.e. H(i, j) and H(j, i), we can easily derive the commute time
between node i and j, C(i, j) = H(i, j) +H(j, i).
PPR computation. We initiate a random walk from node i with

reset probability α, terminate the walk at the T th step, and repeat
the process forN times. We then computemj , the number of times
that a node j is visited at the T th step across all N rounds. The
PPR from node i to j is computed as PPR(i, j) = mj/N . Our
experiments use α = 0.15, the common choice of PPR compu-
tations [18, 5], and T = log n/α because prior work proved that
PageRank converges in O(log n/α) hops [11]. We also found that
N = 8000 is adequate to get a stable PPR estimation.
Unlike hitting time and commute time, PPR cannot be directly

embedded using graph coordinates. This is because of two reasons.
First, the embedding process assumes when two nodes are close
to each other in the embedded graph, their actual distance is also
small. This is true for shortest path, hitting time and commute time,
but not for PPR. The larger the PPR value, the more similar (and
thus closer) the two nodes. Second, the value of PPR is always
between 0 and 1, a range that cannot be accurately captured by
Orion. We address these two issues by embedding an alternative
metric (1− PPR(i, j)) · 106 instead of PPR(i, j) itself.
Datasets and Accuracy Measures. Using 10 real graphs and
1 synthetic graph, we evaluate the accuracy of random-walk dis-
tances estimated by Orion. Listed in Table 1, Monterey Bay, Santa
Barbara and Egypt graphs are social graphs collected from three re-
gional networks of Facebook in 2008 [41], with sizes ranging from
6K nodes and 31K edges to 246K nodes and 1M edges. The next
7 graphs are from various networks, including a collaboration net-
work graph from arXiv [24], an Internet autonomous systems (AS)
graph from CAIDA [23], a citation graph from arXiv [23], a snap-
shot of the Gnutella peer-to-peer file sharing network [23], a mea-
sured Email network graph of a large European research institu-
tion [24], an Amazon product co-purchasing graph [22], and a web
graph from Notre Dame [1]. Finally, as a representative of a planar
graph, we add a synthetic graph generated by the Dorogovtsev-
Goltsev-Mendes Internet model [12]. We choose these graphs be-
cause they can demonstrate the scalability and applicability of graph
coordinate systems across a variety of graph topologies.
We evaluate the accuracy of random-walk distance estimation

using the notion of relative error, the same one used by [47]. For
each node pair, the relative error is the absolute difference between
the geometric node distance (i.e. the estimated random-walk dis-

3Computing the ground truth random walk between a single land-
mark and all non-landmark nodes takes up to 60 days on a com-
modity server.

Networks # of Nodes # of Edges Avg. Degree
MontereyBay 6,115 31,374 10.26
Santa Barbara 26,566 226,566 17.05

Egypt 246,692 1,618,085 13.12
Collaboration 21,363 91,342 8.55

AS 26,475 533,831 40.33
Citation 34,401 420,828 24.47
P2P 62,562 147,878 4.73
Email 224,832 339,925 3.02
Amazon 262,111 899,792 6.87
Web 325,729 1,117,563 6.86
Planar 265,722 531,441 3.99

Table 1: Datasets used in our experiments.

tance) and the ground truth random-walk distance, normalized by
the ground truth value. A relative error of 0 means the estimated
random-walk distance matches the ground truth value perfectly.
Because computing ground truth for all node pairs is extremely
costly and time-consuming, we randomly sample 1000 node pairs
out of the 2000 embedded nodes, and examine their random-walk
distance estimations.

3.2 Accuracy Results
Commute Time. Figure 2(a) shows the CDF of relative er-
ror when we embed commute time using Orion in all three social
graphs. For all three graphs, the relative error is low and follows
a similar distribution. For Santa Barbara and Monterey Bay, 90%
of node pairs achieve less than 0.3 relative error, and for Egypt, the
value increases slightly to 0.4. The results measured on the two
sparse graphs are shown in Figure 3(a), similar to the results in so-
cial networks. These are similar to the accuracy result of shortest
path embedding [47].
Hitting Time. The accuracy of the embedded hitting time in
social networks is shown in Figure 2(b). Again the results for all
three social graphs are similar. But compared to commute time,
the relative error is significantly larger. The majority of node pairs
experience at least 0.7 relative error, and only 15% of node pairs
have relative error lower than 0.3. Similarly, we find the accuracy of
hitting time embedding in two sparse graphs are much worse than
their commute time embedding, which is shown in Figure 3(b).
PPR Embedding. The performance of PPR embedding in so-
cial graphs, shown in Figure 2(c), is similar to that of commute
time. 90% of node pairs experience 0.35 and less relative error.
Again, the two sparse graphs produce almost the same results in
Figure 3(b).

3.3 Key Insights
In the following, we discuss the key insights observed from our

experiments. Our first observation is that Orion, while originally
designed to handle shortest path, can also embed commute time at
a reasonable accuracy. This is because like shortest path, commute
time is a symmetric metric, i.e. the distance from node i to j equals
to the distance from j to i. Such symmetric values can be prop-
erly captured by Euclidean distances. We observe that there is long
tail in the relative error CDF of commute time embedding. This is
caused by low degree nodes, because Orion can not accurately po-
sition low degree nodes that have poor connections to the majority
of graph.
Our second observation is that hitting time cannot be properly

embedded by Orion because of its asymmetry. Specifically, if the
local graph structure around a node i is very different from that

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Monterey Bay
Santa Barbara

Egypt

(a) Commute Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Santa Barbara
Monterey Bay

Egypt

(b) Hitting Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Monterey Bay
Egypt

Santa Barbara

(c) PPR

Figure 2: Relative error CDF of random-walk distances embedding using Orion in social graphs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Planar
Email

(a) Commute Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Planar
Email

(b) Hitting Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

Planar
Email

(c) PPR

Figure 3: Relative error CDF of random-walk distances embedding using Orion in sparse graphs

of a node j, e.g. i connects to a large group of local nodes while
j only has a few neighbors, the hitting time from i to j will dif-
fer significantly from the hitting time from j to i. To quantify
the degree of such asymmetry, we compute for each node pair
(i, j), the relative difference of the hitting times in both directions:
γ = |H(i,j)−H(j,i)|

max(H(i,j),H(j,i)) . The CDF of the γ value is shown in Fig-
ure 4 for the 1000 randomly sampled node pairs. The majority of
the node pairs (70%+) have γ > 0.5. This confirms that hitting
time is highly asymmetric, and thus cannot be properly captured
by Orion’s Euclidean distance measurement that is symmetric.
Finally, an interesting observation is that while PPR is also an

asymmetric metric, its embedding error is similar to that of com-
mute time and much better than that of hitting time. This is be-
cause an inherent artifact of the PPR computations. Our experi-
ments show that the majority of PPR values are zeros. In particular,
for the three social graphs tested, 63.6% node pairs have zero PPR
values in both directions, while for the rest, the degree of asymme-
try is less than 0.006. This means that PPR essentially becomes a
symmetric metric, and explains why the embedding performance is
closer to that of commute time.
Summary of Observations. As an initial effort, we apply
Orion, a graph coordinate system developed for shortest path esti-
mation, to embed three random-walk distances (commute time, hit-
ting time and PPR). Experiments on three real social graphs show
that Orion embeds commute time and PPR at a reasonable accu-
racy similar to that of shortest path, but produces large errors on
asymmetric distances like hitting time. This motivates us to search
for a new graph coordinate system that can properly embed both
symmetric and asymmetric distances.

4. ANEWGRAPHCOORDINATESYSTEM
Our experiments in Section 3 show that a traditional embed-

ding system produces significant errors when estimating random
walk distances, especially asymmetric distances. In this section,
we present Leo, a new graph coordinate system that explicitly ac-
counts for asymmetry in random walks. The intuition behind our

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Asymmetry

Egypt
Monterey Bay

Santa Barbara

Figure 4: CDF of the hitting time asymmetry, quantified by
the normalized difference between hitting times in two direc-
tions: γ = |H(i,j)−H(j,i)|

max(H(i,j),H(j,i)) . More than 70% sampled node
pairs have more than 0.5 normalized difference, indicating that
hitting time is an asymmetric measure.

design is that asymmetry in random walks is caused by distinct “lo-
cal” graph density around each node, and by capturing such effect
on a per-node basis, one can effectively model random walks via
graph coordinates.
Our discussion on Leo begins by analyzing the cause of asym-

metry in hitting time based random walks, where we illustrate the
significant effect of local graph density. We then present a new
coordinate space combining Euclidean coordinates and heights to
capture such effect on a per-node basis, followed by a description
of the overall embedding process.

4.1 A Closer Look at Hitting Time
To illustrate the cause of asymmetry in hitting times, we consider

a toy example using random walks between node A and B in Fig-
ure 5. In this example, an arrow from node i to node j represents a
random walk step from i to j, and the number k on top of the arrow
represents the sequential order of the current random walk, i.e. the
kth step.
Figure 5(a) shows an instance of random walk from node A to

 B C

 F

 E

 D

 G I

 J

 A

 H

 1

2

34

5

67

8

Incoming local structure
of node B

Global Structure
Outgoing local structure

of node A

Random Walk from node A to node B

(a) Random Walk from Node A to B

 B C

 F

 E

 D

 G I

 J

 A

 H

1

2

3

4 5

6

Outgoing local structure
of node B

Global Structure
Incoming local structure

of node A

Random Walk from node B to node A

(b) Random Walk from Node B to A

Figure 5: Example of a random walk from nodeA to B in (a) and a random walk from node B to A in (b).

B. Since A’s neighborhood is tightly connected, i.e. a clique con-
sisting ofA,H , I and J , it takes 5 hops to leaveA’s local structure
and reach node C. The subsequent random walk takes 2 hops to
reach node B’s local neighborhood E, and another 1 hop to reach
B. In total, the random walk takes 8 hops. Figure 5(b) illustrates
the random walk from node B to A. Here node B only has two
neighbors, and the current instance of random walk takes 3 hops to
leave B’s local neighborhood. It takes another 2 hops to reach C,
and another extra hop to reach A. In total this random walk from
B to A only requires 6 hops, 2 hops less than that from A to B.
This example also sheds light on one potential view of why ran-

dom walks are asymmetric. We can think of random walks as
traversing through three abstract “regions” of the graph: first exit-
ing an outgoing local structure near the source node, moving across
a backbone global structure in the graph, and finally finding the
destination node inside its an incoming local structure. Our intu-
ition into the asymmetry of hitting time is that random walk dis-
tances are largely dominated by a node’s incoming and outgoing
local structures, while traversal across the global graph structure
can be thought of as fairly symmetric. For example, both node A
and B’s incoming (Figure 5(b)) and outgoing (Figure 5(a)) local
structures are significantly different, leading to the large difference
of 2 hops between their corresponding average random walk dis-
tances. Clearly, these differences cannot be captured by traditional
embeddings.

4.2 Per-Node Height Vectors
The above intuition implies that we need a graph coordinate sys-

tem with three components, two asymmetric components that cap-
ture each node’s local structure for outgoing and incoming random
walks, and a symmetric component that captures the global struc-
ture. Coordinate systems (i.e. Euclidean, Hyperbolic or Spherical
spaces) can easily capture the symmetric component. Our task is to
identify and model the remaining two directional asymmetric com-
ponents. For this, we introduce directional height vectors.
Node Heights. The idea of an always present, per node cost to
an embedding was introduced in Vivaldi [10], a network coordinate
system that used a single per-node cost to capture congestion delays
at the edge routers of the network. In our case, the new parameters
represent an abstract view of local graph density near the source
and destination nodes. More importantly, the directionality of our
distances dictates that we use two distinct height vectors for each
node: hin(i) and hout(i) (hin(i) ≥ 0, hout(i) ≥ 0). As we will
show later, the values of these parameters can vary significantly
based on the overall topological properties of the graph.
Our embedding system for random walks computes predicted

distances by combining two appropriate height vectors with an undi-
rected distance captured by the baseline embedding space. As shown

A B

h
Out

= 6.2h
in

= 8.1 h
in

= 7.0 h
Out

= 1.3

e= 5.5

d(A,B)=6.2+5.5+7.0=18.7

d(B,A)=1.3+5.5+8.1=14.9

Figure 6: Two nodes in our new coordinate space composed of
the 2D Euclidean space and two heights. The vertical lines rep-
resent height vectors, and the arrows mark the directionality
(incoming/outgoing). The line e represents the distance in the
Euclidean space, and the red dashes represent the predicted
random walk distances produced by our system. Note that a
node’s outgoing vector is typically smaller than its incoming
vector.

in Figure 6, a random walk from node A toB will first exit its local
structure with outgoing height hout(i), followed by the core global
structure represented by an Euclidean distance between A and B,
and finally through the local structure of j with incoming height
hin(j). The total expected random walk length, i.e. predicted hit-
ting time, is the sum of the Euclidean distance and two heights,
hout(i) and hin(j):

d(A,B) = hout(A) +

√

√

√

√

n
∑

i=1

(xi(A)− xi(B))2 + hin(B) (1)

where the vector {xi}
n
i=1 represents the n-dimension Euclidean

coordinates of node i.
The example in Figure 6 shows a basic 2-dimensional Euclidean

plane coordinate space. The heights of node A are hin = 8.1 and
hout = 6.2, and those for node B are hin = 7.0 and hout =
1.3. Their embedded distance in the 2D Euclidean plane is 5.5.
We compute the random walk distance from node A to B (the top
dash line in Figure 6), d(A,B), by summing node A’s hout, the
2D Euclidean distance and node B’s hin, which is 18.7 in total.
Similarly, the distance from node B to node A (the bottom dash
line) is the sum of the Euclidean distance and node B’s hout and
node A’s hin, producing a distance of 14.9.
Embedding Process. By treating the node heights as two extra
components in the coordinate system, Leo uses an embedding pro-
cess similar to prior systems. The main process is driven by opti-
mizing the coordinate positions and height vectors to minimize dis-
tortion between the embedding and the ground truth of the graph.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 60000 120000 180000

CD
F

Height value

houthin

(a) MontereyBay

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2000 4000 6000

CD
F

Height value

houthin

(b) Internet Topology

Figure 7: CDF of hin and hout of two graphs

The key change is that we must compute ground truth in terms of
random walk distances, and use Equation (1) for node distance.
Space Usage. Leo is highly space efficient. Once a graph with
n nodes has been embedded into d-dimension space, we only need
to load the embedded graph coordinates into memory to give fast
responses to queries. Thus, the space usage is O(d× n).
Understanding Height Vectors. Leo’s direction-specific, per-
node height vectors are key to accurately modeling distances in ran-
dom walks. We dig deeper using two examples to better understand
how and why they work for different graph topologies.
We first look at the results of embedding the Monterey Bay Face-

book graph (Table 1). Figure 7(a) plots the CDF of hin(.) and
hout(.) We see that hin varies significantly across nodes, going
as high as more than 150,000. Yet most values of hout are 4-5
orders of magnitude smaller than hin, with the large majority of
them remaining at 0! Small hout values capture the fact that in
the MontereyBay social graph, each node’s local structure is well-
connected to the global structure, thus random walks from a node
can quickly reach the global structure from many points. The ex-
tremely large hin values show that social graphs like Monterey Bay
also have well-connected local structure, where each random hop
toward a specific destination node has a low probability of finding
it. We believe these specific values are ideal for small-world graphs
such as those from social networks.
To test our hypothesis, we introduce a second graph of simi-

lar size to Monterey Bay, but with dramatically different struc-
tural properties. We generate a synthetic Internet-like graph with
6000 nodes and 50,833 edges using the Transit-stub model [45].
Transit-stub networks have a two-level hierarchy: a random graph
emulating the Internet backbone as the top level, and a set of well-
connected random graphs each connecting to a single node in the
backbone as the second level. Here, network diameters can be
high, and the hierarchical topology is opposite of a small-world
social graph. Figure 7(b) shows CDF of height vectors generated
by embedding this graph. Here hout and hin are reasonably sim-
ilar and within a factor of 2 of each other. This confirms our in-
tuition: sparse connections between the backbone and each stub
network increase the costs of finding the exit path to the backbone,
i.e. large hout); dense connections within each local structure (i.e.
large hin).
These examples show how decoupling incoming and outgoing

height vectors allows Leo to successfully adapt to a wide range of
graph structures. The result is a significantly more general model
that will produce accurate results on a variety of graph topologies.
This is the key difference between Leo and a system like Vivaldi.

4.3 Fast Precomputation
As we mentioned earlier, a critical challenge in embedding ran-

dom walk distances is the cost of ground truth computation. When
applying the Orion embedding process, the embedding must make
(2 · L · n) · 2000 pairwise random walks to measure actual hitting

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

No
rm

al
ize

d
co

m
pu

ta
tio

n
tim

e

Percentage of nodes visited (%)

MontereyBay
Santa Barbara

Egypt

Figure 8: Percentage of visited nodes vs. the computation time
of a random walk normalized by the time to visit all nodes.

time (and commute time) between landmarks and non-landmark
nodes. Here L and n are the number of landmarks and graph nodes,
respectively. For a large graph like the Egypt Facebook graph, it
takes around 60 days just to compute the ground truth distances
between a single landmark node and all other nodes.
To address this challenge, we propose a novel precomputation

method that reduces the pairwise random walks to (L+ n) · 2000,
reducing the total embedding time for Egypt from 60 to only 7 days.
Multi-destination Random Walk. The fast precomputation
algorithm is based on a random walk with multiple destinations.
Running such random walk from a node can produce random walk
steps from this node to multiple nodes, which is similar to BFS
algorithm. More specifically, a random walk starting from node
i follows its definition to select its next step. If the random walk
visits a node j for the first time, we record the current walk steps
as one trial for hitting time measurement from node i to node j.
Instead of stopping this random walk as defined hitting time, the
random walk continues and records its current steps when it reaches
a new node for the first time. This random walk can stop when it
visits require number of k nodes or its steps get to the maximum
steps. As a result, one such random walk can measure the steps to
multiple nodes when they are visited for the first time.
Although such random walk with multiple destinations can re-

duce the number of random walks a lot, it is still not scalable to
large graphs if it stops when it visits all graph nodes. Take Egypt
as an example again. One such random walk takes 1.5 minutes
from a node to reach each node in the graph. To get the converged
hitting time from a node, we need to repeat such random walk for
2000 times, which takes 48 hours. To understand this efficiency
of random walk, we plot the percentage of nodes visited by the
random walk vs. the computation time normalized by the time vis-
iting all nodes in Figure 8. We find that 90% of the nodes can be
visited within 10% ∼ 20% of the normalized computation time.
That means in a random walk visiting all nodes, more than 80%
of time is used to visit less than 10% of nodes, which is the main
reason causing high computation cost. Thus, we explore a tradeoff
between efficiency and quantity of visited nodes and find that it is
a better compromise when a random walk visits 90% of nodes.
We run the random walk starting from a node for more times to

make up the 10% not visited nodes. Recall that we measure sta-
ble hitting time from node i to node j by repeating the random
walk from node i to j for 2000 times. Similarly, we have to re-
peat the random walk with multiple destinations for several times
for a reasonable expectation. In addition, since such random walks
have no explicit destinations, we can not promise each visited node
can be visited for 2000 times, which can provide a stable hitting
time, after 2000 times repeating random walks. In other words,
we may need to run such random walks for more than 2000 times.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2000 2500 3000 3500 4000 4500 5000 5500 6000

%
 o

f n
od

es
 w

ith
 h

itt
in

g
tim

e

Number of repeating times

Monterey Bay
Santa Barbara

Egypt

Figure 9: Percentage of nodes with stable hitting time vs. Re-
peating times of random walks

We empirically repeat the random walk starting from a node forN
times, where N is from 2000 times to 6000 times. In Figure 9, we
show the percentage of nodes which are visited for at least 2000
times by random walks when we repeat random walks for different
times. We find that when we repeat random walks for more times,
the percentage of nodes with stable hitting time increases. Specif-
ically, when we repeat the random walk for 2000 times, only 40%
of the nodes get stable hitting time. When the repeating time is
6000 times, 99% of the nodes have stable hitting time. Thus, start-
ing from a node, we repeat the random walks for 6000 times to get
more nodes with stable hitting time.
For the remaining 1% nodes without stable hitting time, we run

simple end-to-end random walks from the source node to it to en-
sure that they are visited for 2000 times. Finally, we can compute
the ground truth of hitting time from one node to all the other nodes
in the graph more efficiently.
In one word, this optimized algorithm works based on random

walks with a soft cutoff. That is, a random walk starting from node
i records the steps to each node that is visited for the first time and
stops when it visits 90% of nodes in the graph. To get stable hitting
time for each visited node, we repeat such random walk for 6000
times. For the remaining nodes which are visited for only k(≤
2000) times, we carry out end-to-end random walks from node i to
it for 2000 − k times to guarantee that it has stable hitting time.
We can directly run this algorithm for each landmark to fast com-

pute the actual hitting time from the landmark to all the nodes. To
compute the ground truth from non-landmarks to landmarks, we
can use this algorithm for each non-landmark with a small modifi-
cation. In detail, since each node only needs to compute the hitting
time to a subset of landmarks, i.e. 16 landmarks in our paper, the
random walk starting from it stops when 16 landmarks are reached.
As a whole, we can efficiently measure the ground truth of hitting
time and commute time for the embedding process using this fast
computation algorithm.

5. PERFORMANCE EVALUATION
In this section, we first understand the performance of Leo in

term of accuracy and speed. Specifically, we investigate the ac-
curacy of random-walk distance estimation using Leo compared
against Orion and study the impact of number of dimensions on its
estimation accuracy. Then, we measure its efficiency by using av-
erage response time for pairwise queries. Second, we examine the
utility of this system in two important applications built on random-
walk distances, i.e search ranking and link prediction.

5.1 Accuracy
Compared to Orion. We examine the accuracy of hitting time,
commute time and PPR embedding on the graphs in Table 1. To

make fair comparison to the accuracy of 10-dimension Orion in
section 3, we use Leo to embed all three distances into a space of
10-dimension Euclidean coordinates plus 2 heights. For simplic-
ity, we call the space of d-dimension Euclidean coordinates plus 2
heights in Leo as a d-dimension Leo. Since hitting time compu-
tation is intractable, we sample 1000 random pairs of nodes from
each graph and measure the actual hitting time, commute time and
PPR between them for comparison. To avoid possible impact of
landmarks on results, we choose the 1000 node pairs randomly
from all non-landmark nodes. We use two metrics to quantify the
accuracy of the embedding system. One is relative error, and the
other is the 90th percentile relative error over all nodes pairs (90%
relative error). Since Leo performs consistently better than Orion,
we focus on the CDF of relative error in Egypt and show the 90%
relative error of all graphs.
Figure 10 shows CDF of relative error of hitting time estimation

using Leo compared to the results from Orion. We find that Leo
can significantly improve the estimation accuracy for hitting time.
Specifically, for 90% of node pairs, the relative error is less than
0.1 using Leo while the relative error of Orion is more than 0.95.
In other word, the accuracy improvement of Leo is 90%.
We plot CDF of relative error of PPR estimation in Figure 11.

Similar to results in Figure 10, it shows that Leo is more accurate in
estimating PPR. For example, for 90% of node pairs in Figure 11,
the relative error of Leo is 0.005. This is much smaller than the
relative error of Orion, i.e. 0.3 ∼ 0.4 for 90% pairs of nodes. The
accuracy in estimating PPR is improved 98% by Leo. Both the
results in Figure 10 and 11 show that the two heights introduced in
Leo can accurately capture the asymmetric random-walk distances.
We also use Leo to embed symmetric commute time and com-

pare its accuracy to the results of Orion in Figure 12. It shows that
Leo significantly outperforms Orion that was designed for symmet-
ric distances. Still for 90% pairs of nodes, Leo produces relative
error 0.2 while the error in Orion is 0.38. Our measurement shows
that low degree nodes tend to have large heights while high degree
nodes tend to have small heights. This means that our heights can
help to capture the local structure around nodes which have poor
connection to the core of the graph. Thus, Leo can also capture
symmetric distances more accurately than Orion.
We show the 90% relative error of 10-dimension Leo and 10-

dimension Orion over all graphs in Table 2. Leo is consistently
more accurate than Orion across all graphs and all metrics. For hit-
ting time, the accuracy is improved by 67%−94% by Leo. Among
all graphs, we notice that the 90% relative errors of three sparse
graphs, i.e. Planar, Email and Amazon, are slightly higher. Their
much lower density means random walks pay a lower price both
exiting their local cliques and trying to find their destination nodes.
Not surprisingly, our results show that the symmetric global struc-
tures make up a much bigger component of the total random walk
distance in these graphs. The higher relative errors likely come
from estimation errors in the symmetric global distances. For PPR,
we find that Leo improves the accuracy 98%− 99% for all graphs.
For symmetric commute time, Leo also produces consistently bet-
ter accuracy for all graphs, by 25% − 44% compared to Orion.
Impact of dimensionality. We also study how the number of
dimensions used in the embedding impacts the accuracy of random-
walk distance estimation. We vary the dimensions of the Euclidean
coordinates from 0 to 10. A 0-dimension space in our system
means that no Euclidean coordinates are used for embedding the
global structure component, and we only use two heights to repre-
sent a node’s local structure. Since it is symmetric, the accuracy
of commute time embedding increases as the embedding dimen-
sion increases. In addition, the number of dimensions has no sig-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

10D Leo
10D Orion

Figure 10: Relative error CDF of hitting
time embedding in Egypt using 10D Leo vs.
10D Orion.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

10D Leo
10D Orion

Figure 11: Relative error CDF of PPR em-
bedding in Egypt using 10D Leo vs. 10D
Orion.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

10D Leo
10D Orion

Figure 12: Relative error CDF of Commute
Time embedding in Egypt using 10D Leo vs.
10D Orion.

Metric System MontereyBay SB Egypt Collab AS Citation P2P Email Amazon Web Planar
Hitting
Time

Orion 0.970 0.919 0.977 0.988 0.971 0.962 0.914 0.987 0.945 0.956 0.969
Leo 0.119 0.058 0.100 0.121 0.084 0.058 0.100 0.161 0.238 0.058 0.322

PPR Orion 0.307 0.318 0.323 0.314 0.331 0.300 0.342 0.351 0.342 0.322 0.354
Leo 0.004 0.006 0.003 0.004 0.004 0.005 0.006 0.003 0.004 0.005 0.006

Commute
Time

Orion 0.311 0.333 0.383 0.352 0.325 0.341 0.301 0.311 0.362 0.381 0.375
Leo 0.211 0.244 0.214 0.242 0.232 0.199 0.205 0.211 0.223 0.214 0.283

Table 2: 90th percentile relative errors for Hitting time, PPR and Commute time (Leo vs. Orion w/ 10 dimensions)

nificant impact on PPR accuracy. Thus we omit those plots for
brevity and instead focus on the hitting time results. For clarity,
we show the embedding accuracy using 0-dimension Leo and 10-
dimension Leo. Figure 13(a) shows the results of hitting time in
Egypt to demonstrate the impact. We find that the accuracy of
0-dimension Leo embedding is similar to than 10-dimension Leo
embedding. This indicates that the asymmetric local structure of
Egypt graph dominates the total random walk distance. In other
words, two heights are enough to accurately capture the hitting time
in the Egypt graph. In fact, we found this to be consistently true for
our small-world and high density graphs, including the other two
social graphs.
However, the results in our sparser, more hierarchical graphs

look quite different. These include the Planar, Email and Amazon
graphs. Figure 13(b) shows that 10-dimension Leo embedding of
planar graph is more accurate than its 0-dimension Leo embedding.
For example, for 90% nodes, the relative error in 10-dimension
embedding space is 0.3, which is half of the error in 0-dimension
space. We observe the same trend in the other three graphs and
show the results of Email graph in Figure 13(c). Both results show
that the symmetric component in the design of Leo, i.e. the Eu-
clidean coordinate in Equation 1, is necessary, especially as the
symmetric global structure of network increases. Again, this vali-
dates our hypothesis that the less dense a network is, the lower the
cost of exiting local subgraphs and finding destination nodes. Thus
the relative cost of our directional height vectors decreases, and the
symmetric component grows in importance.

5.2 Embedding and Query Performance
We study the efficiency of our embedding system in this section,

including up-front bootstrap costs and average response time for a
query. To evaluate the bootstrap time, we measure results for both a
single thread instance and a distributed version parallelized across
100 servers. All experiments are measured on a 2Ghz, 8-core Intel
Xeon machine with 192GB RAM, and all graphs are embedded
into a 10-dimension Leo using 2 height vectors per-node. We show
computation time on the largest three real graphs in Table 1, i.e.
Egypt, Amazon and Web graphs.
The bootstrap process of Leo includes two phases. The first

phase is the precomputation phase, which is to compute the actual

distances between landmarks and non-landmarks. We apply our
proposed fast precomputation algorithm to compute hitting time
and commute time in this phase. The second phase is to embed
the random walk distances into a low-dimension space. We mea-
sure the computation time of the precomputation phase and embed-
ding the graph into a 10-dimension space using one single thread.
To minimize the bootstrap time, we then parallelize the bootstrap
across 100 servers and use the longest computation time of the 100
servers as the parallel bootstrap time.
We show the bootstrap time for hitting time, commute time and

PPR using one single thread in Table 3. Since the commute time
between node i and node j is the sum of hitting time from node i
to j and hitting time for the reverse direction, the computation time
of commute time between landmarks and non landmarks is equal
to the time to compute the ground truth of hitting time. Since the
maximum random walk hops for PPR is log(n)/α, much smaller
than the network size, its computation time is much faster than hit-
ting time. For each graph, we find that the majority of bootstrap
time is used to measure the ground truth between landmarks and
non-landmarks. For example, to embed hitting time in Egypt, the
precomputation for hitting time requires 168 hours while the em-
bedding time is around 2 hours using one single thread.
We parallelize the bootstrap across 100 servers to reduce the

bootstrap time, and results are shown in Table 3. Since the pre-
computation process is embarrassingly parallel, we do achieve very
high speedups (90x for hitting time and commute time, and 70x
for PPR). Since landmarks can only be embedded by one single
thread, the parallel embedding time is the sum of landmark embed-
ding time and non-landmark embedding time on the slowest server.
Table 3 shows that parallelizing embedding reduce the time taken
from around 2 hours to less than 10 minutes for our largest graphs.
Next, we measure the average per-query response time for Leo,

Orion, and the traditional Monte Carlo measurement method. Av-
erage response time is defined as the average time to compute the
expected or stable random walk distance for a node pair. We av-
erage the computation time across 1000 random pairs of nodes.
Table 3 shows the average response time using Leo, Orion, and
the average response time to compute ground truth using the tra-
ditional method. As expected, response time on Leo is constant
for different graph sizes, and is several orders of magnitude faster

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

0D Leo
10D Leo

(a) Egypt Graph

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

10D Leo
0D Leo

(b) Planar Graph

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CD
F

(%
)

Relative Error

10D Leo
0D Leo

(c) Email Graph

Figure 13: Impact of embedding dimension on the accuracy of hitting time.

than traditional methods. For example, the time to estimate hit-
ting time using Leo is 0.008ms (8µs), 8 orders of magnitude faster
than the time required to compute the ground truth, ∼ 10 minutes.
As expected, Table 3 also confirms that per-query response times
on Leo and Orion are essentially identical. Once the upfront boot-
strap phase is complete, Leo’s response times of 8 microseconds
for hitting time, PPR, and commute time queries make it more than
capable of handling real-time queries on large graphs.

5.3 Applications
Now, we evaluate the utility of graph coordinate systems at the

application level. We apply our embedding system into two popular
applications, search ranking and link prediction. The two applica-
tions are built on expensive random walk distances, but are useful
in practical search engines and social network analysis. Our exper-
iments show that using graph coordinate systems in these applica-
tions can produce answers that closely approximate results derived
from measured (ground-truth) random walk distances4.
Search ranking. Ranking search results or entities based on
their relevance is a fundamental problem in search engines [8] and
recommendation systems [7]. For example, Google might return
thousands of answers for the query “publications about social net-
work published in 2012.” For a better user experience, Google
ranks the returned results based on the relevance metrics such that
the most wanted results by the user should be prioritized. Among
the metrics to quantify relevance, random walk distance is one of
the most important and widely used metrics [8, 7, 6].
We implement a search ranking application to evaluate the im-

pact of Leo. We choose a random node i to send out a query for
whichN answers are returned. Here, each answer is represented by
a node in the graph. We then measure the random walk distances
from node i to each node j in the set of N nodes. Finally, we rank
the N nodes based their distances to node i and select the top K
nodes as the best results for the query. We separately use commute
time, hitting time and PPR as random walk distances in the rank-
ing. When using commute or hitting time, we rank the result in an
increasing order such that results with low commute time or hitting
time are in top positions. In contrast, using PPR, we rank the results
in descending order and the topK nodes have the highest PPR.
In our experiment, when a node sends out a query, N = 2000

random nodes return answers. We rank them using their distances
to the query origin. Finally, we return the top K = 50, 100, 1000
answers, which is corresponding the top 5% ∼ 50% answers. We
repeat this experiment 2000 times. Each time we choose a random
node to generate a query and rank the nodes using commute time,
hitting time and PPR independently. For each random walk dis-
tance, we get two sets of top K nodes. One set is generated using
measured actual distance and the other set is based on the distances
4We use Leo with 10 dimensions.

estimated by Leo. We count the amount of overlap between the top
K nodes in the two sets. We use the ratio of the number of over-
lapping nodes to the total number of top K nodes to quantify the
accuracy. All our experiment is measured on the three real social
graphs in Table 1.
We plot the results of hitting time, commute time and PPR in Fig-

ure 14. It shows that for all three distances, our system can more
accurately approximate the ground truth as K is larger. For exam-
ple, using commute time in Egypt graph, the accuracy increases
from 70% to more than 80% when K increases from 500 to 1000.
Link prediction. Social network is a network with high dynam-
ics. The addition of edges is one of the main reasons to cause the
frequent changes in network. Predicting link creation in the future
is one important problem for understanding network evolution and
predicting network growth. [25] shows that node structure similar-
ity in a network can be used to predict links. This paper uses several
metrics to quantify nodes similarity. Among them, commute time,
hitting time and PPR are three important metrics with high accu-
racy. However, the computation of these similarity metrics is very
expensive. This motivates several studies [37, 39] to accelerate the
random walk distance estimation and is one important application
to evaluate the accuracy of the estimation. Thus, we use our sys-
tem to estimate random walk distances to predict future links and
compare the predicting accuracy to the accuracy generated by the
actual distances. Again, we separately use hitting time, commute
time and PPR in link prediction.
Our link prediction experiment is similar to [37]. We delete 10%

random edges from each graph G for prediction, which results in a
new graph G′. We test how accuracy of our system is in predict-
ing the deleted 10% edges. Since measuring the actual distances
for all nodes pairs as ground truth is costly in term of computation
time, we only consider all pairs of nodes that have edges deleted as
potential edges. Then we rank all potential edges based distances
between their two endpoints in graph G′. Similar to search rank-
ing, we rank commute time and hitting time in an increasing order
while rank PPR in a descending order. We choose top M pairs of
nodes in the ranked edge list, whereM is the exact number of the
10% deleted edges in the graph. Again, we can have two sets of
top M results using actual measured distances and estimated dis-
tances from Leo for each distance metric. For each set, we count
how many of edges, i.e. node pairs, in this set overlap with the
actual deleted edges and use the ratio of the overlapping edges to
the total M edges as the accuracy metric. Thus, we can compare
the prediction accuracy using Leo to the prediction accuracy using
actual distances.
We run our experiment on the three real social graphs and show

the results of the three random-walk distances in Table 4. For each
metric, we find that the prediction accuracy of Leo is quite similar
to the accuracy using actual distances. For example, in Egypt, using

Metric Graphs One-thread Bootstrap (hours) Parallel Bootstrap (hours) Per-query response (ms)
Precomputation Embedding Precomputation Embedding Ground Truth Orion Leo

Hitting
Time

Egypt 168.12 1.59 1.88 0.12 566,359 0.0089 0.0089
Amazon 157.23 1.93 1.67 0.13 162.08 0.0080 0.0085
Web 235.12 2.11 2.39 0.15 1463.99 0.0084 0.0081

PPR
Egypt 11.20 1.63 0.16 0.15 17.5 0.0082 0.0087
Amazon 12.09 1.94 0.17 0.14 18.2 0.0085 0.0088
Web 12.15 2.12 0.17 0.15 17.9 0.0087 0.0085

Commute
Time

Egypt 168.12 1.60 1.88 0.12 1,132,719 0.0082 0.0081
Amazon 157.23 2.03 1.67 0.12 345.11 0.0082 0.0080
Web 235.12 2.09 2.39 0.14 3,012 0.0083 0.0082

Table 3: Computation time of Leo on three largest real graphs, including bootstrap time and per-query response time.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 500 1000

Ac
cu

ra
cy

 (%
)

Top # of 2000 nodes

Monterey Bay
Santa Barbara

Egypt

(a) Hitting Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 500 1000

Ac
cu

ra
cy

 (%
)

Top # of 2000 nodes

Egypt
Santa Barbara
Monterey Bay

(b) PPR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 500 1000

Ac
cu

ra
cy

 (%
)

Top # of 2000 nodes

Egypt
Santa Barbara
Monterey Bay

(c) Commute Time

Figure 14: Accuracy of Top k ranked node

Graphs Hitting Time (%) PPR (%) Commute Time (%)
GT Leo GT Leo GT Leo

MontereyBay 71.21 69.12 72.16 69.56 61.23 69.11
Santa Barbara 69.28 71.28 71.22 70.01 65.26 70.26

Egypt 73.52 69.93 71.56 72.38 68.01 67.98

Table 4: Link prediction application accuracy using hitting
time, commute time, and PPR, based on Ground Truth (GT)
and Leo.

hitting time in link prediction, the accuracy using actual distances
is 73.52% while the accuracy of Leo is 69.93%. We notice that
Leo outperforms actual distances in few cases. This is because
the estimation error of Leo results in that some deleted edges are
ranked higher than they should be. However, the number of this
kind of node pairs is relatively small. The prediction accuracy of
Leo is almost as accurate as the results using actual distances.

6. RELATED WORK
Applications Using Random Walks. Random walks appear
in numerous applications in fields such as computer vision, data
mining, network security and social network analysis. For example,
work in computer vision [15] reliably extracts shape properties in
Silhouettes using hitting time. [16] utilizes hitting time from all
nodes to a chosen node as threshold to determine automated graph
partitions. Commute time is an important way to track real-world
multi-body motions [33] and image segmentations [32].
In data mining problems, standard clustering algorithms such

as K-means produce more accurate results by replacing traditional
distance with commute time [42]. Personal page rank has been used
to improve partitioning in [2], and commute time has been used to
detect global and local outliers in data [20]. Since random walks
are resistant to noise and manipulation, they are also widely used
to build robust reputation systems [17] and Sybil detection systems
on social networks [43, 44]. In social networks, commute time, hit-
ting time and PPR are important metrics to accurately perform link
prediction over time [25].
Random Walk Distance Estimation. Given the prevalence
of Personal PageRank in search engines and recommendation sys-

tems, researchers have developed two general approaches to com-
pute PPR, i.e. linear algebraic optimization [19, 29] and Monte
Carlo approximation algorithms [13, 3]. Monte Carlo algorithms
to compute PPR can be significantly sped up using a variety of
techniques, ranging from parallelization via MapReduce [4] to im-
proved bounds for distributed algorithms [11].
Since commute time is symmetric, many have tried to approxi-

mate it using fast matrix computation. Standard matrix computa-
tions based on matrix inverse require O(n3) time, which does not
scale. One solution is to produce fast approximations using the
Lanczos process [6]. Since network effective resistance is analo-
gous to commute time, [40] uses graph sparsification to compute
effective resistances between any pair of nodes in O(log n) time.
Finally, [37] focuses on efficiently computing hitting time and com-
mute time within a fixed number of T hops, instead of a generalized
query between any two nodes.
Distance Embedding. Distance embedding methods have been
used to approximate delays between machines on a network, in the
form of network coordinate systems [31, 28, 10, 27]. These sys-
tems embed Internet latency, i.e. round-trip time (RTT), into geo-
metric spaces. To account for violations of the triangle inequality,
[10] uses a height value to model congestion at the network edge.
Some initial work has applied embedding methods to shortest

path queries, with significant limitations in scalability. [34] em-
beds metrics in small graphs into a Euclidean space, and [35] uses
a network structure index (NSI) to compute node position. [9] pro-
poses a greedy method to capture dynamic graphs in a hyperbolic
space. However, all three methods cannot scale to medium or large
graphs in today’s social networks. Orion [47] and Rigel [48] are
Graph Coordinate Systems that focus on approximating shortest
paths using Euclidean and Hyperbolic spaces.

7. CONCLUSION
Random walk distances are important for their ability to cap-

ture not only distance but also affinity. Unfortunately, they are pro-
hibitively expensive to compute even moderately sized graphs. Our
work explores novel techniques to accurately approximate three

random walk distances: hitting time, commute time and person-
alized PageRank.
Our work shows that naive graph embeddings fail to capture

the asymmetry of these distances. Our insight is to identify, per-
direction, per-node random walk costs that can be accurately cap-
tured and modeled. We model them as two additive “height vec-
tors” that are added to random walk distance estimates. In an ab-
stract sense, one captures the cost of leaving the subgraph around
the source node, and one captures the cost of finding the destina-
tion node in its local subgraph. We show that these factors change
dramatically based on the type of graph, and that for small-world
graphs, asymmetric hitting time is dominated by a single per-destination
cost. We propose Leo, a new embedding system leveraging these
insights to accurately predict random walk distances. Our eval-
uation shows that after the upfront embedding cost, Leo provides
highly accurate predictions in a fewmicroseconds, 8 orders of mag-
nitude faster than existing methods for computing ground truth.
Source code at http://sandlab.cs.ucsb.edu/rigel.

Acknowledgments
We thank the anonymous reviewers for their helpful feedback. This
work is supported in part by DARPA GRAPHS (BAA-12-01) and
NSF grants CNS-1224100 and IIS-0916307. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the funding agencies.

8. REFERENCES
[1] R. Albert, H. Jeong, and A. Barabasi. Diameter of the world-wide

web. Nature, pages 130–131, 1999.
[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using

pagerank vectors. In Proc. of FOCS, pages 475–486, 2006.
[3] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte

carlo methods in pagerank computation: When one iteration is
sufficient. Technical report, SIAM J. Numer. Anal, 2005.

[4] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank
on mapreduce. In Proc. of SIGMOD, pages 973–984, 2011.

[5] Z. Bar-Yossef and L.-T. Mashiach. Local approximation of pagerank
and reverse pagerank. In Proc. of CIKM, pages 279–288, 2008.

[6] F. Bonchi et al. Fast matrix computations for pairwise and
columnwise commute times and katz scores. Internet Mathematics,
8(1-2):73–112, 2012.

[7] M. Brand. A random walks perspective on maximizing satisfaction
and profit. In Proc. of SDM, 2005.

[8] S. Chakrabarti. Dynamic personalized pagerank in entity-relation
graphs. In Proc. of WWW, pages 571–580, 2007.

[9] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing
for dynamic graphs. In Proc. of INFOCOM, pages 1647–1655, 2009.

[10] F. Dabek et al. Vivaldi: A decentralized network coordinate system.
In Proc. of SIGCOMM, pages 15–26, 2004.

[11] A. Das Sarma, A. R. Molla, G. Pandurangan, and E. Upfal. Fast
distributed pagerank computation. In ICDCN, pages 11–26, 2013.

[12] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. In
Proc. of Adv. Phys, pages 1079–1187, 2002.

[13] D. Fogaras et al. Towards scaling fully personalized pageRank:
algorithms, lower bounds, and experiments. Internet Math.,
2(3):333–358, 2005.

[14] S. Gaito et al. On the bursty evolution of online social networks. In
Proc. of HotSocial, pages 1–8, 2012.

[15] L. Gorelick et al. Shape representation and classification using the
poisson equation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 28(12):1991–2005, 2006.

[16] L. Grady and E. Schwartz. Isoperimetric partitioning: a new
algorithm for graph partitioning. SIAM Journal of Scientific
Computing, 27(6):1844–1866, 2006.

[17] J. Hopcroft and D. Sheldon. Manipulation-resistant reputations using
hitting time. Internet Math, 5(1-2):71–90, 2008.

[18] G. Jeh and J. Widom. Scaling personalized web search. In Proc. of
WWW, pages 271–279, 2003.

[19] S. Kamvar et al. Extrapolation methods for accelerating pagerank
computations. In Proc. of WWW, pages 261–270, 2003.

[20] N. L. D. Khoa and S. Chawla. Robust outlier detection using
commute time and eigenspace embedding. In Proc. of PAKDD, pages
422–434, 2010.

[21] P. Lawrence et al. The pagerank citation ranking: Bringing order to
the web. Technical report, Stanford University, 1998.

[22] J. Leskovec, L. Adamic, and B. Adamic. The dynamics of viral
marketing. ACM TWEB, (1), 2007.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In
Proc. of KDD, pages 177–187, 2005.

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. TKDD, 1(1), 2007.

[25] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In Proc. of CIKM, pages 556–559, 2003.

[26] L. Lovász. Random walks on graphs: A survey. Bolyai Society
Mathematical Studies, 2:1–46, 1993.

[27] C. Lumezanu et al. Measurement manipulation and space selection in
network coordinates. In Proc. of ICDCS, pages 361–368, 2008.

[28] M.Costa et al. Pic: Practical internet coordinates for distance
estimation. In Proc. of ICDCS, pages 178–187, 2004.

[29] F. McSherry. A uniform approach to accelerated pagerank
computation. In Proc. of WWW, pages 575–582, 2005.

[30] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, Jan. 1965.

[31] T. S. E. Ng and H. Zhang. Predicting internet network distance with
coordinates-based approaches. In Proc. of INFOCOM, pages
170–179, 2002.

[32] H. Qiu and E. Hancock. Image segmentation using commute times.
In Proc. of BMVC, pages 929–938, 2005.

[33] H. Qiu and E. Hancock. Robust multi-body motion tracking using
commute time clustering. ECCV, pages 160–173, 2006.

[34] S. Rao. Small distortion and volume preserving embeddings for
planar and euclidean metrics. In Proc. of SCG, pages 300–306, 1999.

[35] M. J. Rattigan et al. Using of structure indices for efficinet
approximation of network properties. In Proc. of KDD, pages
357–366, 2006.

[36] M. Saerens et al. The principal components analysis of a graph, and
its relationships to spectral clustering. In Proc. of ECML, pages
371–383, 2004.

[37] P. Sarkar and . W. Moore. A tractable approach to finding closest
truncated-commute-time neighbors in large graphs. In Proc. of UAI,
pages 335–343, 2007.

[38] T. Sarlós et al. To randomize or not to randomize: space optimal
summaries for hyperlink analysis. In WWW, pages 297–306, 2006.

[39] H. Song et al. Scalable proximity estimation and link prediction in
online social networks. In Proc. of IMC, pages 322–335, 2009.

[40] D. A. Spielman and N. Srivastava. Graph sparsification by effective
resistances. In Proc. of STOC, pages 563–568, 2008.

[41] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao.
User interactions in social networks and their implications. In Proc.
of EuroSys, pages 205–218, April 2009.

[42] L. Yen et al. Clustering using a random walk based distance measure.
In Proc. of ESANN, pages 317–324, 2005.

[43] H. Yu et al. Sybilguard: defending against sybil attacks via social
networks. In Proc. of SIGCOMM, pages 267–278, 2006.

[44] H. Yu et al. Sybillimit: A near-optimal social network defense
against sybil attacks. In Proc. of IEEE S&P, pages 3 – 17, 2008.

[45] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In Proc. of infocom, pages 594–602, 1996.

[46] X. Zhao, A. Sala, C. Wilson, X. Wang, S. Gaito, H. Zheng, and B. Y.
Zhao. Multi-scale dynamics in a massive online social network. In
Proc. of IMC, pages 171–184, 2012.

[47] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. Orion:
Shortest path estimation for large social graphs. In WOSN, 2010.

[48] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao. Efficient shortest paths
on massive social graphs. In CollaborateCom, pages 77–86, 2011.

